
 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 

 
Approved for public release: distribution is unlimited 

A REALISTIC MODEL OF NETWORK SURVIVABILITY 
 

by 
 

Ozlem Ozkok 
 

September 2003 
 
 

 Thesis Advisors:  Geoffrey Xie 
  Alex Bordetsky 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2003 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  A Realistic Model of Network Survivability 
6. AUTHOR(S) Ozlem Ozkok 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release: distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
This thesis focuses on evaluating network survivability and Quality of Service (QoS) in a network. There 

have been studies on developing network survivability metrics; however, the implementation of these survivability 
measures usually are based on unrealistic assumptions. This thesis has some experiment results based on 
identifying all min-cuts of a network and computing survivability of the nodes based on these criteria. 

The main contribution of the thesis is a novel approach to handling correlated or dependent component 
failures. In a complex network, it is not trivial to compute the probability of failures of the nodes even if the 
component failures are independent. With this new approach, network administrators could predict the optimal 
nodes in a network under more realistic conditions.  Java-based simulation programs are developed to evaluate the 
approach. This project is motivated by network security problems in which a decision maker has to select nodes to 
host critical information servers when there is an attack to the network.  The solution will give the decision makers 
criteria that would help them to make better decisions. 
 
 
 

15. NUMBER OF 
PAGES  

63 

14. SUBJECT TERMS  Network Survivability, Network Attacks, Max Flow, Min-Cut, 
Probabilistic Networks, Modeling Dependent Nodes, Graph Algorithms 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release: distribution is unlimited 
 
 

A REALISTIC MODEL OF NETWORK SURVIVABILITY  
 
 

Ozlem Ozkok 
Lieutenant Junior Grade, Turkish Navy 

E.E., Turkish Naval Academy, 1997 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT 
 

AND 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2003 

 
 
 

Author:  Ozlem Ozkok 
 

 
Approved by:  Geoffrey Xie 

Thesis Advisor 
 

Alex Bordetsky 
Thesis Advisor 

 
Dan C. Boger 
Chairman, Department of Information Sciences 
 
Peter Denning 
Chairman, Department of Computer Science 

 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 
This thesis focuses on evaluating network survivability and Quality of Service 

(QoS) in a network. There have been studies on developing network survivability 

metrics; however, the implementation of these survivability measures usually is based on 

unrealistic assumptions. This thesis has some experiment results based on identifying all 

min-cuts of a network and computing survivability of the nodes based on these criteria. 

The main contribution of the thesis is a novel approach to handling correlated or 

dependent component failures. In a complex network, it is not trivial to compute the 

probability of failures of the nodes even if the component failures are independent. With 

this new approach, network administrators could predict the optimal nodes in a network 

under more realistic conditions. Java-based simulation programs are developed to 

evaluate the approach. This project is motivated by network security problems in which a 

decision maker has to select nodes to host critical information servers when there is an 

attack to the network. The solution will give the decision makers criteria that would help 

them to make better decisions. 
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I. INTRODUCTION AND OVERVIEW  

A. BACKGROUND  

Survivability is typically defined along the following lines: the ability to continue 

to fulfill a mission even in the face of attacks and failures. The critical thing in this 

definition is that it is impossible to stop all attacks and prevent all failures. “No single 

component of a system is immune to failure or subversion.”[DIE01] 

Network Survivability is critical to Network Centric Warfare. It is also an 

important concern of homeland security because computers are part of the national 

critical infrastructures and must have high survivability while facing terrorist attacks and 

natural disasters.  

The growth of the Internet has produced the emergence of a global information 

society. Businesses can function internationally with great efficiency exchanging 

information seamlessly across their supply chains. Governmental use of the Internet will 

increasingly extend to international information sharing and collaboration. Perhaps the 

greatest threat to the Internet is the security of so many systems connected to it. A lack of 

security expertise by most of the Internet users results in vulnerabilities in the network 

that can be compromised by motivated attackers. 

There has been some studies on developing network survivability metrics, 

however the implementation of these survivability measures usually require money, big 

design changes to protocols and systems. As stated in [XIE02] Ellison provided a general 

definition of network survivability in [ELL99] and described some solution approaches to 

the problem. Another paper by the same authors defined a software engineering process 

for designing survivability into application [MEA00]. Furthermore, some concrete results 

are presented in some contemporary papers, e.g., [SUL99], [UMA01], [WEL00]. 

