

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

USING THE BOOTSTRAP CONCEPT TO BUILD AN
ADAPTABLE AND COMPACT SUBVERSION ARTIFICE

by

Lindsey Lack

June 2003

 Thesis Advisor: Cynthia Irvine
 Second Reader: Roger Schell

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Using the Bootstrap Concept to Build an Adaptable and Compact Subversion Artifice
6. AUTHOR(S) Lack, Lindsey A.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The attack of choice for a professional attacker is system subversion: the insertion of a trap door that allows the attacker to
bypass an operating system’s protection controls. This attack provides significant capabilities and a low risk of detection.

One potential design is a trap door that itself accepts new programming instructions. This allows an attacker to decide the
capabilities of the artifice at the time of attack rather than prior to its insertion. Early tiger teams recognized the possibility of
this design and compared it to the two-card bootstrap loader used in mainframes, since both exhibit the characteristics of
compactness and adaptability.

This thesis demonstrates that it is relatively easy to create a bootstrapped trap door. The demonstrated artifice consists of 6
lines of C code that, when inserted into the Windows XP operating system, accept additional arbitrary code from the attacker,
allowing subversion in any manner the attacker chooses.

The threat from subversion is both extremely potent and eminently feasible. Popular risk mitigation strategies that rely on
defense-in-depth are ineffective against subversion. This thesis focuses on how the use of the principles of layering,
modularity, and information hiding can contribute to high-assurance development methodologies by increasing system
comprehensibility.

15. NUMBER OF
PAGES

90

14. SUBJECT TERMS System Subversion, Computer Security, Artifice, Trap Door, Bootstrap,
Assurance, Layering, Information Hiding, Modularity

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release, distribution is unlimited

USING THE BOOTSTRAP CONCEPT TO BUILD AN ADAPTABLE AND
COMPACT SUBVERSION ARTIFICE

 Lindsey Lack
 Civilian, Naval Postgraduate School

B.S., Stanford University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2003

Author:
Lindsey Lack

Approved by:

Dr. Cynthia E. Irvine
Thesis Advisor

Dr. Roger R. Schell
Second Reader

Dr. Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The attack of choice for a professional attacker is system subversion: the insertion

of a trap door that allows the attacker to bypass an operating system’s protection controls.

This attack provides significant capabilities and a low risk of detection.

One potential design is a trap door that itself accepts new programming

instructions. This allows an attacker to decide the capabilities of the artifice at the time of

attack rather than prior to its insertion. Early tiger teams recognized the possibility of this

design and compared it to the two-card bootstrap loader used in mainframes, since both

exhibit the characteristics of compactness and adaptability.

This thesis demonstrates that it is relatively easy to create a bootstrapped trap

door. The demonstrated artifice consists of 6 lines of C code that, when inserted into the

Windows XP operating system, accept additional arbitrary code from the attacker,

allowing subversion in any manner the attacker chooses.

The threat from subversion is both extremely potent and eminently feasible.

Popular risk mitigation strategies that rely on defense-in-depth are ineffective against

subversion. This thesis focuses on how the use of the principles of layering, modularity,

and information hiding can contribute to high-assurance development methodologies by

increasing system comprehensibility.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..5
A. HISTORY OF SECURE SYSTEMS..5
B. THREATS TO INFORMATION SYSTEMS ...8
C. SUBVERSION VIA TRAP DOOR ARTIFICE..12

1. Desirable Artifice Traits..12
a. Compactness..12
b. Possession of a Unique Trigger..13
c. Revision Independence ...13
d. Installation Independence ..14
e. Untraceability ..14
f. Adaptability..14

2. The Erosion of Concern about the Subversion Threat15

III. DEMONSTRATION OF AN ADAPTABLE SUBVERSION ARTIFICE...........19
A. PURPOSE OF DEMONSTRATION ...19

1. High Level Goals ..19
2. Assumptions ...19
3. Requirements..20

a. Compactness..21
b. Possession of a Unique Trigger..21
c. Untraceability ..22
d. Revision and Installation Independence................................22
e. Adapatability..22
f. Integrity Verification...22
g. Feedback..23
h. Session Tracking...23
i. Hard Reset ...23

B. DESIGN DECISIONS ...23
1. TCP/IP Versus NDIS...25
2. Network Stack Visibility Considerations ..26

C. DETAILED DESCRIPTION OF ARTIFICE...28
1. Stage 1 – Toe-hold..28
2. Stage 2 – Loading of Artifice Base..31
3. Stage 3 – Completion of Artifice Base..34
4. Packet Interface Specifications...36

a. Hard-Coded Load Packet..36
b. Hard-coded Start Packet...37
c. Artifice Base – General Functions...37
d. Artifice Base – Load Data Function39
e. Artifice Base – Set Trigger Function40

 viii

f. Artifice Base – Feedback Function..41

IV. ANALYSIS ...43
A. WORK FACTOR...43
B. IMPACT ON THREAT MODEL ..45

V. COUNTERING THE SUBVERSION THREAT..49
A. THE PROBLEM OF IDENTIFYING AN ARTIFICE..............................49
B. THE ROLE OF MODULARITY, INFORMATION HIDING, AND

LAYERING..52
1. Common Criteria Guidance..52
2. Modularity and Information Hiding..54
2. Layering ..55
3. Applying the Principles ...57
4. Addressing Performance Concerns..61

a. Multics ...63
b. VAX VMM Security Kernel ..63
c. GEMSOS Kernel ...63
d. L4 Microkernel..64

VI. CONCLUSIONS ..67

LIST OF REFERENCES..69

INITIAL DISTRIBUTION LIST ...73

 ix

LIST OF FIGURES

Figure 1. Myer’s Attack Categories ..9
Figure 2. Stage 1 Logical Flow ...29
Figure 3. Stage 2 Logical Flow ...32
Figure 4. Stage 3 Logical Flow ...35
Figure 5. UDP Header Specification for Load Packet ..36
Figure 6. UDP Header Specification for Start Packet ...37
Figure 7. General Artifice Parameter Specification for Functions..................................38
Figure 8. Artifice Parameter Specification for Load Data Function39
Figure 9. Artifice Parameter Specification for Set Trigger Function40
Figure 10. Artifice Parameter Specification for Feedback Function.................................41

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

EXECUTIVE SUMMARY

It was said of the far-flung Roman Empire that all roads led to Rome – north,

south, east and west. And it was through that road system that Caesar extended his writ
far and wide. And they were great roads. But there is a funny thing about roads. They go
both ways, and when the Vandals and the Visigoths decided to attack Rome they came
right up the roads.†

Like the roads of the Roman Empire, the roads that make up the Information

Superhighway go both ways as well. Like the Roman network of roads, the Internet has

been responsible for tremendous improvements in efficiency and productivity. However,

it also exhibits the Pandora’s-box-like quality: every improvement is linked with a

danger.

Understandably, the security threats that receive the most attention are those that

are observed such as web-site defacements and viruses that arrive with email messages.

The threats more deserving of concern are those more likely to have a significant

impact—such as a disruption of critical infrastructure or a compromise to national

security—and less likely to be observed. For many decades, security researchers have

been aware of the most potent threat: operating system subversion. System subversion is

the intentional modification of a system prior to its production use (such as during

development or distribution), which allows the subverter to completely bypass the

system’s security controls. The code that achieves this bypassing of controls is known as

a “trap door” or an artifice. Because planning is required, subversion is typically seen as a

professional attack, one most likely to be conducted by a nation state or other visionary

organization.

This thesis builds upon the previous research on subversion that has been

conducted at the Naval Postgraduate School. In 1980, Philip Myers published a thesis

that outlined the desirable characteristics of a subversion artifice [MYER80]. Myers

highlighted six desirable characteristics of a trap door artifice, including compactness,

adaptability, possession of a unique trigger, untraceability, and independence from both

operating system upgrades and variations in installation.

† From Friedman, Thomas L., The Lexus and the Olive Tree: Understanding Globalization, Anchor

Books, p 322, May 2000.

 xii

In 2002, Emory Anderson demonstrated the ease with which a subversion artifice

may be implemented, adding 11 lines of code to Linux that bypassed the Network File

System permission controls [ANDE02]. The behavior of the Anderson artifice was static,

lacking the characteristic of adaptability mentioned in the Myers thesis.

The idea of an adaptable artifice originated with some of the earliest vulnerability

assessment teams (also known as “penetration” or “tiger” teams), who were well aware of

trap doors. The teams envisioned that an artifice could be constructed that would take

additional instructions as input, thereby allowing the artifice to be programmed. The

concept of a programmable artifice was likened to a traditional bootstrap mechanism,

wherein the initial input is composed of instructions that enable the system to load even

more instructions.

This thesis provides a demonstration of an adaptable artifice, showing that adding

the characteristic of adaptability to the artifice requires little additional effort or technical

expertise. Bootstrapping is the key to satisfying the inherently contradictory goals of

compactness and adaptability. The artifice demonstrated in this thesis – consisting of 6

lines of C code that can be added to the Windows XP operating system – is able to accept

additional code, thereby supporting the implementation of an arbitrarily complex

subversion, and allowing an attacker to program the artifice at the time of attack rather

than having to predict the desired capabilities prior to its insertion. The implemented

artifice exhibits all six characteristics identified by Myers as desirable.

The threat from subversion is both extremely potent and eminently feasible.

Nevertheless, the dominant risk mitigation strategy, rather than increase the assurance

level of the most critical assets, is to use multiple solutions in parallel to achieve

“defense-in-depth.” This paradigm is so accepted, in fact, that it has become an official

part of the Department of Defense’s information assurance policy. Unfortunately, the

solutions in question, such as firewalls, intrusion detection systems, etc., have all been

shown to be ineffective against subversion.

The only accepted solution for ensuring the absence of a subversive artifice is to

apply a strict development methodology specifically designed to provide high-assurance.

This thesis describes how some of the accepted but frequently overlooked principles of

 xiii

programming contribute to this methodology. Specifically, the thesis discusses layering,

modularity, and information hiding, and how these principles contribute to reducing

complexity, achieving system comprehensibility, enabling the application of formal

methods, and segmenting a trusted computing base from non-trusted components. The

thesis also addresses the impact of the use of highly structured techniques on system

performance.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

It was said of the far-flung Roman Empire that all roads led to Rome – north,
south, east and west. And it was through that road system that Caesar extended his writ
far and wide. And they were great roads. But there is a funny thing about roads. They go
both ways, and when the Vandals and the Visigoths decided to attack Rome they came
right up the roads.†

We live in the Information Age. Today the important roads are the ones that carry

ones and zeros rather than those that carry modern-day chariots. While the technology

market bust at the turn of the century reduced the use of hyperbole, the radically

transforming nature of the information technology, from microchips to the Internet,

cannot be denied, and indeed is hard to overstate.

Yet for all the dramatically positive attributes that information technology-related

progress has brought, there is a dark side to the progress as well. While information

technology has become very adept at expanding capabilities and features, it has made

comparatively little progress at providing security. This is not to deny the prodigious

efforts that have been focused on security, especially recently, as the extraordinary

growth in the field has exacerbated security issues. Corporations have been developing

and refining a multitude of security products, such as firewalls, intrusion detection

systems, and system security enhancements. The reason that little true progress has been

made is that most current efforts are focused on the wrong part of the problem. Security

consists fundamentally of two components: a mechanism that implements some security

feature, and assurance that the mechanism operates as advertised. One would not, for

example, hire a bodyguard if the bodyguard were not both capable and trustworthy: one

attribute without the other is of little use. The problem with the current approaches to

security is that efforts focus on the mechanisms. As every new threat or technique arises,

a security mechanism or feature is developed to address the threat. Unfortunately, adding

one mechanism on top of another mechanism can do nothing to increase the assurance of

† From Friedman, Thomas L., The Lexus and the Olive Tree: Understanding Globalization, Anchor

Books, p 322, May 2000.

 2

the overall system. Any weakness in the foundation of the system will be exploitable,

even if the higher supported layers are strong.

The truly critical issue today is the lack of product diversity. Without a rich

variety of systems from which to choose, with each system providing a different level of

assurance to meet the needs of different risk profiles, effective management of risk is

impossible. Imagine that an IT manager’s only choices are between one system that does

not meet the assurance requirements but does meet functionality and budgetary

requirements, and another system that exceeds assurance requirements but whose

functionality is untested and whose cost far exceeds the limitations of the budget. What is

the correct choice in this scenario? Obviously there is none.

A couple decades ago, the potential threats to computer systems were understood

and research was conducted into how to build computer systems that were capable of

enforcing security policies with a high level of assurance. In the mid-80’s, the

government tried to establish a marketplace for systems with a range of assurance levels;

however, for a variety of reasons this marketplace was never firmly established.

Since that time many things have changed: computers have become ubiquitous,

and in today’s highly networked world, the need for secure computer platforms is higher

than ever. Ironically, the operating systems commonly available do not take advantage of

previously developed techniques for designing secure systems.

One of the most significant threats against computer systems is the subversion of

an operating system: the intentional modification of a system to allow the complete

bypassing of security controls via a “trap door.” In March of 2002, Emory Anderson

published a thesis [ANDE02] demonstrating the implementation of a subversion artifice,

showing that relatively little technical expertise is required to carry out such an attack.

His demonstration exhibited several advantageous traits, such as compactness (with the

accompanying natural resistance to discovery), possession of a unique trigger, and

untraceability. His artifice, however was static, being pre-programmed with a specific

behavior, and thus giving the impression that it would be difficult for a potential

subverter to effectively deploy a subversion attack against a specific target.

 3

The idea that it would be possible to design a subversion artifice that could accept

new code was realized at the very beginning of research on computer security. Roger

Schell described the idea’s origin [SCHE03]:

During some of my early tiger team participation with Jim Anderson and
others, it was recognized that a significant aspect of the problem of Trojan
horse and trap door artifices was the ability of the artifice itself to
introduce code for execution. A self-contained example was a subverted
complier in turn emitting an artifice, as hypothesized in the early 1970's
Multics evaluation by Paul Karger and me [KARG02], which stimulated
Thompson's discussion of this in his Turing lecture [THOM84]. Soon
after Karger's report, other tiger team members observed that the
ultimately desired artifice did not have to be self-contained, but could be
imported later. It was suggested that a particularly insidious packaging of
this could have the initial artifice provide the functions of simple bootstrap
loader typically hardwired in the computers of that era. These loaders did
something like read the first two binary cards from the card reader and
initiate execution of what was read, which was usually a further bootstrap
program to read and execute additional binary cards. Hence this class of
attack came to be commonly referred as the “2-card loader problem.”