Nevertheless, their focus was still on how to make software agile to effectively detect and 

react to system component failures and software errors. In [WEL00], a customizable 

utility function is used to indirectly measure survivability of a system configuration from 

the point of view of the system user. Jha and Wing proposed a formal framework based 

on Bayesian networks for reasoning about the survivability properties of distributed 
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systems [JHA00]. The work was rigorous but the proposed algorithm was too complex 

for large networks. Unfortunately, the studies that have been done on network 

survivability so far are not mature enough and they lack quantifiable metrics. 

To address this lack of a network survivability measure, a global connectivity 

metric was developed in the thesis of another graduate student, Baris Aktop [AKT03]. 

This thesis contributed to the thesis work of Eng Hong Chua [CHU03], who developed a 

heuristic for comparing the connection reliability of two nodes to a common destination 

node when these two nodes have the same number of edge-disjoint paths to that 

destination. The heuristic is based on estimating the probability of each of the nodes 

being cut from the server given same number of link failures. This thesis includes some 

experimental results based on identifying all min-cuts of a network and computing 

survivability of the nodes based on these criteria.  

 

B. SCOPE 

In today’s competitive and dynamic information technology environment, there is 

a need for IT security as an integral component of the IT architecture of enterprises. The 

concept of “survivability metrics” and “security metrics” including test, evaluation, 

criteria identification, quantification of strengths, risk assessment/analysis and other 

related activities have been explored since 1995. However, these efforts have provided 

neither generally accepted nor reliable measures for rating information systems’ 

survivability and security. Moreover, inconsistent terminology has complicated the 

development of IT metrics, such as rating, ranking, quantifying or scoring measurements. 

There are three questions that should be asked when quantifying network 

survivability: 

1. WHAT you need to measure (e.g. technical, system) 

2. WHY you need to measure (e.g. comparison, description) 

3. WHOM you are measuring for (e.g. Technical experts, decision makers) 

This thesis is motivated by network security problems in which a decision maker 

has to select between nodes to host critical information services when there is an attack to 
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the network. The goal of this thesis is to give the network administrators criteria that 

would help them to make better decisions. These criteria can be used to develop 

heuristics and perform network reliability analyses to understand and better protect the 

networks. 

The main contribution of the thesis is a novel approach to handling correlated or 

dependent component failures. In a complex network, it is not trivial to compute the 

probability of failures of the nodes even if the component failures are independent. With 

this new approach, network administrators could predict the optimal nodes in a network 

under more realistic conditions.  Java-based simulation programs are developed to 

evaluate the approach. 

 
C. OVERVIEW 

This thesis is structured into the following chapters: 

Chapter II: Network Survivability Concept. Describe the concept of survivability. 

Discuss the importance of network survivability in Network Centric Warfare. 

Chapter III: Connectivity Based Survivability Metric. Define the basic terms of 

the graph theory; describe the connectivity based survivability metric. Describe the 

computation of the Ke metric and minimum number of cuts in a network. Introduce 

another algorithm to evaluate ranking of the nodes in a network.  

Chapter IV: A Heuristic Model for Determining the Survivability of the 

Connection. Describe a heuristic model, called Pe, and discuss the assumptions of the 

model. Validate and refine the heuristic model. 

Chapter V: A Realistic Approach for Network Survivability. Introduce an 

analytical model and algorithm to evaluate network survivability under more realistic 

conditions. 

Chapter VI: Conclusions and Future Work. Summarize the results from the thesis 

and recommend future work. 
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II. NETWORK SURVIVABILITY CONCEPT 

A. INTRODUCTION 

There has been a big improvement in network services as a consequence of 

developments in networking technology and the Internet. Government agencies and 

businesses are increasingly dependent on networked systems. The security of these 

systems remains a big problem because of the transparency of the public networks. 

Hardening of the information systems is never enough unless the systems are physically 

isolated. As long as the networks stay connected, there is going to be people who would 

like to attack them for various purposes.  

Survivability is the capability of a system to fulfill its mission on time while 

attacks, failures, or accidents are present [FIS99]. The term, mission, refers to high-level 

organizational objectives and mission fulfillment can be evaluated by the results achieved 

by the system in the context of operational conditions.  

While robustness, normally associated with fault tolerance in networks has long 

been an issue in providing service assurances in the presence of component failures, 

survivability is a new concept in non military networks. It ensures that a system can 

continue to deliver essential services even in the presence of attacks [CHU03]. Current 

network architectures, such as that of the Internet, rely on sophisticated, stand-alone 

routers. They are being overwhelmed with the introduction of the management functions 

while coming under more aggressive threats.  

In an integrated services network, quality of service (QoS) levels to individual 

user sessions must be guaranteed. To ensure QoS, the network has to reserve resources 

for a set of packets at particular routers. Additionally, an integrated services network 

must support real-time applications that have stringent packet delay requirements 

[XIE98].  

This thesis focuses on the failures and survivability of mission critical servers that 

deliver different network functions, such as resource management, routing, accounting, 

network management and security.  Such servers might include DHCP, DNS, or domain 

controllers, among others 



6 

In summary, a heavy weight node in a network can be a performance bottleneck. 

Therefore, responsiveness, scalability, and fault-tolerance are major concerns in a 

network design from the survivability point of view. 

 

B. CONCEPT OF SURVIVABILITY 

The survivability concept covers a broad range of engineering areas, such as 

security, fault-tolerance and reliability. Survivability research builds upon reliability 

research to focus on recovery after a failure in the system while reliability research 

assumes that failures can happen but that mission critical functions of the system must be 

active despite the failures [YUR99]. One of the best examples of survivability research is 

combat aircraft that can still fly even though they have experienced some extensive 

system damage.  

In the computer/ telecommunications infrastructure some part of a network is 

always down due to attacks or failures. Network managers test and collect data to 

understand why systems fail and to determine why some systems fail less or more than 

others. This kind of reliability analyses assumes that failure events are independent (for 

mathematical analysis). In this thesis, our goal is to compute the probability of failures of 

the nodes, including dependent/conditional node failures given the dependencies and 

probability of failure statistics.  

Although the security and survivability approaches are different, they cannot be 

separated. A security approach in a network tries to identify the holes, or vulnerabilities, 

of the systems and harden them. Survivability ensures that a network performs its 

functions in the midst of attacks or failures, while security ensures high system resistance 

to attacks. For example, safes are traditionally classified according to how long they can 

be expected to resist certain types of attacks, such as break-ins. In this example, 

survivability of the safe is a decision criterion from the security point of view. Therefore, 

when we analyze networks, we need quantifiable measures from both the security and 

survivability points of view. [DIE01].  
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The design and evaluation of a survivable system requires consideration of 

reliability and security, adaptability, efficiency, and cost-effectiveness. Nowadays, 

markets tend to focus on minimalist solutions: just-in-time etc. As a result, systems tend 

to be meta-stable and they eventually collapse. Robust solutions require more expensive 

details. It is clear that the design and evaluation of survivable systems is hard. Even the 

question of defining appropriate metrics is difficult. The author suggests that the more 

appropriate approach is to focus on more realistic examples. This thesis defines 

dependent node failures in a network and provides a method to compute them without 

relying on tight assumptions. 

 

C. NETWORK CENTRIC WARFARE AND HOMELAND SECURITY 

As computer technology has become increasingly integrated into modern military 

organizations, military planners have come to see it as both a target and a weapon. 

Countries are developing and implementing cyber strategies designed to impact an 

enemy’s command and control structure, logistics, transportation, and other critical 

functions. As a RAND corporation study pointed out in the mid-1990s, the entry costs for 

conducting cyber war are extremely modest [SHI01].  

In a limited cyber war, the information infrastructure is the medium, target and 

weapon of attack, with little or no real-world action associated with the attack. An insider 

might place malicious software directly within the enemy’s network. Degrading the level 

of service of the network may cause the enemy to use alternate routes, which may cause 

additional vulnerabilities. Denial-of-service attacks would require different approaches 

when there is no Internet access in the systems that are supporting critical, national 

infrastructures. A failure of emergency services in major cities would not only result in 

many people dying, but also would make people lose confidence in government, thereby 

generating both physical and psychological effects. 