The concept and term became quite commonplace, although I don't know
of any widely reported actual implementation. Myers during his 1980
research at NPS was well aware of the 2-card loader problem, and his
thesis implicitly included this in the trait of a trap door he termed
“adaptability” which included being “designed to modify operating system
code online.” [MYER80]. Much later Don Brinkley and I in our 1995
IEEE essay had the 2-card loader problem in mind when we briefly
described a hypothetical attack where, "Among the functions built into the
Trojan horse was the ability to accept covert software 'upgrades' to its own
program." [BRIN95].

The hypothesis of this thesis is that creating a flexible subversion artifice – one

which allows the desired subversion to be programmed at the time of attack – is not much

more difficult than creating a fixed artifice, and well within the capability of a

professional attacker. Additionally, such an artifice could retain the characteristics that

have been demonstrated in static artifices, such as compactness, possession of a unique

trigger, and untraceability.

The demonstration associated with this thesis is a collaborative effort. This thesis

deals with only one portion of the overall artifice design, specifically the compact toe-

 4

hold code which is inserted into the operating system, and the bootstrapping of that toe-

hold into a base or foundation that provides some simple services to the designers of a

specific artifice. Two other theses are contributing towards the other aspects of building

the entire artifice. David Rogers is working on the methods by which the artifice may be

expanded to an arbitrarily large size, dynamically linked, and made persistent [ROGE03].

Jessica Murray is developing a specific artifice that subverts the IPSEC subsystem,

causing it to reveal its traffic and keys to the attacker [MURR03]. All three efforts are

being supported by Microsoft Corporation, and are using Windows XP as the target of

subversion.

The rest of the thesis is organized as follows. Chapter II provides a background on

the history of secure systems, classifications of threats, and details on the subversion

threat in particular. Chapter III describes the details of the demonstration of an adaptable

subversion artifice. Chapter IV provides an analysis of the difficulty involved in

implementing the artifice and the impact on the threat model. Chapter V outlines

measures that may be taken to counter the subversion threat, and specifically addresses

the importance of modularity, information hiding, and layering to the overall measures

taken. Chapter VI concludes the thesis.

 5

II. BACKGROUND

A. HISTORY OF SECURE SYSTEMS

 In today’s increasingly automated and networked world, the issues of security and

privacy in relation to computing systems are increasingly becoming mainstream topics.

Attacks that occur against the infrastructure of the Internet or major Internet companies

are headline news. Today, one might overhear conversations on the street about solutions

for firewalling home computer systems, or about a recent run-in with a computer virus

spread through email. Some prominent cyber-criminals have achieved infamy through

their exploits, and in several cases following their incarceration have become high-paid

security consultants. To many the recent phenomena of personal computers, cell phones,

and the Internet—markers of the Information Age—seems to be a Brave New World.

This new world, in addition to bringing remarkable capabilities and potential for new

efficiencies, brings with it in Pandora-box fashion new dangers and threats.

Today’s common computer user must deal with a myriad of issues regarding

computer security. He must make sure he is using virus protection software and that the

software is updated with the latest signatures. He must ensure that security patches for his

operating system(s) are administered. He must worry about whether his home network

and systems have an adequate firewall. He must maintain his own backup files to insure

against any unforeseen loss. Yet how must this person feel about the state of computer

security when the parties who are truly concerned with computer security such as

prominent Internet-based companies and the government, are themselves vulnerable to

cyber-attack. Although most of the press revolves around low-level attacks such as web-

defacement, it is not surprising that more significant attacks fail to reach the media due to

the potential damaging publicity that could impact both corporate and government

interests. It may surprise today’s average computer user to know that most of the

computer security issues we face today, including the most potent threats, were well

understood three decades ago. What may be even more surprising is that the research

conducted at that time, at the start of the Information Age, actually resulted in the

 6

production of systems that were significantly superior to today’s systems with regard to

security, but that for a variety of reasons failed commercially.

The first computers were tremendously expensive devices: the computer’s time

was many magnitudes more valuable than the operator’s time. Since the computer

worked so much more quickly than the operator, the obvious solution was to program the

computers to service many operators at the same time. This time-sharing feature

unfortunately created a new computer security threat. Whereas before time-sharing the

access to the computer could be controlled with physical security, once time-sharing was

developed, physical security could no longer be used. With time-sharing, the critical

difference was that the security mechanism of the computer system itself was

programmed, opening up the possibility that someone could reprogram (and thus subvert)

the security mechanism. This observation was first made in the Air Force Computer

Technology Planning Study [ANDE72]. This report introduced the concept of a security

kernel, one core part of the system that integrates all security functions, and the concept

of a Reference Monitor, an abstraction that serves to formalize the notion of protection.

The primary purpose of these concepts is to make the security components small enough

that they can be analyzed and understood completely, thereby providing assurance that

the desired protection principles are satisfied and that no subversion of the protection

mechanism has been conducted.

The first commercially available system designed around the security kernel

concept was the SCOMP [FRAI83]. However, not all operating systems adopted these

principles. The Multics operating system, for example, failed to incorporate this design

despite the fact that it was specifically designed to meet requirements for security. In

1974 Karger and Schell published an evaluation of the security of the Multics operating

system. In this evaluation they showed that although Multics was designed with security

goals in mind and assumed to be secure by its designers and users (and indeed was

significantly more secure than common contemporary systems), it was still extremely

vulnerable to the introduction of malicious software.

In 1973, Bell and LaPadula published a report [BELL73] showing that it is

possible to mathematically formalize the specifications of a security policy that specifies

 7

what it means to preserve confidentiality. Later, Biba [BIBA77] showed that a similar

model could be used to describe information integrity. These are known as mandatory

policies.. A mandatory access control policy is a homomorphism on an access control

matrix, creating specific equivalence classes of subjects and objects and reasoning about

those classes. Mandatory policies only work, of course, if the classes are permanent and

may not be reassigned (or reassignment would take place outside of the model). Note that

the policies that are to be enforced, be they discretionary or mandatory, are orthogonal to

system enforcing the policy. The security-kernel approach suggested in the Anderson

report recommended keeping the security-kernel minimized so that it could be verified as

correctly enforcing the policy.

The policy is important to the design of secure system as well, however, due to

the likely avenue of attack. While one potential tactic is to attack the security mechanism

of the operating system itself, another is to try to masquerade as a user with a higher level

of privilege. Since the privilege levels of users, including the administrator, are typically

encoded within the policy, mandatory access control policies can help ensure that

attempts to gain additional rights are restricted. Especially useful in this regard is the

Biba policy, which can serve to maintain the integrity of components of the operating

system.

In 1985, the government published criteria for evaluating the assurance class of an

operating system, called the Department of Defense Trusted Computer Evaluation

Criteria (TCSEC) [DOD85]. With the support of the government guidelines created in the

TCSEC, many commercial attempts were made at producing a secure operating system to

support the needs of the government. Although some systems were created and

successfully evaluated, for a variety of reasons these attempts were not in the end a

market success.

 Today more than ever there is a need for high-assurance operating systems.

Today’s de facto standard for operating systems severely limits choices. Given that

different users of information technology have dramatically different tolerances for risk,

the limitations dictated by the few dominant commercial operating systems have the

 8

potential to result in potentially catastrophic outcomes. Loscocco highlights some of the

needs that are directly addressable today [LOSO98]:

• Within a Public Key Infrastructure, the need to maintain highly secure

Certificate Authority sites, as well as the need for the protection of end-

systems with regard to the integrity and confidentiality of public and

private keys (respectively) and the integrity of the public-key process.

• For encrypted connections, the need to maintain the security of the end-

points and in some cases a local key management server (for IPSec).

• For voting applications, the need to maintain the integrity of the voting

mechanisms of the end-user voting terminals.

As pointed out by Loscocco, the creation of any secure application without a

secure operating system on which to run the application is tantamount to building a

“Fortress built upon sand.” That is, if the operating system is weaker than the application

(or related cryptographic operation), then the operating system will become the target of

an attacker. Once the operating system is compromised, the secure application is

invariably compromised as well.

B. THREATS TO INFORMATION SYSTEMS

In 1980, Myers outlined a taxonomy for categorizing the ways in which internal

computer system controls may be attacked. He divided potential attacks into three

categories, inadvertent disclosure, penetration, and subversion. Inadvertent disclosure

relies upon a confluence of events (which may include human error) that conspire to

reveal information that should have been kept confidential. Penetration describes a

situation in which the attacker takes advantage of a flaw in an operating system to gain

unauthorized access or control. The skill level of the attacker is not specified: it could be

someone who is inexperienced and may be easily caught or a professional cracker.

Subversion is the intentional undermining of the computer systems security controls

through the introduction of an artifice, or piece of code, at any point in the system

lifecycle. In Myers’ ontology, subversion includes both trap doors and Trojan horses.

Trap doors are distinguished by the fact that they may be activated directly, whereas a

 9

Trojan horse lures a user to activate it, and is limited to acting on behalf of a user. The

following figure shows this categorization:

Figure 1. Myers’ Attack Categories

Much has changed in the last 23 years since Myers published his thesis, yet the

categorization he proposed is still relevant. In 1980, the term “script-kiddie” had not been

invented, whereas today it sees common use. Likewise, today people use the term

“spyware” to refer to software that, in addition to its primary capabilities that are

marketed, covertly sends information about the user to a centralized site to ostensibly

assist with the effective targeting of advertisements. Today, a trap door is likely better

known as a “root kit,” software that is installed after a penetration takes place that allows

the attacker to regain access to the compromised system while evading detection. The

fact that the most common method for installing a trap door is to first penetrate a system

illustrates the magnitude of the problem today. Indeed, the ease with which today’s

systems may be penetrated may be part of the reason why subversion garners so little

attention. If penetrating a system were not so trivial, attackers would begin to look at

targeting a system earlier in its lifecycle.

Myers’ categorization includes a characterization of the attacker. Myers maintains

that although the technical skills required for any of the specific attacks is not very great,

by definition the act of subversion implies a more disciplined and more methodical

 10

approach to the attack, one which would be carried out by a professional or group of

professionals with a specific objective. Penetration, in contrast, is painted as the type of

activity that is today attributed to script-kiddies: actions by a lone user with limited aims.

Today, the mapping between the seriousness or sophistication of an attack and the

attacker’s technical expertise is less clear. For example, imagine that a company that

provides free software for playing music has also added code in the software that scans

one’s computer for cookies and keywords that indicate the interests of the user, allowing

the company to provide targeted advertising. Such Trojan horse code certainly violates

the security policy that most users would like to enforce, in this case referring to the

personal privacy component of the policy. Although such an example may be

characterized as subversion since the implementers were certainly skilled, motivated, and

well organized, it likely does not match the profile of a serious, professional subverter.

Also, software tools have been developed that make implementing a Trojan horse trivial.

Often such techniques are used simply to gather passwords in order to further the

penetration exploits of non-serious actors. Likewise, as Myers readily indicates, an

attacker utilizing penetration is not necessarily an amateur. Some of the tools that have

been developed to conduct penetration are in fact very sophisticated, and penetrations by

skilled attackers are often accompanied by the installation of root kits to establish a back

door.

Despite the inconsistency of the models that has arisen due to the sheer magnitude

of the progress that has been made in information technology, the intent of the taxonomy

is clear and remains valid: with regard to computer system attacks, there is a tremendous

difference between non-serious and serious actors. Non-serious actors typically act alone

or in loose-knit groups, use tools that others create, and have limited goals, motivation,

and time-frames. Serious actors are highly-skilled and highly-organized, operate as an

organization rather than as individuals, have aggressive goals and strong motivation, and

are capable of long-term planning. Non-serious actors will tend to employ techniques that

are convenient, whereas serious actors will employ techniques that best enable them to

achieve their purpose.

 11

The one technique that is solely in the toolkit of a serious actor – and would be

unlikely to be used by a non-serious actor – is the insertion of a trapdoor subversion

artifice into a system early in its lifecycle (before deployment). Note that this does not

include a root kit installed after a penetration has occurred. The property that makes this

particular technique relevant to only the serious actor is the timeframe and planning

involved. A non-serious actor would be unlikely to have a long enough planning horizon

to make such efforts meaningful, and would also be unlikely to have the organizational

resources needed to carry out such an effort. A trapdoor artifice has a couple important

advantages over a Trojan horse. First, a Trojan horse requires the cooperation of the

victim (although the victim may be unaware of having cooperated), thereby reducing the

attacker’s ability to plan and to be certain of outcomes. Second, a Trojan horse is limited

to operating within the privilege level of the user. Although crackers have become very

proficient at escalating privilege levels on common operating systems, a system that can

effectively separate privilege levels, such as one enforcing a mandatory access control

policy, makes this attack of questionable value. A trap door, on the other hand, is

activated by the attacker directly, and is essentially unlimited (that is, limited only by

design) in how it can subvert the protection mechanisms of the operating system.

Although a trap door is designed to circumvent normal system controls, the

circumvention process does not necessarily draw attention to itself since the artifice can

be designed to be a part of the system: technically there is no distinction between the

artifice and the operating system; the artifice that subverts the protection mechanism is

the operating system.

Although there are some additional hurdles to overcome in order to install a

trapdoor artifice, there are some compelling advantages. Subversion in general has the

advantage, as already mentioned, of being unlikely to be detected. This is because the

subversion is designed to operate either as the operating system or as a user (in the case

of a Trojan horse), and therefore its actions are not considered to be “abnormal.” A trap

door subversion will ideally be controlled by an activation mechanism. When it is not

needed, it is deactivated, making detection of its existence much more difficult.

 12

Unlike a root kit that is installed following a penetration, a subversion artifice

does not leave a trail of evidence, digital bread crumbs if you will, that point to its

existence. A penetration will necessarily cause a change to the system that can be tracked.

Even a very skilled attacker is unlikely to be able to completely erase all traces of a

penetration. File integrity verification tools (such as Tripwire), the built-in auditing

features of a file system that track all accesses and modifications to files, the traces of

files that remain on a disk even when files are overwritten, and even the memory that is

overwritten when a buffer overflow takes place all potentially contribute to the trail of

evidence that may be forensically examined to verify that a penetration has taken place

and to explain how it was performed. With subversion, such a trail of evidence does not

exist, so it is much more difficult to know whether your system has been subverted or

not.

Another advantage of a trap door subversion is that it is possible to deploy a

subversion artifice widely, even if the subversion will only be used in a limited context.

C. SUBVERSION VIA TRAP DOOR ARTIFICE

1. Desirable Artifice Traits

Myers details several of the traits that are considered to be desirable in an artifice.

These include compactness, revision independence, installation independence,

untraceability, being uniquely triggerable, and adaptability. I will explain each of these in

turn, clarifying why these traits would be useful, and how the subversion example

provided by Anderson measures up to the desired traits.

a. Compactness

Compactness contributes to the inherent ability of the subversion artifice

to remain undetected. Since the only way to determine whether an artifice exists is to

understand the actual code being carried out by the system, maintaining compactness

makes positively identifying subversion code much more difficult. Anderson was able to

implement his demonstration of subversion with only 11 lines of C code.

 13

b. Possession of a Unique Trigger

He followed the prescription Myers gave for the trap door precisely,

adding artifice code to recognize the activation or deactivation trigger, and based on that

trigger set or disable the master mode, which in his case affected the file access

permission checking code.

c. Revision Independence

Revision independence is tied to the nature of the attacker, a serious actor

with a long planning horizon. Such an attacker might install the artifice early in the

lifecycle of the system, and may not know exactly when the artifice will be used. If the

artifice is corrupted by later revisions, the investment made by the attacker will be lost.

Therefore, it is important to ensure that the artifice will survive system updates and

revisions. Myers suggests that device drivers are a good choice since they generally don’t

change with software revisions, and since they are often coded in low level languages

they are more difficult to understand, and therefore less likely to be identified as

subversive. Myers, however, perhaps did not anticipate the tremendous pace of change

that has taken place in the world of hardware in the past two decades. This rapid pace of

change in hardware has actually reversed the trends one may have reasonably expected

about hardware and software.

The software with the highest rate of change has been the software closely

associated with hardware, and software with the lowest rate of change has been the more

abstract “higher level” code that implements standard protocols. For example, many

systems today still carry the original TCP/IP code that helped to make TCP/IP a

worldwide standard. In contrast, the entire architecture of Windows device drivers has

been redesigned several times, and each new architecture has generally maintained little

compatibility with previous architectures. Naturally, each new architecture has required

completely new code for each individual device. Also, hardware components themselves

have very short production lifecycles. Even software that is part of the operating system,

but that interfaces with device drivers, is subject to fairly frequent modification, as shown

by the fact that the Windows Network Device Interface Specification (NDIS) has

undergone a major revision with each new operating system update.

 14

Given these facts, it appears that for an artifice to achieve revision

independence, it is better to insert the artifice in code that provides compatibility with

widely-adopted standards. The Anderson demonstration (in part) is installed in the

software that implements the TCP/IP stack, which would be likely to survive operating

system revisions.

d. Installation Independence

Installation independence is important when the same operating system

may contain different components depending upon the needs of the particular installation.

This applies to custom-designed solutions that may only include specific components in a

particular installation, a practice that was likely more common a couple of decades ago.

However, it also applies to the installation approach common in today’s systems, which

is to install a standard operating system platform that includes a superset of what most

customers need, and turn off the components that are not desired. For example, if a

particular installation does not provide network access to a file system for remote access

by clients, then an artifice that bypasses the permission checking of only this service will

not be usable. Thus, the Anderson demonstration arguably does not provide a high degree

of installation independence.

e. Untraceability

Untraceability is achieved by minimizing the impact on the system, which

can take the form of either an audit trail or changes to the system that can be examined

forensically. A trap door subversion has the advantage of operating as the system itself.

Contrariwise, a Trojan Horse, since it operates effectively as the user who ran the code, is

subject to the auditing procedures that apply to all users. The Anderson demonstration

exhibits a high degree of untraceability.

f. Adaptability

Adaptability allows a subversion artifice that is planted at one point in

time to be modified at some point after the insertion. The Anderson demonstration

exhibits little adaptability, since the artifice has few options. Although system files with

new artifices may be loaded onto the system using the artifice, the artifice itself has

limited state. The logical extreme of adaptability is complete programmability.

 15

2. The Erosion of Concern about the Subversion Threat

The Myers thesis, which highlighted the subversion threat, contributed to the

development of criteria that could be used to ensure the development of systems that are

verifiably secure, e.g. that can be shown to be free of a subversion artifice. For nearly two

decades, efforts were made to address the subversion threat. The government, in addition

to creating the TCSEC, mandated that for high-assurance needs the government only use

systems certified as meeting the requirements of the TCSEC. This prompted development

efforts by commercial companies to develop systems to meet the high-assurance

requirements. For a variety of reasons, including the fact that government agencies failed

to heed the mandate, the efforts to create a marketplace for systems that could provide a

rich variety of assurance levels failed. Today, the TCSEC has been replaced by the

Common Criteria, and although companies who produce COTS products do continue to

achieve certification of their existing products at the medium assurance levels, the

marketplace for high assurance systems, including those capable of addressing the threat

of subversion, has dried up. Speculation regarding the social and political factors that

produced an initial surge of corporate development and the following cancellation of such

efforts is beyond the scope of this thesis.

The reaction to the failure of high-assurance efforts has been curious, however. It

appears as though the impression that no adequate solution exists to address the threat of

subversion has given rise to the opinion that subversion is no longer a significant threat.

Given the importance of information technology to the future and the fact that these

perceptions are driving critical policy decisions, the magnitude of the danger that such

misjudgments represent is enormous.

The turning point that officially marked the government’s capitulation on its

efforts to create high-assurance systems was the signing of DoD Directive 8500.1

October of 2002 [DOD02]. This new directive cancelled DoD Directive 5200.28,

“Security Requirements for Automated Information Systems (AISs),” [DOD88] which

had enforced the application of the TCSEC to automated systems. Whereas the

philosophy of the former security requirements focused primarily on assurance

measures—ensuring that systems are designed from the ground up to meet specific

 16

assurance objectives—the philosophy of the new directive is focused on achieving

security goals through the application of “Defense in Depth.” The directive defines

“Defense in Depth” as:

The DoD approach for establishing an adequate IA posture in a shared-
risk environment that allows for shared mitigation through: the integration
of people, technology, and operations; the layering of IA solutions within
and among IT assets; and, the selection of IA solutions based on their
relative level of robustness.

Robustness, as defined by the document, is intended to address assurance issues,

albeit with more flexibility and less precision than the previous directive. The key change

with the defense in depth approach is that there is now the idea that one’s information

assurance posture may be raised via the layering of information assurance solutions. This

principle of “security through addition” is illustrated by such measures as active

penetration testing, perimeter defense, and intrusion detection. Unfortunately, history has

shown that all of these measures fail against the threat of subversion, even when several

measures are used in parallel. The perception that additional measures lead to additional

mitigation of risk is false. Evidence of the inadequacy of testing and perimeter defenses

are provided in the Emory Anderson thesis [ANDE02].

Prior to DoD Directive 8500.1, a report on the insider threat [OASD00],

published in 2000 by the Office of the Assistant Secretary of Defense, illustrated the

perception that subversion is not a significant risk. This report downplays the subversion

risk by claiming that it is too hard. It posits that an individual developer of a COTS

product intent on subverting the system would have “an extraordinarily difficult task” in

targeting an individual customer since the production and distribution of the product is

independent from the developer. The would-be subverter “would have to deliver the same

product to all customers while retaining the ability to isolate a particular customer for

exploitation.”

That such a subversion is not “extraordinarily difficult,” but is rather exceedingly

easy is precisely the objective of this thesis. The fact that the author, in a short amount of

time, was able to create a subversion artifice that could be inserted into every copy of a

 17

product, yet be selectively activated and customized, shows the technical feasibility of

such a task, and hopefully will serve to highlight the danger of underestimating the threat

of subversion.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. DEMONSTRATION OF AN ADAPTABLE
SUBVERSION ARTIFICE

A. PURPOSE OF DEMONSTRATION

1. High Level Goals

The purpose of this demonstration is to show that it is possible, and indeed

relatively easy, to design and insert a compact and adaptable subversion artifice into an

operating system. The key consideration here is that these two characteristics are

typically mutually exclusive: adding flexibility to software generally results in bloated

code rather than compact code. This demonstration focuses on the construction of the

mechanism whereby a very compact artifice can be dynamically grown, essentially the

“2-card loader” envisioned by many early security tiger teams. The end product is an

artifice foundation or base that does not itself provide much functionality. Instead it

provides a platform that may be used to implement a subversion of arbitrary complexity

and sophistication.

Although the actual demonstration is implemented on a single platform, the

concepts behind the design of the subversion are platform independent and could be

implemented on any common operating system that has not been designed using high

assurance methodologies.

While it is valuable to understand how easy or difficult detection of an artifice is,

obfuscation is specifically not an objective of this demonstration. There are numerous

ways to try to actively hide the existence of an artifice. One of the points of this thesis is

that, even without the attempt to disguise an artifice, it is still nearly impossible to detect

due to its inherent characteristics.

2. Assumptions

The assumption of this demonstration is that the subversion in question is being

carried out by an insider: someone with access to the code who is responsible for

legitimate portions of the code. The real risks are not, however, limited in by this

assumption. Whereas the demonstration assumes knowledge of the source code and the

 20

ability to insert modified code at a specific point in the development lifecycle, Myers

points out that risks are present at every stage of the system lifecycle, including design,

development, distribution, maintenance, etc. While having access to the internals of the

system is an advantage, there are many examples of malicious software that have found a

way to make use of undocumented aspects of system internals. These examples include

kernel-level root kits, which can produce results similar to this demonstration, as well as

exploits for discovered vulnerabilities. These examples do show that having source code

is not necessary (and sometimes not even sufficient!) for understanding the workings of

the system.

There are several technical assumptions that were made in the design of this

demonstration:

• The target for the subversion is based upon Windows NT technology,

which means that the actual target may be Windows NT, Windows 2000,

Windows XP, or Windows XP Embedded.

• The subversion will make use of network connectivity, and the target will

have a standard networking mechanism.

• The memory of the target should be sufficiently unconstrained to allow for

the storage of small amounts of assembly code. This does not assume that

storage is infinite, but that a relatively small and straightforward program

should be supportable.

• The system can be made to allow the modification of memory that

contains other kernel executables.

• The target system will use the Intel x86 machine instruction set. Note that

this is not a design limitation: machine code for the loaded artifice could

be designed to meet the requirements of any chip.

3. Requirements

Several requirements arise out of the definition of an effective subversion

mechanism by Myers, as described above:

 21

• Compactness

• Possession of a unique trigger

• Untraceability

• Revision and installation independence

• Adaptability

The primary requirements for this demonstration are the characteristics of

compactness, possession of a unique trigger, and adaptability. In addition to the

requirements outlined by Myers, the author added several additional requirements to

increase usability and to support the fact that the artifice is programmable. These include:

• Integrity verification

• Feedback

• Session tracking

• Hard reset

a. Compactness

The property of compactness can be indicated roughly by the number of

lines of code added to the system. The subversion artifice demonstrated in the Anderson

thesis was 11 lines of code; this demonstration must be within the same order of

magnitude.

b. Possession of a Unique Trigger

The possession of a unique trigger is required since the user needs to be

able to turn the artifice on and off, and it is desired that such activation and de-activation

not be likely to be performed by accident.

 22

c. Untraceability

The desire that the artifice be untraceable is related to the desire of the

attacker to avoid detection. While a flexible artifice might be programmed to take actions

that could be traced, the fixed component of the artifice should avoid such actions.

d. Revision and Installation Independence

In order to maximize the effective lifetime of the artifice within the

system, it should be placed in a location that is unlikely to be revised. Likewise, to ensure

the highest probability of being effective at the target site, it should be placed in a

location that has a high probability of being a part of the target installation.

e. Adapatability

Since this demonstration produces only the base artifice, the artifice

should provide some amount of primary memory for the use of holding code that allows

the execution of that code. This is the fundamental measure of adaptability, that the

artifice builder may expand upon the base element to create an arbitrarily large and

sophisticated subversion. The amount of memory provided for the user should be

sufficiently large to enable arbitrary expansion. For example, in order for the user to build

a larger artifice elsewhere in memory, a certain amount of bootstrap code is necessary to

find that area and load the necessary code. The artifice should at a minimum provide

sufficient space for such code. In practice, this means that there is enough free memory in

the base element to hold the code that discovers or requests additional memory and

manages that additional memory.

f. Integrity Verification

Given that the information coming into the system will likely be coming

through an imperfect channel, it is desirable that the integrity of the content be verified in

order to increase the usability of the artifice and to reduce the chance of inadvertent

failure of the target system. Integrity checking also contributes to the ability of the

artifice to avoid detection, since a failure condition would potentially provide the victim

with an obvious signal that something is amiss.