Network Centric Warfare (NCW) is based upon the experiences of organizations 

that have successfully adapted to the changing nature of their competitive spaces in the 

Information Age. The centrality of the information and its potential as a source of power 

is the source of the power of NCW. NCW gives a new framework for analyzing military 
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missions, organizations, and operations. Figure 1 shows the Military as a Network-

Centric Enterprise [http://www.dodccrp.org/NCW/ncw_chapter.htm, September 2003] It 

shows the infrastructure that is expected to enable shared battle space awareness and 

knowledge. The NCW framework will increase the tempo of operations, responsiveness, 

and combat effectiveness. At the same time, it will lower risks and costs. 

 
Figure 1.   Military as a Network-Centric Enterprise 

NCW is built around the concept of sharing information and assets. This is 

enabled by networking battle space entities together. In NCW, capabilities for sensing, 

commanding, controlling, and engaging are robustly networked. The source of increased 

power in a network comes from the content, quality, and the timeliness of the information 

flowing in the network. The structural or logical model of the NCW is given in Figure 

2[CEB98]. There is a high-performance information grid that enables the operational 

architectures of sensor grids and engagements grids. Sensor grids generate high levels of 



9 

battle space awareness quickly and synchronize awareness with military operations. 

Engagement grids translate the awareness into increased combat power. The cooperative 

engagement capability (CEC) combines a high-performance sensor grid with a high-

performance engagement grid. (See Figure 3)  

 
Figure 2.   Architecture for NCW 

 
Figure 3.   Cooperative Engagement Capability (CEC) 
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Virtual collaboration in the information domain has many operational benefits. In 

the following three examples, these benefits are highlighted. 

Example 1: New Relationships Between Commanders—Battle Command via 

VTC  

Old Way: Corps and division commanders travel across the battlefield to be in the same 

place at the same time to plan ground operations.  

Network Centric Warfare: Commanders interact via VTC, which results in a significant 

reduction in planning time and elimination of travel time.  

Value: Decreased planning time provides commanders with the operational flexibility to 

enable their forces to rehearse, move-to-contact, re-supply, repair, or rest. The net result 

is increased combat power.  

Concept Status: Demonstrated by U.S. Army in operational exercises.  

Example 2: Quality of Life  

Old Way: Deployed forces communicate with families and loved ones via mail or 

telephone, at infrequent intervals.  

Network Centric Operations: Deployed forces communicate with families and loved ones 

with increased frequency and timeliness via e-mail (potentially on a daily basis), 

telephone, or VTC. 

Value: Deployed war fighters are able to solve family problems in close to real time (e.g., 

finance), interact with their children, and experience their children's lives while they are 

growing up. Worry goes down, morale goes up, and operational effectiveness remains at 

a higher level over long deployments.  Although, operational security must be closely 

monitored and enforced to ensure missions are not compromised. 

Concept Status: Operational.  
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Example 3: Distance Learning  

Old Way: Units release war fighters to attend training or education events away from 

their duty locations.  

Network-Centric Operations: Education is provided to warfighters deployed with their 

units via VTC or compact disk (CD-ROM).  

Value: Manning levels are maintained and opportunities for education and training are 

available to all deployed forces. Operational proficiency and morale increase.  

Concept Status: Operational [http://www.dodccrp.org/NCW/ncw_chapter.htm, 

September 2003]. 

For Network Centric warfare to work, the right data must be available to the right 

people at the right time. For example, satellite imagery of a threat from a mobile Scud 

launcher is important information. It needs to be accessible by the key planners and 

attack pilots [LAW00]. 

There are many examples of cyber terrorists’ attacks recently. One of the stories 

about these attacks focused on the Massachusetts Water Resource Authority (MWRA), 

the agency that controls water for much of eastern Massachusetts [DES02].  A cyber 

intruder can easily exploit the computers that control the flow of water. However, even if 

a hacker penetrates its network, the MWRA has a multitude of checks that ensures 

contaminated water never reaches people. Preventing physical harm caused by a cyber 

attack is easier than protecting valuable data from cyber attacks. Experts agree that the 

most harmful cyber attack threat is the one that combines these two intended results. 