 23

g. Feedback

In order to improve the usability of the artifice, the artifice base should

support communication back to the subverter. The subverter should be able to customize

and program the content of this communication, but the artifice base should supply this

service to its customers. Note that this requirement is not necessary for a subversion

effort to succeed. It merely provides a level of usability to the attacker, which is

particularly useful for demonstration purposes, both in order to produce an illustrative

demonstration and to support debugging

h. Session Tracking

Also, to improve the usability of the system if there are going to be several

attackers working in concert, the system should provide a service that keeps track of who

is using the system in order to reduce conflicts. The session tracking may be used to

ensure that only one user uses the artifice at a time. Although the session ID must be

known by the attacker, it is not otherwise intended to support authentication.

i. Hard Reset

For reasons related to the preservation of integrity and the tracking of user sessions, the

artifice should have hard reset functionality in the case of an emergency. This ensures

that if the artifice enters a state that appears problematic, such as being unreachable or not

displaying the expected behavior, it can be reset to its original state to ensure accessibility

B. DESIGN DECISIONS

In order to conduct the bootstrap transition, from a “toe-hold” to an artifice that

creates the desired subversion of the operating system, it is necessary to transmit the new

code into the system. The options available for establishing a communication channel are

limited only by the imagination. Virtually any input mechanism may be used, such as the

keyboard, the network, serial ports, etc. Messages could be hidden in files that are read

by the system, such as documents, graphics files, or even music files, and these files

could enter the system via a variety of methods, including email, web downloads, FTP

file transfers, peer-to-peer file sharing, or even via the physical transfer of removable

media. For this demonstration, the network has been chosen for simplicity as well as for

 24

its increasing ubiquity. It should be noted that although two-way traffic is assumed to be

possible for convenience sake, the design of the artifice does not rely on the use of

outbound traffic. Given that the initial bootstrap portion of the artifice is a part of the

networking code, it was decided that the base portion of any artifice should include

networking services that may be used in the design of more sophisticated artifices. There

were a couple of guiding principles that drove the design of the base portion of the

artifice:

• The base element of the artifice should be involved with any use of the

network that is programmed into more complex elements of the artifice.

• Of the base element of the artifice, the “toe-hold” should be as compact as

possible.

In order to keep the subversion artifice compact, yet also provide services that

allow one to easily develop a custom subversion, a bootstrap-like mechanism has been

adopted. The primary purpose of the first part of the bootstrap mechanism is simply to

provide a “toe-hold,” a means by which something may be inserted into the system. This

analogous to the traditional 2-card loader of the mainframe era, in which the first two

punch cards inserted contained the code necessary to assist in loading the subsequent

cards. The purpose of the second stage is to assist the building of the third stage. The

third and final stage of the base artifice expands the set of services that are provided to

someone constructing a custom-build artifice.

This expansion incorporates generic mechanisms that would be used by anyone

wanting to load their own artifice. This bootstrap mechanism confers adaptability due to

the fact that only the toehold must be determined at the time of insertion. While the base

artifice gives the attacker the ability to load and execute arbitrary code, the second and

third stages of the artifice are themselves adaptable. If, for example, the attacker

determines that feedback from the subverted system is not important, but that another

feature is important for the base artifice (or perhaps that there is not even a need for the

features of the base artifice), such changes can be made after the toe hold is inserted and

just before the modified code is shipped to the system through the toe hold.

 25

The inspiration for the design borrows from the techniques that have been

developed by the "blackhat" community. Techniques for exploiting buffer overflow

errors are widely available, and in some cases have grown fairly sophisticated. Buffer

overflow exploits take advantage of the fact that arbitrary data can be placed into memory

and then executed. The design of the subversion in its simplest form replicates this

behavior. While the subversion artifice will be explicit, it should be noted that a similar

effect may be achieved by intentionally creating code that is vulnerable to a buffer

overflow. It is important to point out the differences between the explicitly coded artifice

and a buffer overflow vulnerability. A buffer overflow vulnerability is by its nature less

noticeable than explicit lines of code since there are no lines of code directly associated

with the vulnerability: the vulnerability is created by the absence of sufficient error

checking. This is not to say that just because an artifice has specific lines of code

associated with it that it is obvious, however, given the amount of code that exists in a

system and the difficulty of comprehending the function of each line of code.

On the other hand, a buffer overflow may be observed fairly easily even without

source code by observing the behavior of the system. A subversion artifice is generally

implemented with a trigger mechanism, so that only when a specific input key or

signature is delivered will the artifice take action. Therefore, testing for such a trigger via

trial and error will be nearly impossible. Additionally, although not addressed by this

thesis, it is conceivable that an explicit artifice trigger could be obscured in the same

fashion as a buffer overflow (not represented by individual lines of code) while retaining

possession of a trigger key. One other advantage of the explicit artifice is that it tends to

be more user-friendly. It can be designed to provide a user with predictable behavior and

not impact the system it is on, whereas exploiting a true buffer overflow usually means

damaging some part of the running state, which is often more difficult to recover from

cleanly.

1. TCP/IP Versus NDIS

In deciding exactly where to insert the artifice into the networking modules of the

operating system, the initial inclination was to use the very low layers that are close to

device drivers. In Windows systems, there is a layer called the Network Device Interface

 26

Specification (NDIS), which is designed to provide a standardized layer between the

device drivers that power the networking hardware and the operating system. The initial

reasoning for this decision was that it would result in an artifice that could operate in a

protocol independent manner, yet not be dependent upon the particular hardware used, as

a device driver would be. Although inserting an artifice in a device driver itself has some

implementation advantages, such as generally less oversight and testing and ease of

introduction into the kernel due to an overly-trusting driver model, it was not considered

due to the more important goal of reaching installation independence.

The final decision was to use the TCP/IP stack rather than the NDIS layer.

Although NDIS is protocol independent, the use of TCP/IP is so prevalent that the

advantage of protocol independence is negligible. Also, the TCP/IP stack is more static

that the NDIS layer. Whereas the NDIS version number has changed with virtually every

new operating system version released, the TCP/IP functionality has remained relatively

static. Thus, using TCP/IP contributes to the goal of revision independence. The

overriding factor, however, was based upon the desire to keep the artifice both compact

and usable. Putting the code within NDIS would have required the addition of some kind

of checksum within the artifice to verify the integrity of incoming information. Since the

incoming traffic would be code (due to the need to grow the artifice), unverified data

could have severe consequences, likely crashing and losing control of the target. By using

a UDP packet, the artifice is able to leverage the checksum performed to know that the

packet has not been corrupted in transit. An additional feature of the UDP checksum

operation is that a packet with a bad checksum is silently dropped, and a specific bad

checksum could potentially be used as a trigger. This has the effect of being able to

communicate with the artifice in a way that is resistant to both testing and auditing.

2. Network Stack Visibility Considerations

Hiding its existence was not an explicit goal of the artifice. Nonetheless, questions

that seek to understand whether the artifice would really be found are certainly of interest

and pertinent to the topic. Placing the artifice in the networking stack was largely done

because it was easy: since the decision was made to transmit the artifice over the

 27

network, subverting the networking code was a natural decision. There are other

questions that get more to the point:

• Even if the victim knew that the artifice was in the networking code,

would that really substantially change the difficulty of finding the artifice?

• How difficult would it be to obscure the artifice, making it appear as

though it belongs in the code?

• Would it be possible to achieve the same effect (compromising the

network stack) without putting the toe-hold there?

One of the arguments for why the artifice “toe-hold” is difficult to detect depends

upon size. The artifice is very small, whereas the amount of other code in the system is

very large. While the code involved with networking is smaller than the code for the

entire system, there is still a substantial amount of code. The ratio of the number of lines

of code in the networking system to the number of lines of code associated with the toe-

hold is still massive.

Additionally, no attempt was made to disguise the intent of the artifice code.

There are likely many potential ways of doing so, such as following the naming

conventions of the surrounding code and using variable names that might be confused

with valid variables. Additionally, creating an artifice toe-hold by failing to validate

input, for example, would make the artifice much more difficult to detect (similar to

replicating a buffer overflow, as previously discussed).

A similar effect as the toe-hold code could certainly be achieved by modifying

code in another (non-networking) part of the system. For example, if the location of

packets could be known or perhaps stored, it would be possible to use a frequently

occurring system event to trigger a check of all packets in memory. Examples of

frequently occurring functions include clock-based functions, disk access, and object

manipulation. Such a design would rely on the fact that messages sent to the victim

machine would not have to be reliable. If a given packet were not observed, another

could be sent. In fact that attacker could repeat the necessary messages until they were all

observed.

 28

C. DETAILED DESCRIPTION OF ARTIFICE

The structure of the base element of the subversion was broken into three stages,

the “toe-hold” portion of the artifice, which is the initial phase, the loading of the artifice

base, which is the second phase, and the completion of the construction of the artifice

base, which is the third stage. Each stage provides a different set of capabilities.

1. Stage 1 – Toe-hold

The first stage of the artifice bootstrap (shown in Figure 2) is known as the “toe-

hold” code. The term bootstrapping refers to the act of “pulling oneself up by one’s

bootstraps.” Although the imagery of the term suggests the impossible, in reality there is

always some initial support needed in order to start a bootstrap, i.e. the toe-hold. In this

demonstration, this is the code that is inserted into the source code sometime during the

product lifecycle prior to the start of the attack. The toe-hold code provides three primary

capabilities. First, it provides the memory that will be used by the artifice to store

additional code and data. The amount of primary memory is sufficient to implement a

small artifice or allow the construction of a larger artifice. Second, it supports a hard reset

of the subversion mechanism back to a known initial state. This is done by loading a

second stage that simply performs a “return” instruction. Third, it is able to detect and act

upon specific signatures occurring in networking traffic sent by the subverter for the

purpose of loading the code for the second stage or jumping to the start of the code for

the second stage. Stage 2 code must fit in a single packet.

 29

UDP packet with
bad checksum

received, toe-hold
code executes

Checksum
value match

load key?

Checksum
value match

run key?

No

Load packet
contents into

reserved space
Yes

Processing
continues,

dropping packet
due to bad
checksum

No

Yes
Change point of

execution to start
of reserved space

Loaded artifice
code returns

execution

Stage 1 - Toe-hold Code

Figure 2. Stage 1 Logical Flow

The artifice toe-hold code consists of several small elements that are added to the

UDP code. These include:

• A global array that provides limited storage for the artifice base and for a

small amount of additional subversion code.

• A unique load key that triggers the loading of the packet contents into the

code array.

• A unique start key that triggers the point of execution to jump to the code

in the code array.

• A small amount of logic that occurs after the UDP code has established

that the packet contains a bad checksum value. This logic, based upon the

existence of one of the two unique keys, either loads the packet contents

 30

into the start of the array or starts executing the code at the start of the

array.

The implemented toe-hold code consists of 6 lines of executable C code added to

the UDP-handling routines. The six executable lines of code implement the logic that

checks for the two unique keys, and either loads the contents into the array or calls the

array as though it were a function. In addition to the 6 lines, there are two lines used for

declarations: one declares an array that reserves the primary buffer space for the artifice,

and the second is a type definition that allows the pointer to the array to be treated as a

function.

The purpose of the toe-hold code is to load and start the second stage of the

bootstrap code. This is analogous to a traditional hardwired bootstrap loader. Whereas the

historical 2-card loader required that the bootstrap code be stored in the first two cards,

this bootstrapped artifice requires that the second stage code be contained in a single

packet. The two unique keys that identify a packet as being intended for the artifice could

of course coincide with a packet that has legitimately computed these same checksums.

Indeed, if one assumes that any given packet will randomly generate a 16-bit checksum,

then it will take only an average of 16,384 UDP packets before one of the two triggers is

duplicated. There are two mitigating factors, however. First, after artifice code is loaded,

any packet indicating that the artifice code should be executed will be checked by the

artifice code to ensure that the correct session key is present in the incoming packet. If

the 16-bit session key provided in the packet does not match the current session key, no

action is taken. Second, a packet is checked for the particular unique checksum only

when the checksum fails. Assuming that packets are corrupted in transit rarely, let us say

only one in 10,000 packets and that UDP traffic represents some fraction of traffic

observed such as 25%, that means that an accidental activation of the artifice to load the

contents of the packet would occur on average about once every 1,310,000,000 packets.

If the attacker desired to have less chance of an accidental reset of the loaded artifice, she

could certainly modify the toehold code to include a check on a later segment of the

incoming packet as is done in the checking for the session key.

 31

The toe-hold code is the only “hard-coded” portion of the artifice. All further

steps are completely flexible. Although, for example, Stage 2 may be implemented to

accept exactly 4 packets in order to load Stage 3, that implementation is arbitrary and can

be replaced if the design of Stage 3 changes. If, for example, the subverter has a very

simple exploit that does not require the services of the artifice base, the exploit may be

loaded directly into the primary buffer. On the other hand, if more features are desired for

the artifice base code, Stage 2 may be written to load Stage 3 with 8 packets.

Because the toe-hold is hard-coded, it is the component that must provide the

hard-reset functionality. In order for the subverter to conduct a hard reset, she merely has

to send a packet with the unique load key and contents that indicate that the execution, if

it enters the primary buffer, should simply return.

In addition to restoring the system to a known state, the subverter may also want

to cover any traces of activity. If the only evidence of activity is the initial portion of the

primary buffer that may be rewritten with the contents of a single packet, the subverter

may only need to send the one hard reset packet to cover all evidence of activity. Should

the subverter wish to overwrite the entire primary buffer, she may need to send three

packets: one containing code that will overwrite the entire buffer as desired, a second to

execute that code, and a third to overwrite the just executed code. Of course, if the

subverter has modified areas of the system beyond the primary buffer, he would need to

clean up those other areas prior to overwriting the primary buffer.

2. Stage 2 – Loading of Artifice Base

The second stage of the bootstrap process (shown in Figure 3) consists of the code

loaded by the first stage. The purpose of the second stage code is to load the last stage of

the artifice base.

 32

UDP packet with
bad checksum

received, toe-hold
code executes

Checksum
value match

load key?

Checksum
value match

run key?

No

Load packet
contents into

reserved space
Yes

Processing
continues,

dropping packet
due to bad
checksum

No

Yes
Change point of

execution to start
of reserved space

Loaded artifice
code must return

execution

Stage 2 - Loading of Artifice Base

Packet session
number match

current session ID?
Yes

No

Load packet
contents into

reserved space at
indexed location

Update completion
array for current

index

Completion array
shows that all

packets loaded?
No Yes Link Stage 3 code

into execution path

Figure 3. Stage 2 Logical Flow

Whereas the code for the second stage of the artifice base must fit within a single

packet, the code for the third stage may require multiple packets. Thus the second stage

of the bootstrap process must manage the loading of multiple packets. In order to do this,

the code keeps track of which portions of Stage 3 code have been loaded and which ones

remain. One additional feature of the second stage is that it allows the subverter who

initiates the loading of the second stage to use a unique session key, so that attempts by

 33

multiple subverters to interact with the artifice concurrently will not lead to system

failure.