One expert, Mark Fabro, president and chief scientist at Terrosec Corporation, a 

security consulting firm in Toronto, says it might be possible to identify not only the 

principle components of the network that controls the national power grid, but also the 

physical location of these components. In that fashion, a cyber terrorist would either 

know which network components to attack or where the most exposed vulnerability 

exists for physical attacks. “That kind of information, combined together, could be used 

to devastate elements of the critical infrastructure,” Fabro says. 
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The National Infrastructure Protection Center, an organization charged with 

protecting critical U.S. infrastructure, in January 2003 issued a bulletin warning that a 

computer, owned by an individual with ties to Osama bin Laden, contained information 

about the structural engineering of dams and other water-retaining structures [DES02]. 

The bulletin said law enforcement agencies had "received indications" that other Al-

Qaeda members were interested in water supply and waste management practices and 

were culling information about insecticides and pest control practices from several Web 

sites. (See: http://www.nipc.gov/publications/infobulletins/2002/ib02-001.htm, 

September 2003) The government is making a concerted effort to ensure that its own 

Web sites don't offer any assistance to terrorists. On March 19, the Bush administration 

went so far as to order all government agencies to remove from public view any 

information on "weapons of mass destruction, as well as other information that could be 

misused to harm the security of our nation and the safety of our people."[DES02]. 

There are other examples of attacks against information systems. In south Florida, 

a hacker was able to break into local government systems and divert 911 calls to a local 

pizza parlor. In Houston, Texas, FBI officials caught a hacker before he could insert a 

worm into computers that would have resulted in the widespread shutdown of 911. And 

in 1997, a young hacker shut down communications at an FAA tower in Worcester, 

Massachusetts, for six hours. These attacks are not limited to the continental United 

States, as NATO servers were shut down for several days during the 2000 bombing 

campaign in Serbia and Kosovo. 

These examples underscore the necessity that network designs integrate notions of 

robustness and survivability in the hosting of critical missions. At the same time, 

contingency plans are required for the recovery of critical roles. Therefore, a solution for 

networks that will make them operate efficiently and safely is proposed 
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III. CONNECTIVITY BASED SURVIVABILITY METRIC 

A.  INTRODUCTION 

In this thesis the author focused on a connectivity-based survivability metric 

developed in [AKT03] and evaluated the heuristic developed in [CHU03], which is used 

for comparing the connection reliability of two nodes to a common destination node 

when these two nodes have the same number of edge-disjoint paths to that destination. 

The heuristic is based on estimating the probability of each of the nodes being isolated, or 

cut, from the server given some number of link failures. This thesis provides some 

experimental results based on identifying all min-cuts of a network and computing 

survivability of the nodes based on these criteria.  

Two criteria were used to compare and rank the nodes of a network: 

1. Network survivability metric based on the edge-connectivity factor (Ke). 

2. Probability of failure of a link given Ke number of edge failures. 

These criteria are investigated for a given node collection in sequence.  That is, if 

two nodes have the same value for Ke, then the second criteria is examined. 

During the research, this heuristic was validated and refined. Given Ke number of 

failures, the nodes in a network can always be ranked, as mentioned in Section C of this 

chapter. The definitions and formulas used to calculate this connectivity-based 

survivability metric are provided below. 

 

B.  DEFINITIONS OF THE TERMS USED IN GRAPHS AND ALGORITHMS 

A network is modeled using a graph consisting of nodes representing 

communications centers and edges representing the links between communication 

centers. A graph G, which is denoted by (V, E) consists of a set of nodes or vertices, V, 

and a set of edges, E. Each element of E is an unordered pair (vi, vj), where vi and vj are 

elements of V.  

A graph is called undirected graph if it consists of undirected edges. A loop is a 

set of one or more sequential edges that originates and terminates at the same node. 
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A Path is a walk in which all edges and all vertices on the walk are unique, except 

that the first and last node may be the same. Edge-disjoint paths are paths with no edges 

in common. Node-disjoint paths are paths that share no common nodes other than the 

source and destination nodes. 