The second-stage code consists of a couple of elements that facilitate the loading

of the third stage, including:

• A variable that identifies the current session.

• An array of bits that indicate whether the associated part of Stage three

code has yet been loaded.

• Logic that ensures that the incoming packet matches the current session.

• Logic that identifies which part of the Stage three code the current packet

represents, loads the contents of the packet into the correct location, and

registers that the portion in question has been loaded.

• Logic that checks to see whether the loading of the third stage is complete,

and if it is, it sets a new session ID, and modifies the second stage code so

that the next packet will be processed by the Stage three code.

The actual code for the second stage is similar to the “shellcode” or “asmcode”

that is used in buffer overflow exploits. It is passed into the system as raw opcodes, and is

designed to be position independent since the actual location of the code may be

unpredictable.

The third stage will be loaded by the second stage using a fixed number of

packets, each with a code payload of a fixed size. Thus, the packets may arrive in any

order. If any packets fail to arrive, they may be safely sent again until all the packets are

successfully received.

The inclusion of Stage 2 is optional, depending upon: the size of the Stage 3 code,

the amount of code that the subverter wishes to send in each packet, and the maximum

amount of data that may be sent in a packet. Because the incoming packets are one of the

few indications to the victim that subversion is taking place, the subverter may elect to

restrict himself to smaller packets in order to reduce the likelihood of detection (assuming

 34

the subverter believes that more numerous smaller packets are less obvious than a single

larger packet).

3. Stage 3 – Completion of Artifice Base

The third stage of the bootstrap (shown in Figure 4) begins once the code

delivered to the second stage has been completely loaded. This code is known as the

“artifice base” and provides three main features. First, it supports the loading of

additional code into a limited area of memory. Second, it supports the assignment of

multiple triggers to different points of execution, so that specific code may be activated

as desired via the network. Third, it provides the capability for feedback back to the

subverter via the network to let the subverter know the status of the artifice and any

additional information that the artifice may be programmed to provide.

 35

UDP packet with
bad checksum

received, toe-hold
code executes

Checksum
value match

load key?

Checksum
value match

run key?

No

Load packet
contents into

reserved space
Yes

Processing
continues,

dropping packet
due to bad
checksum

No

Yes
Change point of

execution to start
of reserved space

Loaded artifice
code must return

execution

Stage 3 - Artifice Base

Packet session
number match

current session ID?
Yes

No

Branch to
function

Load Packet

Set Trigger to
User

Function

Send
Feedback

User
Function 1

User
Function 2

User
Function N

Figure 4. Stage 3 Logical Flow

Like the second stage code, the third stage code is composed of raw opcode

instructions, and is position independent.

The artifice base supports four basic functions: loading of code, setting of code

triggers, executing code, and providing feedback. The loading function allows code sent

to the artifice to be copied to a specified location within the primary buffer space. The

trigger setting function allows a numbered trigger to be associated with a specific section

of code. Also, before associating a trigger number with the starting address of the loaded

 36

code, the function uses a checksum to verify the integrity of the loaded block of code.

The function to execute code simply passes the point of execution to the correct location

based upon the specified trigger. The function to provide feedback may be triggered

independently, or it may be specified as an option in conjunction with any other

command. Each of these functions may be “called” by sending an appropriately

formatted packet to the artifice. Using this foundation, the potential subverter may

construct his own arbitrary set of functions.

4. Packet Interface Specifications

a. Hard-Coded Load Packet

Figure 5 below shows the format of the UDP header that should be used to

load the artifice buffer with code. This is used in Stage 1 to load Stage 2 code, and to

conduct a hard reset.

Figure 5. UDP Header Specification for Load Packet

When the UDP checksum field contains the value of 0x3121 (and that

value is an incorrect checksum for the given packet), then the payload of the UDP packet

is loaded directly into the primary receive buffer. In the rare situation where 0x3121 is

actually the correct checksum for the packet, the user would have to modify the packet in

some way in order to get the payload to load correctly. The entire payload is copied into

the buffer, as indicated by the UDP Length. No error checking occurs with regard to the

length: since the primary buffer allocated by the initial artifice code is designed to be

larger than the maximum payload size, critical data should not be overwritten.

0 16 32

Source Port Destination Port

UDP Length UDP Checksum = 0x3121

Payload

 37

b. Hard-coded Start Packet

The following diagram shows the format of the UDP header that should be

used to jump the point of execution into the primary buffer. This format is used for every

packet sent to the artifice once code has been loaded into the primary buffer. In later

stages, the UDP header remains the same, while the payload of the UDP buffer is

formatted in accordance with the particular artifice code being executed.

Figure 6. UDP Header Specification for Start Packet

When the UDP checksum field contains the value of 0xE417 (and that

value is an incorrect checksum for the given packet), then a function call is made to the

address of the start of the primary buffer. Although the primary buffer is declared as an

array, the address of the array is copied into a variable that represents a function pointer.

The manufactured function receives a single parameter of type void*, which is used to

pass the starting address of the UDP packet into the artifice code in the primary buffer.

This allows the artifice code within the primary buffer to have access to the entire UDP

packet, and to use data within the packet as its own parameters.

c. Artifice Base – General Functions

The artifice base provides several preset functions, but it also provides the

user the ability to create his own functions that leverage the design of the artifice base.

Like the artifice base itself, all functions loaded into the primary memory must adhere to

a variety of restrictions, such as position independence and the preservation of particular

registers. Position independence is crucial since there is no linking being performed by

the system and no guarantee about the location of the primary memory. Sections of code

may be linked together explicitly by the user, whether they are contiguous or in different

0 16 32

Source Port Destination Port

UDP Length UDP Checksum = 0xE417

Payload

 38

parts of memory. With regard to registers, the artifice base uses as a convention the EBX

register to refer to its own data structures. All local variables are stored at relative offsets

to the EBX register, which is loaded when the artifice base initializes. Users who wish to

use the artifice base convention may do so; alternatively, they can use their own

convention. If they do use the EBX register, they should also reset it to its original value

once they finish using it to ensure that the artifice base may correctly reference its local

variables.

The functions supported by the artifice base, both the built-in functions

and the user defined functions, are available once the Artifice Base has been loaded. All

supported functions require that the UDP header be formatted to the Start Packet

specification. The fields that are common across all functions are shown in Figure 7:

Figure 7. General Artifice Parameter Specification for Functions

The session identification field is a unique key that must match the session

key currently defined in the artifice. This is used for all functions supported by the

artifice base. The session key is stored as a variable within the artifice base, so the user is

free to set up any type of coordination system he deems appropriate. For example,

different users can be given different keys and instructed to change the session key when

they want to transfer control of the artifice to another user. Or the user can establish two

keys, one indicating that the artifice is currently being used, and another indicating that it

is idle. The convention can be that an individual switches the session key to the in-use

key prior to taking any action, and then switches it back once the action is completed.

The feedback (FB) field indicates whether the user wants feedback to be

sent out to the network after a specific function has been completed. Because feedback

0 16 32

Session Identification

FB Fnc

 39

could be desired in conjunction with any function, the artifice base routine first executes

the primary function, and then automatically executes the feedback function provided that

the feedback flag has been set. Only the leftmost bit in the feedback field is used as the

flag: a zero indicates that feedback should not be sent, a one indicates that feedback

should be sent.

The function field (labeled as Fnc) is used to specify which function

should be run. There are 16 possible trigger values, with 0, 1, and 2 pre-assigned to the

standard functions of sending feedback, loading code, and setting new triggers. The

remaining 13 values may be set to user-loaded code.

d. Artifice Base – Load Data Function

This function supports the loading of data into a specified location within

the primary buffer. This function is available once the Artifice Base has been loaded, and

it is reached by formatting the UDP header to the Start Packet specification. The fields

that are needed in order to load data are specified in the header format diagram:

Figure 8. Artifice Parameter Specification for Load Data Function

The session identification field is a unique key that must match the session

key currently defined in the artifice. The feedback (FB) field indicates whether the user

wants feedback to be sent out to the network after the loading of data has been

completed. Only the leftmost bit in the field is used: a zero indicates that feedback should

not be sent, a one indicates that feedback should be sent. The load function is assigned

the index of 1, so the function field (labeled as Fnc) must be 0x01. The offset / jump

field indicates where the data should be loaded. An offset of 0 indicates that the next byte

following the artifice base code should be used for the first byte of data. The length field

0 16 32

Session Identification

FB Offset / Jump Fnc=1

Data (variable) Length

 40

indicates the number of bytes of data that should be copied. Neither negative offsets nor

offsets that would result in code being loaded past the end of the primary buffer should be

used; there is no error checking for these conditions. The data section of the packet starts

at byte 10, and its size is specified by the length field.

e. Artifice Base – Set Trigger Function

This function supports the setting of a trigger for some portion of loaded

code, thereby effectively creating a new function. This function is available once the

Artifice Base has been loaded, and it is reached by formatting the UDP header to the Start

Packet specification. The fields that are needed in order to load data are specified in the

header format diagram:

Figure 9. Artifice Parameter Specification for Set Trigger Function

The session identification field is a unique key that must match the session

key currently defined in the artifice. The feedback (FB) field indicates whether the user

wants feedback to be sent out to the network after the trigger has been set. Only the

leftmost bit in the field is used: a zero indicates that feedback should not be sent, a one

indicates that feedback should be sent. The set trigger function is assigned the index of 2,

so the function field (labeled as Fnc) must be 0x02. The offset / jump field indicates to

what address the point of execution should jump when the trigger is specified in a future

packet. For example, suppose that a trigger is set with a trigger of 8 and an associated

offset is 22. When a future packet is sent that specifies 8 as the function number, then the

point of execution will jump to offset 22. The length and checksum fields are used to

ensure the integrity of the code associated with a trigger prior to the trigger being set,

which can help to prevent a loss of control of the point of execution. The checksum fields

0 16 32

Session Identification

FB Offset / Jump Fnc=2 Trig.

Checksum Length

 41

(length and checksum) are design placeholders, and are not actually used in the

implemented demonstration.

f. Artifice Base – Feedback Function

This function supports the sending of feedback out to the network. This

function is available once the Artifice Base has been loaded, and it is reached by

formatting the UDP header to the Start Packet specification. The fields that are needed in

order to load data are specified in the header format diagram:

Figure 10. Artifice Parameter Specification for Feedback Function

The session identification field is a unique key that must match the session

key currently defined in the artifice. The feedback (FB) field must be 0x08, indicating

that the user wants feedback to be sent out to the network. The 0x08 represents the

setting of the leftmost bit to 1. The feedback function is actually a non-operational

function; when no operation is combined with the optional feedback feature that is a part

of any command, the result is the sending of feedback. Thus the function field (labeled as

Fnc) must be 0x00 since the 0 function does nothing. The actual feedback that is sent

depends upon variables that are located in memory within the primary buffer. These

variables, which store the source and destination addresses as well as the packet payload,

may be set by the user programmatically. Since the feedback function, when it is flagged,

always executes immediately after the primary function being triggered, it is possible to

program the primary function to store its results in the feedback buffer, which will be sent

when the primary function completes.

0 16 32

Session Identification

FB=8 Fnc=0

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. ANALYSIS

A. WORK FACTOR

It would seem intuitive that the most potent types of attacks against information

systems – the types of attacks that would be employed by professionals – would require

the greatest amount of effort and skill, whereas the least potent types of attacks would

require the least amount of effort and skill. In fact, such a straightforward correlation

does not exist. For example, a cursory review of the vulnerabilities of a variety of

systems and applications show that there are frequently exploits that are able to achieve

only limited denials of service, yet are quite difficult to carry out. Conversely, writing a

script that erases a hard drive on many UNIX systems (‘rm –rf /’) and giving it an

attractive name could make a very potent but trivial to produce Trojan Horse. Another

factor that makes correlation difficult is the fact that, with information systems, attacks

can be automated. Thus, only one person needs to develop, program, and release an

attack, after which executing the attack becomes significantly easier.

Indeed, in many respects, the most potent types of attacks are technically much

easier to construct than less potent attacks. It is illustrative to compare the adaptable trap

door-based subversion attack with a buffer-overflow penetration attack since there are so

many similarities between them. While both need to ensure that the code they import is

position independent, the buffer-overflow exploiter also needs to ensure that there are no

bytes in the exploit code that are zero, since that would indicate the end of a buffer and

therefore would not correctly trigger the buffer overflow. Also, since a buffer overflow

typically overwrites an area that is in use (such as the stack), the exploit writer must also

take care to ensure that her actions do not destabilize the system. Additionally, because of

the many auditing mechanisms that could potentially be triggered by a penetration attack,

implementing a penetration attack in a manner that avoids detection is much more

difficult. In contrast, a trap door effectively operates as the operating system, making the

triggering of auditable events avoidable. Another issue that makes penetration attacks

more technically challenging is that a high level of privilege over the system is not a

given: often an attacker must figure out how to escalate privileges in addition to gaining

 44

initial access, which further complicates the attack as well as attempts to remain

undetected.

Although subversion in many respects is technically easier than penetration, it

does have some properties that make it more difficult to implement than a penetration

attack. Primarily, subversion by definition requires a different attack vector than

penetration. Penetration can occur at any time during the operation of a system, whereas

subversion must use an attack vector that is related to the creation or maintenance of a

system. Necessarily, a subverter must have a higher level of knowledge about how the

system is developed, distributed, or maintained than an attacker using penetration. The

attack vector for subversion is qualitatively different, requiring either some type of social

engineering or meta-penetration, such as penetration of a development or deployment

system, in order to affect the system it is supporting. While the skills required for

subverting a system are different in quality, it would be presumptuous to conclude that

such skills are more difficult to obtain or more difficult to effectively deploy. The fact

that an organization attempting to conduct a subversion could use one party to design and

create the artifice and another to insert it illustrates the potential ease with which an

artifice could be inserted.

 The construction of an adaptable subversion artifice is arguably technically more

difficult than the design and construction of a fixed artifice. The primary reason for this is

the addition of flexible code. The code that is used to bootstrap the system must be

position-independent machine code, whereas a fixed artifice may be programmed with

whatever high-level language is used to program the system. Also, while for a fixed

artifice the artifice coder may take advantage of the knowledge of the linker to make

reference to operating system variables and functions, any interfaces between the flexible

exploit code and the operating system code must be discovered at runtime. Nevertheless,

in the author’s judgment, the estimate posited by Myers that subversion is within the skill

level of the average undergraduate computer science major is accurate (though a college

education is certainly not necessary). Although the creation of this thesis and the

associated demonstration lasted 9 months, the actual implementation of the artifice took

only a couple of weeks. The most significant technical challenge of the project was

 45

deciding what tools to use and becoming familiar with the tools and development

environment. In this regard the effort was similar to many programming projects, where

an unfamiliar development environment is generally a significant initial hurdle.

B. IMPACT ON THREAT MODEL

In 2000, the Office of the Assistant Secretary of Defense (Command, Control,

Communications and Intelligence) OASD (C3I) published a report [OASD00] that

outlined a set of recommendations intended to mitigate the insider threat to DoD

information systems. The report defines “insider” and sets up a framework for

understanding and analyzing the insider threat, and it divides its recommendations into

short-term and long-term actions that should be taken to mitigate the risks. It is said that

when producing software, it is very important to remove “bugs” early in the development

process, preferably in the design phase, since it is many times cheaper to remove a bug at

that point than once the bug has been written into the code. Risk mitigation has a similar

characteristic in that a small misunderstanding of the extent of the threat can result in a

tremendous amount of extra effort without a corresponding reduction of risk.

In the framework section of the report, the threats from insiders are characterized.

In particular, the report specifically addresses the potential threat from the vendors who

supply COTS products to the DoD. While the report notes that little is known about the

individual developers of such products and therefore no measure of trustworthiness can

be attributed to them, the report downplays the feasibility of an individual developer

acting on his potentially malicious intentions:

…individual developers of COTS products who have malicious intentions
would have an extraordinarily difficult task to target a particular customer
because COTS products tend to be produced in large quantities and
shipped to customers as an activity that is independent of the individual
developer. The developer with malicious intentions would have to deliver
the same product to all customers while retaining the ability to isolate a
particular customer for exploitation.

The report does grant that COTS systems do contain errors and that it is extremely easy

to demonstrate the ways in which such systems are insecure. Nevertheless, as explained

 46

previously, there is a fundamental difference between a vulnerability caused by a bug and

a vulnerability intentionally inserted as a trap door.

 The task that the report dismisses as too difficult is precisely the task that this

thesis proves is quite easy. The task is to create an adaptable trap door that can be safely

inserted into every distributed copy of a system, since there is a vanishingly small chance

that the artifice will be detected. This trap door can be selectively activated just for the

particular target customer, and although the trap door is in every system, the exact

capabilities desired for any particular target may be inserted into the particular target

customer’s system at the time of activation.

 The report does not explain in detail exactly how the attributes and assumptions

spelled out in the framework led to the specific actions that were recommended. The

flavor of the recommendations is, however, clear. Many of the recommendations focus

on measures that overlook the underlying insecurity of systems, and instead focus on

ways to append security. These additive tactics include using defense in depth, adding

additional security tools, introducing additional layers of cryptography, increasing the

number of attributes that are audited and measured, and attempting to detect and react to

anomaly and misuse detection. One action item labeled “System security architecture”

listed several important features of a secure system that warrant additional research, such

as authentication, access control, system integrity, and a bi-directional trusted path, yet

left out the concept of providing assurance for the system itself. Although such a property

may be implied, the bullet stating that the system should “continuously check system

integrity, to prevent violations of integrity caused by … malevolent software…” seems to

indicate that a high-assurance system is not being envisioned.

 The report does make one recommendation that pertains directly to potentially

subverted systems. It identifies that the acquisition process needs to be re-implemented to

ensure that program managers evaluate their potential vulnerability to subversion. The

ability to mitigate this threat, however, is misguided. For example, the report states “If

the vulnerability would jeopardize a critical Defense capability, additional security would

be instituted.” Of course, adding an additional security measure is ineffective against a

subversion. Another statement from the report explains that “Action … is needed to

 47

provide … an identification of otherwise obscured system vulnerabilities.” Given the

known difficulty of detecting a subversion artifice, it is unclear how such vulnerabilities

will be identified.

 The report warns that the insider risk is real and significant, yet it overlooks the

threat with the biggest potential and most catastrophic consequences. More alarmingly, it

provides a large array of recommendations, with a typical recommended action being

very costly, focused on detection, and completely impotent against subversion. Although

prevention is traditionally more efficient than either detection and response, and it is

incidentally the only way to guard against subversion, the report provides few

recommendations with a preventative focus.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

V. COUNTERING THE SUBVERSION THREAT

A. THE PROBLEM OF IDENTIFYING AN ARTIFICE

Determining whether software contains a trap door, although it sounds like a

straightforward task, has been shown by history to be an exceedingly difficult task.

Perhaps the most illustrative analogy is that finding a backdoor in software is equivalent

to determining whether software contains a bug. In fact, it is most frequently software

bugs that lead to system vulnerabilities, and a trap door could in fact be created by

intentionally inserting a software bug. Anyone who is familiar with software and the

propensity for software to contain bugs will realize that this is not a trivial problem to

solve.

One of the factors that make it difficult to find a trap door is simply that there is

so much code to examine. The Microsoft NT operating system is estimated to have

approximately 50 million lines of code. Additionally, in order to determine that there is

no trap door it is not sufficient to find just one bug, it is necessary to find (and remove)

every bug. Only one flaw need exist to create a trap door. Unfortunately, determining

whether malicious code exists is more difficult than finding all the needles in the

proverbial haystack, for often it is difficult to know what a needle looks like.

One of the arguments made by the open-source community is that even with a

great deal of code, it is possible to find most of the bugs in code since there are so many

people examining the code. This idea is most famously expressed by Eric Raymond in his

essay “The Cathedral and the Bazaar” [RAYM99] by the phrase, “Given enough

eyeballs, all bugs are shallow.” He asserts that this property of software developed with

the “bazaar” model of development makes this type of software less buggy, and also

reduces the amount of time any bug would likely remain in the system. Open source

advocates also claim that ‘Trojan horse’ code will not survive in open-source software

due to these many eyeballs, often citing an incident in 1999 when the TCP-Wrappers

source code was infected with a Trojan horse and quickly discovered by the open source

 50

community. However, John Viega, co-author of “Building Secure Software”, points out

that this was a glaringly obvious example of a Trojan horse [VIEG01].

Viega proposes that the often cited ‘many eyeballs’ phenomenon is a myth since

it commonly doesn’t occur. In his estimation, just because many people may view some

source code doesn’t mean that the security vulnerabilities will be uncovered. The reasons

for this are many, including: most often the only eyeballs are from those who want to

modify code (which may be very few to none), many coders don’t understand security

issues and may not care about them, and many security issues are very subtle and are not

readily apparent even for a motivated and educated observer. Viega cites a real-world

example of how difficult it is to detect an exploitable flaw in software, even when the

amount of code being examined is very small. The source code for wu-ftp, a very

common and popular piece of software, has been open and publicly available for over a

decade and has been examined extensively by security experts for security vulnerabilities.

In fact, at one point a security tool had flagged part of the wu-ftd code as potentially

vulnerable to a buffer overflow attack. Security experts who reviewed this particular

portion of the code determined that the potential flaw could not be exploited. Despite this

fact, more than a year after this code was reviewed, a buffer overflow exploit for this

same code was published. This example shows that detecting a security vulnerability can

be extremely difficult even when only a small amount of code needs to be analyzed. This

property, when combined with the considerable amounts of code that make up even

relatively simple systems, illustrates that finding a trap door inserted in the source code of

a large and complex system is virtually impossible.

The fact that the trap door need not even be in the source code at all makes the

virtually impossible task of finding the door even more difficult. The trap door can be

pre-compiled, provided there is a means of getting the compiled binary with the trap door

code into the target system. Karger and Schell hypothesized an even more insidious

scheme [KARG02]: store the directions for installing a trap door not in the source code,

but in the compiler program that translates the source code into an executable file. In this

case, there is no source code to review; one must ensure that the compiler program does

not have the capability of installing a trap door. The Karger and Schell publication

 51

inspired Ken Thompson to install such a self-compiling trap door into an early version of

UNIX. The existence of this trap door was first revealed in 1984 during the speech Ken

Thompson gave upon receiving the Turing Award [THOM84]. Ken Thompson spoke

directly to the trust one can place in software:

The moral is obvious. You can't trust code that you did not totally create
yourself. (Especially code from companies that employ people like me.)
No amount of source-level verification or scrutiny will protect you from
using untrusted code.

While inspection of source code alone will not provide protection from untrusted

code, a methodology that provides a basis for trust in information systems does exist.

This methodology, currently outlined in the Common Criteria [CC99], encompasses a

number of principles, which, when applied in combination, provide evidence that a

system provides a certain level of assurance. While source code verification alone cannot

provide a reasonable level of certainty, a combination of measures may. For instance, the

following list of measures provide a considerably higher level of assurance than source-

code verification alone:

• Conducting background checks on programmers

• Using only a custom-created compiler

• Using a distribution method that ensures that the delivered product is the

same as the developed product

• Minimizing the security components of the system

• Ensuring that the security components map precisely to a formally

specified information flow policy

• Organizing the security components in such a way that their functionality

may be fully understood

This last measure will be explored in detail in the next section.

 52

B. THE ROLE OF MODULARITY, INFORMATION HIDING, AND
LAYERING

In dealing with the problem of subversion, the challenge is to be able to ascertain

with certainty that no artifice has been inserted into the system. The only way to be

certain that no artifice has been inserted into the system is to have a complete

understanding of the system. Every line of code in the system and every possible

interaction between different parts of the system code must be completely understood,

and each line of code and interaction must ultimately support the specification around

which the system is designed. If there are any deficiencies in this understanding, there is

the possibility for the insertion of malicious code.

Modularity, Information Hiding, and Layering are the tools used to gain a

complete comprehension of large system. When faced with the possibility of subversion,

the solution ultimately always boils down to the need for a complete understanding of the

code. When the code is small enough, an understanding of the overall intent and

mechanics of such code is possible. When the size of the code grows, however, the

natural complexity of the system quickly makes it impossible for any one person to be

able to understand the code in its entirety. The solution to this issue is to divide the code

into separate parts, and to ensure that the parts are small enough that each part may be

understood in its entirety. The issue at that point is that, since the parts interact with one

another, one must have the ability to understand the interaction between parts. These

parts are called modules, the interactions between the parts is known as layering, and a

critical aspect of modules is that the internal state and contents of the modules must be

hidden from other modules. Only by limiting the interactions between modules can we

hope to have an understanding of the overall system behavior.

1. Common Criteria Guidance

The concepts of modularity, information hiding, and layering are at the

foundation of good software engineering practices, so it is hardly surprising that the

Common Criteria, the generally accepted guidelines for building high-assurance

computer systems, requires the incorporation of the principles of modularity and layering

[CC99].

 53

For example, the Common Criteria requires the use of modularity and layering in

the internal structure of a system’s security functions at the highest levels of assurance

(EAL5 through EAL7). For a system to meet EAL5 requirements, the security functions

must be designed in a modular fashion in order to avoid “unnecessary interactions

between the modules.” For a system to meet EAL6 requirements, it must (in addition to

the modularity requirement) structure the security portion of the system in a layered

fashion, minimizing the mutual interaction between the layers in the design and reducing

circular dependencies. It must also reduce the complexity of the functions that are

directly responsible for access control and/or information flow. In order for a system to

meet the highest level of assurance requirements, EAL7, it must reduce the complexity of

the access control and/or information flow functions (potentially by removing functions

that are not critical to the enforcement of such functions) to the point that they can be

fully analyzed.

The Common Criteria does point out that the overall goal of these measures is to

reduce the complexity of the functions being analyzed, which leads to an increase in

comprehensibility and ultimately a higher level of assurance that the functions accurately

and completely fulfill their requirements. However, it provides only a high level

description of how these organizational principles can assist with this goal. This chapter

will explain why these principles are critical to the construction of a high-assurance

system, how they can assist in assuring that no artifice is inserted, and the desirable

benefits a system may gain through the use of these principles, regardless of whether it is

designed for high assurance.

It is important to note that although the principles of modularity and layering are

necessary for the construction of systems that provide the highest levels of assurance,

they are by no means sufficient. Within the Common Criteria, for example, these

principles apply only to a single family of requirements within the class of requirements

for how a system is developed (the particular family is called “Target of Evaluation

Security Functions (TSF) Internals”). Also within the class of development requirements

are families of requirements that pertain to functional specification, high-level design,

low-level design, security policy modeling, etc. In addition to requirements that pertain to

 54

system development, the Common Criteria has additional classes of requirements for

such areas as configuration management, delivery and operation, lifecycle support, and

testing. Assurance cannot be provided in a piecemeal fashion: only when multiple

attributes are considered in parallel can confidence be achieved. For example, even if the

development of a system were conducted perfectly, the ability of a malicious entity to

modify the system during delivery makes the assurance measures taken during

development meaningless. This characteristic of assurance is reflected in the Common

Criteria by the fact that an increase in overall assurance level can only be achieved by a

combined increase in measures taken across requirement classes. Although modularity

and layering can help to ensure that a system is not subverted during development,

meaningful assurance is possible only through the application of a wide variety of

measures throughout every stage in a system’s lifecycle.

2. Modularity and Information Hiding

Parnas produced the seminal works on the topics of modularity and information

hiding thirty years ago [PARN72]. The original motivation behind the idea of modularity

is related more to the efficient construction of software and the ability to redesign the

software for other uses than for security. These goals, however, overlap with the goals

implicit in creating high-assurance software. The overall goal is the same: rendering the

system as a whole understandable.