A cut-set is a set of edges whose removal disconnects the graph. A minimum cut-

set, or min-cut, is a cut-set that contains the fewest possible number of edges which when 

removed disconnects the graph. 

 

C. CONNECTIVITY BASED SURVIVABILITY METRIC 

To find the most optimal location (node) for the server in a network, the clients 

must be offered reliable connectivity to the server. The probability that a client will 

survive a number of edge failures is dependent on the order of the edge-disjoint paths 

between server and the client. The greater the number of edge-disjoint paths between the 

server and the client, the better and more reliable the connection is. In order for the path 

between a node and a server to be non operational, there must be at least as many edge 

failures as there are edge-disjoint paths (Ke) between the two.  

For example, if an assessment of the robustness of the connectivity between two 

nodes and a third node is going to be done, looking at the Ke can be a good start to the 

decision process. However, the Ke of the two nodes might be equal. In that case, finer 

granularity in computing the connectivity of the nodes is necessary. The second criteria, 

the probability of a node being disconnected given Ke number of edge failures, should 

then be examined. This probability is given in Equation (1) [XIE02]. 

 

failure}edge{ifailure}Pedgei|1d){cut(s,P1}d){cut(s,P
E

),(Ki
rrr

e

∑
=

===
ds

 (1) 

 

When two nodes, for example s1 and s2, have the equal Ke values, the comparison 

is done by } failureedge |1}d),{cut(sP 1r eK==  and 
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} failureedge |1}d),{cut(sP 2r eK==  values. The location with the smaller probability 

has a higher survivability. 

 

D. COMPUTATION OF KE 

In a network, the maximum flow value, when unit weights are assigned to all the 

edges in the graph, is equal to the Ke value. There are different algorithms to compute the 

maximum flow in a network. An open-source, Java-based algorithm platform (JGAP) 

was downloaded from http://im.ncnu.edu.tw/~tsai/definite/JGAP/ JGAP.html, September 

2003. Finding Ke by Ford-Fulkerson’s maximum flow algorithm was implemented in 

Java by Baris Aktop [AKT03]. The pseudo code for this algorithm is given in Figure 4. 

 
Figure 4.   Pseudo code for finding the maximum flow 

 

The complexity of this maximum-flow algorithm is O (N |E|2), where N is the 

number of vertices and E is the total number of edges in the graph. The algorithm uses 
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augmenting paths to find a path of positive capacity from the source node to the 

destination node and adds it to the flow. This adding continues till no more augmenting 

paths are found in the graph. The output of the algorithm is the flow variable, which 

contains the summation of flow capacities of all augmenting paths. Breadth-First Search 

(BFS) is used in the maximum flow algorithm to find augmenting paths because it 

ensures the paths chosen are of minimum length.  

 

E. COMPUTATION OF MINIMUM CUTS (MIN-CUTS) 

As noted, if the Ke values of nodes under consideration are equal, looking at the 

conditional probability of connectivity failures for the nodes, given Ke, might be a second 

criterion to break the tie. To compute this probability, it is necessary to find out the 

number of min-cuts between the server and the client. 

There are critical edges that have no alternate paths between a source and the 

destination nodes. Removal of these critical edges will cause the path between source and 

destination to be disconnected. The more critical edges that exist in the path to a node 

being considered the lower the survivability of the connectedness of that node. The 

number of critical edges determines the number of min-cuts in a graph. The pseudo code 

for the algorithm to enumerate them is given in Figure 5. Currently, there is no known 

algorithm that is able to solve all types of graphs in polynomial time. The complexity of 

the algorithm is O (EKe).  

 



17 

 
Figure 5.   Pseudo code for finding the min-cuts 

 

Figure 6 shows an example graph. The source is Node 0 and the destination is 

Node 5. Figure 7 shows the edge-disjoint paths in different colors. The Ke, which is the 

edge-connectivity of Node 0, is 2. Figure 8 shows in how many milliseconds the 

algorithm was able to identify the min-cuts. 

Enumerating all min-cuts in a graph is an NP-hard problem and is not likely to get 

solved in polynomial time, depending on the graph topology. The proposed algorithms 

were able to identify all min-cut sets in polynomial time for certain type of graphs.  