Parnas’s original description of a module is that of a work assignment: a task that

could be given to an individual programmer who could grasp the entire scope of the

assignment, produce the code for the module in question, and deliver the code for the

module so that it could be recombined with other modules. This effort to efficiently

divide the labor of those working on a large project ends up having a host of other

benefits.

In order to divide the work up in an efficient manner, the problem must be viewed

in terms of what is likely to change frequently versus what is likely to remain constant.

The aspects of a module that remain constant, Parnas concluded, should make up the

interfaces between different modules. The aspects of the module that change frequently

should be represented by the internal databases managed by the module. Thus, a

 55

programmer assigned to a module encodes the entire module to comply with a static

interface knowing that the interface will be able to be used by modules written by other

programmers. This way of designing a system has the effect of hiding the information

internal to the module, which has additional advantages. Information hiding, for example,

allows for the internal structure of a module to be revised without changing the overall

capabilities of the system, and it also allows the module to be tested independently from

any other modules. Arranging the modules into a hierarchy enables one to understand the

relationship between modules, thereby ensuring that work is not duplicated between

modules. It also allows a new programmer to understand the overall structure of the

system. Thus, correctly decomposed, a system will have small modules, each of which is

fully comprehensible by the person who programmed it. Also, the number of interactions

between modules is significantly limited by the use of information hiding, enabling one

to understand the overall behavior of the system more easily.

These ideas have been so successful, in fact, that an entire generation of

programming languages has been developed to support these ideas. The object-oriented

approach is today seen as the standard way to develop software. Just because the tools are

available, however, does not mean that the concepts will be adhered to.

2. Layering

Once a system has been decomposed into small enough pieces, the pieces—or

modules—must then be combined together to form the entire system. Without

interactivity among modules, the usefulness of the system would be indeed limited.

Without a structure that defines the potential communication paths between modules,

understanding the overall system would quickly become unmanageable.

Dijkstra originally observed the utility of adhering to a strict program of

structuring in the design of the THE system [DIJK68]. He observed that by breaking the

system into small enough layers, and testing each individual layer with sufficient rigor to

prove to oneself that the individual layer was correct, that it was possible via the

transitive nature of the layers to prove the correct operation of the entire system. The

THE system was composed of five layers. Each higher layer depended upon each of the

lower layers. Dijkstra commented that the use of this layering was imperative to

 56

constructing a system that could be totally understood. While many have commented that

the system Dikstra built was relatively simple, and therefore may not apply to larger

efforts, Dijkstra would have countered that a larger project would have even more of a

need for correct structuring.

One of the important characteristics of a layered structure is its ordering. While

Dijkstra organized the THE system into a total ordering, other efforts have successfully

used a partial ordering of modules. A layered structure implies that the layers upon which

any given layer rests are independent of the higher layers: each layer is able to exist

independently since it is the foundation for the next higher layer. The lack of upward

dependencies reflected in this design is very difficult to achieve. In fact, even when

efforts are made to limit the interactions among modules by organizing them into layers,

these rules are regularly circumvented when the implementation is actually carried out.

Perhaps the best example of circularity in the design of an operating system is illustrated

by the common interaction between the virtual memory management system and the file

system. In order for the virtual memory manager to swap the contents of memory to disk,

it relies on the file system to provide the storage for these pages. In a symmetric fashion,

in order for the file system to manipulate large files (larger than physical memory), it

relies on the virtual memory manager to transparently handle the large files. Thus, a

cyclical dependency between the two systems exists.

It may not initially be apparent why this situation is problematic. One might even

argue, for example, that such a design has the advantage of being more compact since

code is being reused. However, the increased complexity that is created due to this design

has a variety of characteristics that make it undesirable when understandability is a goal.

One of the issues with cycles has to do with error states. With a circular dependency, an

error state in one part of the system can propagate through the cycle and create an endless

loop. An example of this issue appeared in the design of the auditing system for VAX

VMM security kernel [SEID90].

Another issue with circular dependencies is that the modules that take part in

creating the cycle can never be evaluated or tested independently. In effect, circularity

spoils the advantages gained by the use of small information-hiding modules: to be able

 57

to understand them completely, to be able to test them independently, to be able to

modify the internal representation of modules without impacting the correctness of other

modules. The cycle of dependencies creates a condition whereby all of the modules that

are involved in the cycle effectively create one large module, which can therefore not be

completely understood. One of the important properties of a well-structured system is

that a subset of the system can be considered independently of the entire system, yet still

be considered complete.

Perhaps most importantly, the existence of cycles prohibits the applying of formal

(i.e. mathematically-based) methods to assist with the understanding of the system. A

system that contains cycles may never formally correspond to a higher-level mathematic

description of a system due to the critical requirement for transitivity. Any logical system

that mapped onto an implementation that contained cycles would be equal to the logically

flawed application of circular reasoning. These principles inherent in a hierarchical

design that preserve logical transitivity and the ability to have system subsets apply

directly to the concept of a security kernel.

While having a small security kernel is important, especially due to the costs

associated with verification, there is still the need for additional security services outside

of the kernel to create a usable system (such as the authorization system, a trusted path,

etc.). These additional components in addition to the security kernel are known as the

“trusted computing base” or TCB. Using a hierarchically-structured design allows these

other components to interface with security kernel in a logically sound manner. Although

these components may not correspond to the formal specifications, they may still be

designed using the same principles and techniques. Without a hierarchical design, the

interactions between these modules and the security kernel could be complex and likely

poorly understood.

3. Applying the Principles

Applying the concepts of modularity, information hiding, and layering is not

always easy or obvious, especially when the areas of interest are inherently complex,

such as the kernel of an operating system. Many consider such efforts to be wasted, since

the design decisions are difficult and perhaps not intuitive [LAMP83]. Nevertheless,

 58

many techniques have been developed that permit the application of these principles, and

they have been successful conceptually in several projects despite their lack of adoption

in the marketplace.

The fundamental intellectual work done on applying these principles to operating

system design was performed by Janson in his doctoral thesis [JANS76]. His ideas were

later adopted in the redesign of the Multics kernel, in the creation of a Virtual-Machine

Monitor security kernel for the VAX platform, and in the GEMSOS kernel. Janson’s

thesis describes the construction of a virtual memory mechanism using a strict partial

ordering among the modules, and the concept of type extension to enforce the

information hiding aspects of the modules.

The Janson thesis describes the connections between modules by characterizing

the different types of dependencies that may exist. A dependency is considered to exist

between two modules, say A and B, only if the correct behavior of A depends upon the

behavior of B. To create a partial ordering, all upward dependencies must be eliminated.

There are a limited number of inter-modular dependencies that may occur between

modules:

1. Message Only – Module A sends a message to module B, does not abandon

control, and does not expect a response.

2. Quiescent Signaling – Module A sends a message to module B, abandons

control, and does not expect a response (and therefore is in a quiescent state).

3. Non-Quiescent Signaling – Module A sends a message to module B, abandons

control, but does expect a response (and therefore is in a non-quiescent state).

4. Quiescent Transfer of Control – Module A transfers control to module B, and

does not expect a response (and therefore is in a quiescent state).

5. Non-Quiescent Transfer of Control – Module A transfers control to module B,

but does expect a response (and therefore is in a non-quiescent state).

6. Call – Module A explicitly calls module B and awaits a response (and therefore

is in a non-quiescent state).

 59

As defined by Janson, the interactions described by points 3, 5, and 6 are

“invocations,” whereas points 1,2, and 4 are “notifications.” Invoking another module

implies a dependency, since a response is always expected. A compiler can automatically

identify dependencies created by upward calls. Unfortunately, a compiler can not

necessarily prevent upward invocations since differentiating between 2 and 3 or between

4 and 5 requires understanding the intent of the module, i.e. knowing whether the module

remains in a quiescent state or expects a response.

Janson describes the second form of dependency as originating from the

information that is passed between modules when an interaction takes place. Parameters

that are passed can either be values, or they can be references. In the case of passing a

value, a module may be dependant upon another module if it trusts that the values passed

by that module are a particular type or range without checking the value. Object-

orientation is generally unhelpful in identifying value parameters. While languages may

be able to provide some help with checking for the type of values, they do not assist with

the checking of ranges. Object-orientation is generally more helpful for the control of

references. Since the compiler understands the hierarchy of the modules, it can ensure

that a reference to a “higher-level” module can never be acted upon. While the higher-

level objects may be referred to, this is done only in terms of the reference as a value: the

object itself cannot be accessed.

Invocations and notifications are categorized as component dependencies. In total,

there are five types of dependencies described:

1. Component Dependencies—a module depends upon its own components,

which are other modules.

2. Map Dependencies—a module must keep track of the objects that are its

components, but the maps that allow the component objects to be tracked must

be kept in some kind of information store. Thus the module is dependant upon

the objects providing storage for the mappings.

 60

3. Program Storage Dependencies—every object that may be called has some

kind of code associated with it, and that code must be stored in some object in

order for it to be executed.

4. Address Space Dependencies—the objects that make up the execution

environment of a module need address space in order to be executable. Thus it

is dependent upon the information container that provides this address space.

5. Interpreter Dependencies—any module has code that needs to be executed by a

processor, and is thus dependant upon the module that provides the notion of a

processor. Since every object does not have an individual physical processor, it

is dependant upon the module that provides the virtual processor.

Based upon the research done in the Multics redesign project [SCHR77], it was

concluded that the circular dependencies created due to the mapping, program storage,

and address space are easy to break once their contingencies are recognized. The primary

principle used to solve these issues is the use of core segments: areas of memory that use

a fixed amount of space and are permanently stored in main memory. The most complex

problems arise from the handling of exceptions, since they often arise when low-level

modules are trying to communicate with high-level modules. Often the instinct of a

designer in this case is to have the lower-level module call the higher-level module. This

dependency loop may be removed with the use of additional hardware interrupts or with

the careful use of software signaling.

A common strategy that is used to break dependency loops caused by interpreter

dependencies is the use of modules on two-levels that work together to provide the

illusion of infinite resources when finite real resources are available. Typically the lower-

level module provides a fixed number of resources, and is closely connected with the

underlying hardware. The higher-level module then provides a similar resource, but it

gives the illusion of unlimited resources by multiplexing the lower-level resources. This

strategy was used in the design of both a virtual processor system (by Reed [REED76])

and of a virtual memory system (by Janson).

 61

One of the issues encountered in the implementation of a two-level virtual

processor is that there are times when the low-level virtual processor must change the

state of the upper-level process. However, the low-level virtual processor is not allowed

to know anything about the higher-level processors. What is needed in this case is a

mechanism that allows upward communication without the sending party having any

knowledge about the receiving party. Reed’s implementation enabled this by using a

synchronization protocol based on eventcounts [REED79]. This allows a processor

interrupt to be tied to an eventcount, so that a higher-level processor can be interrupted

when the eventcount reached a certain value. This allows for upward transfer of control

that would otherwise result in an upward dependency.

4. Addressing Performance Concerns

It is a generally accepted assumption that any increase in security must be

accompanied by a decrease in performance. In the same vein, the performance of a highly

structured system is often assumed to be inadequate since performance-improving

shortcuts are generally forbidden. Undoubtedly there is some basis underlying this

assumption of unacceptably poor performance. Even if the vast majority of previous

efforts to build highly structured systems have resulted in poor performance, this does not

imply that building such a system is impossible. There are probably a variety of causes

that have lead to the negative perception. One possible factor may have been that many

such efforts have been research projects, which can be considered successful without

displaying practical performance characteristics.

In reality, there is evidence suggesting that it is possible to create highly

structured systems that also provide adequate performance characteristics. Adequate

performance is, of course, relative, and implies that the systems in question did not incur

an intolerably high overhead. In fact, the systems that serve as positive performance

examples were developed and considered usable on now antiquated hardware. Given the

state of continuing improvements in hardware performance, the minor penalty that may

be incurred by creating highly-structured code is more than made up for by the advantage

of comprehensibility.

 62

There are a number of design factors that impact performance for any system;

special consideration of these factors should be taken in the case of designing a highly-

structured system however, since the workarounds and shortcuts that may be available in

less structured systems will not be possible.

The choice of language is an important consideration since it directly impacts the

efficiency of the code, but the quest to build comprehensible, bug-free code often shifts

the focus toward languages that support features such as strong data typing.

Unfortunately, there is often no perfect choice: the most popular languages typically

provide the most efficient compilers but lack the features of strong data typing.

Conversely, languages that provide strong data typing features tend to be less popular and

therefore less effectively optimized.

Implementing components of a system in hardware is a proven way of achieving

performance gains. A system design that is able to take advantage of hardware support

will realize a considerable performance advantage over a design that implements all of its

components in software. Specific types of hardware support can be especially helpful

with regard to supporting security policies, including process management and switching,

memory segmentation, input/output mediation, and execution domains.

It should be noted that attempting to make comparisons of performance is

notoriously difficult. Comparisons between modern-day operating systems, for example,

usually indicate more about who is doing the testing than about the relative objective

performance of the measured systems. Also, it is readily apparent, as Parnas noted, that

software may be written to perform poorly regardless of the software engineering

techniques used. So the raw performance measurements are not very telling, but the

important characteristic to ascertain is whether or not it is even possible to implement a

system based upon these principles that performs adequately. Although the number of

systems that have been created using these principles is small, the evidence in sum is

positive.