In Figure 9, there are 4 edge-disjoint paths between Node 0 and Node 5. The Ke 

value for the Node 0 is 2 and 16 min-cuts were enumerated by the algorithm in 300ms, as 

shown in Figure 11. 
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Figure 6.   Example Topology-1 

 

 
Figure 7.   Edge-disjoint paths and Ke value of source node 0 
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Figure 8.   Number of mincuts found in 120ms. 

 

The number of min-cuts in Figure 8 is identified as follows: 

 

There are 4 Min-cut sets :  (0 , 6)  (0 , 7)  (5 , 6)  (5 , 7)  

Edge 0 is between Vertex 0 and Vertex 1 

Edge 5 is between Vertex 4 and Vertex 5 

Edge 6 is between Vertex 0 and Vertex 6 

Edge 7 is between Vertex 6 and Vertex 5 
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Figure 9.   Example Topology-2 

 
Figure 10.   Showing 4 edge-disjoint paths between 0 and 5 
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Figure 11.   Number of Mincuts found in 300ms. 

 

 

The number of min-cuts in Figure 11 is identified, as follows: 

There are 16 Min-cut sets :  (0 , 1 , 2 , 3)  (0 , 1 , 2 , 7)  (0 , 1 , 3 , 6)  (0 , 1 , 6 , 

7)  (0 , 2 , 3 , 5)  (0 , 2 , 5 , 7)  (0 , 3 , 5 , 6)  (0 , 5 , 6 , 7)  (1 , 2 , 3 , 4)  (1 , 2 , 4 , 7)  (1 , 3 

, 4 , 6)  (1 , 4 , 6 , 7)  (2 , 3 , 4 , 5)  (2 , 4 , 5 , 7)  (3 , 4 , 5 , 6)  (4 , 5 , 6 , 7)  

Edge 0 is between Vertex 0 and Vertex 1 

Edge 1 is between Vertex 0 and Vertex 2 

Edge 2 is between Vertex 0 and Vertex 3 

Edge 3 is between Vertex 0 and Vertex 4 

Edge 4 is between Vertex 1 and Vertex 5 

Edge 5 is between Vertex 2 and Vertex 5 
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Edge 6 is between Vertex 3 and Vertex 5 

Edge 7 is between Vertex 4 and Vertex 5 

 

In graphs like that in Figure 11, when the numbers of nodes on the paths increase 

and the number of edge-disjoint paths increases, assuming no cross-paths between them, 

as shown in the topology in Figure 12, the total number of min-cuts is nKe , where (n-1) is 

the number of nodes that exist between the source and destination on an edge-disjoint 

path. This makes the time to enumerate all min-cuts grow exponentially with the number 

of Ke.  

 

F. ANOTHER ALGORITHM FOR ENUMERATING THE ALL MINIMUM 
WEIGHT AND NEAR-MINIMUM S-T CUTS 

Because of the complexity of the algorithm given in Figure 5, the Java program 

given in [AKT03] was not suitable for large network topologies. Therefore, a second Java 

implementation for enumerating all min-cuts in a given graph was used to run the 

simulations. The Java code is detailed in [WOO00].  

Briefly, this enumeration algorithm is based on a recursive “inclusion-exclusion” 

method. The algorithm identifies a min-cut by finding the maximum flow, using Ford-

Fulkerson’s maximum flow algorithm, in the network and then partitions the space of 

minimal cuts by attempting to include and exclude specific edges. In this algorithm, if the 

network edges have different integer weights assigned, by setting the variable e greater 

than zero, near-minimum weight s-t cuts can be found, too.  A cut is a “near-minimum” if 

its weight is less than the product of (1+e) and the minimum cut weight, for some e = 0. 

The complexity of the algorithm for finding only minimum cuts (when e = 0) is O 

(f (|V|, |E|) + |V||E||C0 (G)|) where f (|V|, |E|) is the complexity of solving a maximum flow 

problem on G = (V, E) and C0 (G) is the set of minimum cuts in graph G. The worst-case 

complexity of the algorithm for near-minimum cut enumeration remains unknown when e 

> 0. 