 63

a. Multics

The first system considered is Multics, specifically the version of Multics

that was the product of a redesign effort to improve security. After the redesign of the

Multics kernel to improve its security, the designers concluded that the use of simpler and

more modular designs did not result in any significant loss of performance. In one of the

areas where performance did decrease, the reason for the decrease was clear since the

code was rewritten in a high level language after initially being programmed in assembly

language. This type of performance impact is consistent across a wide range of examples,

and is not necessarily indicative of a deficiency in the structuring techniques.

b. VAX VMM Security Kernel

A second project, the VAX Virtual-Machine Monitor security kernel

[KARG90], provided sufficient performance for production-quality use. In practice, it

was able to support its’ own development team, and was able to support a large number

of time-sharing users running multiple operating systems on a single CPU. The designers

noted that although achieving a high level of performance was difficult, they were able to

analyze their system sufficiently well to optimize the portions of the system that were

most performance-critical. The issue in this case was less about the overall structure of

the system, and more about the language used for coding and ensuring that direct

interface to the hardware was optimized. One might suppose that the application of these

engineering principles to creation of a Virtual-Machine Monitor would be easier than to

the creation of a general-purpose operating system. Although this is true, the performance

success of the virtual-machine monitor is in a way an even stronger validation of the

concepts, since any deterioration in performance would be exaggerated in the full-fledged

operating systems running on top of the virtual machine. The performance success of this

project is all the more impressive given that the machine successfully limited the

bandwidth of covert channels using fuzzy time [HU91], which did have a performance

impact unrelated to the structural design.

c. GEMSOS Kernel

The third system for which performance has been evaluated is the

GEMSOS kernel, which was a commercial operating system that was successfully

 64

evaluated against the Class A1 TCSEC requirements and fully utilizes the structuring

techniques being considered. An early version of the GEMSOS kernel was tested both for

throughput characteristics – especially with regard to the improvements gained via the

use of multiple processors – and for the ability to support real-time processing. Both of

these tests showed that the GEMSOS kernel, even in an early non-optimized version, had

adequate performance [SCHE85]. This performance was achieved despite the use of

Pascal as the programming language, which did not provide the most efficient compiler

available at the time. One noteworthy aspect of the design was that the use of multiple

processors in the system achieved nearly linear increases in performance.

d. L4 Microkernel

The fourth and last system considered is a micro-kernel structured system.

Although the primary focus of the system is not security, there is a strong synergy

between the previous efforts, which focus on using rigorous structuring techniques to

achieve a higher level of assurance regarding security, and the micro-kernel philosophy

of operating system design. Both schools of thought originated around the same time

(though independently), and both understood the value of (and were designed to support)

a highly-modular design. Also, many of the early attempts to produce working micro-

kernel architectures resulted in systems with unacceptably poor performance.

Efforts to improve the design of the micro-kernel have continued,

however, and the current “second generation” of microkernel implementations has

resulted in significantly better performance. Of note is the L4 micro-kernel, which was

tested extensively by Härtig et al [HART97]. Modifications were made that allowed the

Linux operating system to run on top of the L4 micro-kernel, and the performance of this

system was then compared with the performance of native (monolithic) Linux using a

variety of benchmarking techniques. The L4-based Linux platform, named L4Linux, was

also compared with the performance of a first-generation micro-kernel, specifically

MkLinux, which is a version of Linux that runs on top of a micro-kernel based on Mach.

These tests showed that even the non-optimized L4Linux platform suffered only a 5-10%

performance penalty from native Linux performance, whereas MkLinux registered a

much more significant penalty of between 25-50%. The micro-kernel approach of the

 65

second-generation kernels the first step toward a system that fully reflects the ideal of

modular design. Its performance results are then merely suggestive of what may be

possible in a completely structured system.

These four examples show that a highly-structured system design for an operating

system does not necessarily imply that the system will perform poorly: designs that are

highly-structured, highly-assured, and high-performance do exist, and can be built.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

VI. CONCLUSIONS

As the Information Age takes hold and the world becomes increasingly connected,

the dangers that arise from those interconnections multiply. The U.S. Department of

Defense is pursuing a strategy of cyber network warfare, hoping to leverage computer

networks to better enable military capabilities. Yet each new additional capability

represents an additional information asset that needs to be defended as well as a potential

new avenue of attack. In the corporate world, the desire for more productivity that is

being driven by global competition is encouraging an increase in the use of computer

networks to leverage employee productivity and to improve services. This might lead a

power company, for example, to consolidate power control centers and to connect power

control center databases with corporate networks to improve marketing efforts. These

consolidated control centers, of course, create a much more lucrative target, and

connecting the control center to the corporate network creates a new avenue for attack.

Increasingly, the mitigation strategy against these risks has been to add more

“solutions” to the mix. Now instead of a just a server, there are firewalls, intrusion

detection systems, anti-virus products, public-key encryption systems, etc. Often such

solutions consolidate security management responsibilities, creating a situation where the

new systems need to be more trustworthy than the systems for which they provide

protection. And each new system brings its own management challenges and

maintenance requirements. Ironically, most of these systems are based on a commercial

off-the-shelf operating system foundation, just the system whose deficiencies were part of

the reason for adding additional security measures in the first place. This mitigation

strategy has even become policy for the Department of Defense [DOD02].

Unfortunately, this strategy does nothing to mitigate against the threat of subversion,

the type of attack that has the greatest potential for damaging the nation’s critical

infrastructures and compromising national security. Subversion, which is no more

difficult to implement than other types of attacks, is unaffected by additive security

measures.

 68

In March of 2000, Steve Cross, director of the Software Engineering Institute at

Carnegie Mellon University (home of the CERT Coordination Center), provided

testimony before the Senate Armed Services Committee: Subcommittee on Emerging

Threats and Capabilities [CROS00]. After providing an overview of the vulnerabilities of

the Internet, and the impact of known security breaches, he recommended solutions. One

of his recommendations concerning research and development was to: “leverage past

investment that has produced an extensive, but little used, body of knowledge in rigorous

methods for system analysis and design….”

The techniques for developing systems that provide a high level of assurance of their

correct operation already exist. Without application of these techniques toward the

creation of commercially-available products, however, the never-ending battle of wits

between attackers and defenders will remain the only game in cyberspace. The use of

such products is inevitable, for the day will come when the cost of the “battle-of-wits”

will simply be unsustainable. The only question is when such efforts will be

reinvigorated. Hopefully, it won’t take some incident of cyber-terrorism to provide the

awareness and resolve necessary to counter subversion.

There is at least one attempt being made to capture the lessons learned from past

high-assurance development efforts and create a worked example that can be used to

educate future students and developers. The Center for INFOSEC Studies and Research

(CISR) is embarking on a project to create a “Trusted Computing Exemplar” that will

serve as such an example [IRVI03].

 69

LIST OF REFERENCES

[ANDE72] Anderson, J.P., Computer Security Technology Planning Study,
Technical Report ESD-TR-73-51, Vol. II, Air Force Electronic Systems Division,
October 1972. (NTIS document number AD758206).

[ANDE02] Anderson, Emory A., A Demonstration of the Subversion Threat:
Facing a Critical Responsibility in the Defense of Cyberspace, Master’s Thesis, Naval
Postgraduate School, Monterey, CA, March 2002.

[BELL73] Bell, D.E. and LaPadula, L.J., Secure Computer Systems:
Mathematical Foundations and Model, Technical Report M74-244, MITRE Corporation,
Bedford MA, 1973.

[BIBA77] Biba, K.J., Integrity Considerations for Secure Computer Systems,
MTR3153, MITRE Corporation, Bedford, MA, April 1977.

[BRIN95] Brinkley, D. L., and Schell, R. R., “What Is There to Worry About? An
Introduction to the Computer Security Problem,” in Information Security: An Integrated
Collection of Essays, ed. Abrams, M. Jajodia, and Podell, IEEE Computer Society Press,
Los Alamitos, CA, pp. 11-39, 1995.

[CC99] ISO/IEC 15408 – Common Criteria for Information Technology Security
Evaluations, version 2.1, August 1999.

[IRVI03] Irvine, C.E., Levin, T.E., and Dinolt, G.W., “Trusted Computing
Exemplar Project,” White Paper, The Center for INFOSEC Studies and Research,
Monterey, CA, http://cisr.nps.navy.mil/projecttrustcomp.html, September 2002.

[CROS00] Cross, Steve, Testimony before the Senate Armed Services
Committee: Subcommittee on Emerging Threats and Capabilities,
http://www.cert.org/congressional_testimony/Cross_testimony_Mar2000.html, 1 March
2000,.

[DIJK68] Dijkstra, E. W., “The Structure of the THE Multiprogramming
System,” Communications of the ACM, Vol. 11, No. 5, pp. 341-346, May 1968.

[DOD02] Information Assurance, DOD 8500.1, U.S. Department of Defense,
October 2002.

[DOD85] Trusted Computer System Evaluation Criteria, DOD 5200.28-STD,
U.S. Department of Defense, December 1985.

[DOD88] Security Requirements for Automated Information Systems (AISs),
DOD 5200.28, U.S. Department of Defense, March 1988.

 70

[FRAI83] Fraim, L.J., “SCOMP: A Solution to the Multilevel Security Problem,”
IEEE Computer, July 1983.

[HART97] Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., and Wolter, J.,
“The Performance of µ-Kernel-Based Systems,” 16th ACM Symposium on Operating
System Principles (SOSP), St. Malo, France, October 1997.

[HU91] Hu, W.M., “Reducing Timing Channels with Fuzzy Time,” Proceedings
of the IEEE Symposium on Research in Security and Privacy, Oakland, CA, pp. 8-20,
May 1991.

[JANS76] Janson, P.A., Using Type Extension to Organize Virtual Memory
Mechanisms, PhD thesis, Department of Electrical Engineering and Computer Science,
MIT, Cambridge, MA, 1976. (Published as Technical Report MIT/LCS/TR-167,
Laboratory for Computer Science, MIT, Cambridge, MA, September 1976).

[KARG02] Karger, Paul A. and Schell, Roger R., “Thirty years later: Lessons
from the Multics security evaluation.” ACSAC: 18th Annual Computer Security
Applications Conference, Las Vegas, NV, USA, October 2002. (Includes by the same
authors, Multics Security Evaluation: Vulnerability Analysis, ESD-TR-74-193, Air Force
Electronic Systems Division, June 1974).

[KARG90] Karger, Paul A., Zurko, Mary Ellen, Bonin, Douglas W., Mason,
Andrew H., Kahn, Clifford E., “A VMM Security Kernel for the VAX Architecture,”
Proceedings IEEE Symposium on Research in Security and Privacy, Oakland, CA, pp. 2-
19, May 1990.

[LAMP83] Lampson, B.W., “Hints for computer system design,” ACM Operating
Systems, Rev.15,5, pp 33-48, October 1983. (Reprinted in IEEE Software 1,1, pp 11-28,
January 1984).

[LOSO98] Loscocco, Peter A., Smalley, Stephen D., Muckelbauer, Patrick A.,
Taylor, Ruth C., Turner, S. Jeff, and Farrell, John F., “The Inevitability of Failure: The
Flawed Assumption of Security in Modern Computing Environments,” Proceedings of
the 21st National Information Systems Security Conference, USA, pp. 303-314, 1998.

[MURR03] Murray, J., An Exfiltration Subversion Demonstration, Master’s
Thesis, Naval Postgraduate School, Monterey, CA, 2003.

[MYER80] Myers, P., Subversion: The Neglected Aspect of Computer Security,
Master’s Thesis, Naval Postgraduate School, Monterey, CA, 1980.

[NCSC95] Final Evaluation Report for the Gemini Trusted Network Processor,
National Computer Security Center, Report No. 34-94, NCSC-FER-94/008, Ft. Meade,
MD, 28 June 1995.

 71

[OASD00] DoD Insider Threat Mitigation: Final Report of the Insider Threat
Integrated Process Team, Office of the Assistant Secretary of Defense (C3I), April 2000.

[PARN72] Parnas, D.L., “On the Criteria To Be Used in Decomposing Systems
into Modules,” Communications of the ACM, v.15, n.12, pp. 1,053-1,058, December
1972.

[RAYM99] Raymond, Eric S., The Cathedral & the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary, O'Reilly & Associates, October 1999.

[REED76] Reed, D.P., Processor multiplexing in a layered operating system, S.M
thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge,
MA, 1976. (Published as Technical Report MIT/LCS/TR-164, Lab. for Comp. Sci., MIT,
Cambridge, MA, July 1976).

[REED79] Reed, D.P., and Kanodia, R.K., “Synchronization with eventcounts
and sequencers,” Communications of the ACM, v.22 n.2, pp.115-123, February 1979.

[ROGE03] Rogers, D., A Framework for Dynamic Subversion, Master’s Thesis,
Naval Postgraduate School, Monterey, CA, 2003.

[SCHE01] Schell, R.R., “Information security: science, pseudoscience, and flying
pigs,” Proceedings of the 17th Annual Computer Security Applications Conference
(ACSAC 2001), pp. 205-216, 2001.

[SCHE03] Schell, Roger R., private correspondence, May 2003.

[SCHE85] Schell, Roger R., Tao, T.F., and Heckman, Mark, “Designing the
GEMSOS security kernel for security and performance,” Proceedings of the 8th National
Computer Security Conference, pp. 108-119, 1985.

[SCHR77] Schroeder, M.D., Clark, D.D., and Saltzer, J.H., “The Multics Kernel
Design Project,” Proceedings of the Sixth ACM Symposium on Operating Systems
Principles, pp. 43-56, November 1977.

[SEID90] Seiden, K., and Melanson, J., “The Auditing Facility for a VMM
Security Kernel,” Proceedings of the IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, pp. 262-277, 1990.

[THOM84] Thompson, K., “Reflections on Trusting Trust,” Communications of
the ACM, Vol. 27 No. 8, p. 761-763, August 1984.

[VIEG01] Viega, John, and McGraw, Gary, Building Secure Software, Addison-
Wesley, 2001.

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Dr. Ernest McDuffie
National Science Foundation
Arlington, VA

4. David Ladd
Microsoft Corporation
Redmond, WA

5. Andy Allred
Microsoft Corporation

6. Andy Newall
Microsoft Corporation
Redmond, WA

7. Jeana Jorgensen
Microsoft Corporation
Redmond, WA

8. Steve Lipner
Microsoft Corporation
Redmond, WA

9. Marcus Peinado
Microsoft Corporation
Redmond, WA

10. Marshall Potter
Federal Aviation Administration
Washington, DC

11. Ernest Lucier
Federal Aviation Administration
Washington, DC

 74

12. Dr. Cynthia E. Irvine
Computer Science Department
Naval Postgraduate School
Monterey, CA

13. Dr. Roger Schell
Aesec Corporation
Pacific Grove, CA 93950

14. Lindsey Lack

Civilian, Naval Postgraduate School
Monterey, CA