23 

In this project, the topologies shown in Figures 6 and 9 were given as inputs to the 

Java program and simulation results were obtained in 80ms and 50ms respectively. It was 

observed that enumerating all min-cuts by this algorithm was more efficient than the one 

described in Section 5. Since all the graphs used as examples in this paper had edge-

weights of one, near-minimum cut enumeration was not tested.  More results can be 

found in [WOO00]. 

Neither of the Java implementations used to simulate the various types of graphs 

were able to complete running with 1 node, which is 2 links, on an edge-disjoint path 

between the source and destination where 40 edge-disjoint paths were discovered. This 

makes the number of min-cuts to evaluate 240, which is more the a trillion min-cuts. 

 

   (1, 1)     (1, n-1) 
 
 
 
   (2, 1)       (1, n-1)  
 
          
s               t 
    . 
    . 
    . 
    .      
        (Ke-1, 1)         (Ke-1, n-1)   
                  

      
 
          
           (Ke, 1)   (Ke, n-1)    

       
 
 
 

Figure 12.   Example topology – 3 
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IV. A HEURISTIC MODEL FOR DETERMINING THE 
SURVIVABILITY OF THE CONNECTION  

A. PE MODEL 

The probability estimator model, Pe, determines the survivability of the connection 

based on the number of critical edges in each edge-disjoint path between the two nodes. 

An edge is critical if its failure will disconnect the path. So, the less critical edges, the 

lower the probability of path disconnection.  

In the Pe model, the goal is to approximate } failuresedge |1d){cut(s,Pr eK= , the 

probability of connection failure given Ke number of edge failures. The connection 

between the two nodes fails if and only if the edge failures disconnect all the edge-

disjoint paths. In other words, each of the edge failures must be a critical edge of a 

different edge-disjoint path for the connection to fail [CHU03].   

The algorithm used to compute Pe is shown in Figure 13. The Pe   model has as its 

core the essential idea of finding the number of critical edges,
iPC , in Path i. In the 

algorithm for evaluating each augmenting path, Line 3 initializes the number of critical 

edges,
iPC , to the length of the path, i. At line 4, each edge and consecutive sequence of 

edges are checked for an alternative path.  If an alternate path is found then the sequence 

of edges between the ends of the alternate paths, vertices u and v, are not critical, 

therefore, 
iPC  is decreased by the value equal to the distance between Vertex u and 

Vertex v. With the critical edges for each path known, Pe can be computed from the 

Equation (2). 

∏
= +−

×=
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K
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(!K  Pe      (2) 
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Figure 13.   Pseudo code for Pe computation 

 

This computation is exact for graphs where alternative paths for edge-disjoint 

paths do not exist. However, in networks that are at least partially meshed, this will rarely 

be the case and this is why Pe is an approximation for the probability Pr . 

The Pe model as a heuristic was tested for graphs that have less than 12 nodes and 

results were verified in [CHU03]. The Pe model appeared to be more accurate than other 

heuristics developed before it, having an accuracy of almost 92% in determining the best 

node in a network to host a critical server.  

 

B. ASSUMPTIONS OF THE PE MODEL 

The heuristic model, Pe, introduced above, works under two assumptions: 
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1. The failures have uniform distribution. 

2. Nodes have independent failures. 

This means that the computation of the Pe is exact if you have independent and 

uniformly distributed failures, which is rarely the case.  The validity of these assumptions 

is considered below. 

 

1. Validation of the Underlying Assumptions 

In Chapter III, two criteria were given to compare and rank the nodes of a 

network.  These were: 

1. Network survivability metric based on the edge-connectivity factor (Ke). 

2. Probability of failure of a link given Ke number of edge failures. 

Given Ke number of failures, one can always rank the nodes in a network as 

discussed in Chapter III Section C. However, it was shown that 

} failuresedge |1d),{cut(sP 1r eK=  may not predict 

} failuresedge 1) ( |1d),{cut(sP 1r += eK  . The example used is shown in Figure 14. In this 

example, it was determined that ranking among nodes does not stay the same if the 

number of failures exceeds Ke. 

 
Figure 14.   The graph used to verify Pe model 
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In Figure 15, s1 (source node),  selected as Node 6, is to be compared to s2, which 

is Node 7. (See Figure 17 for s2) The two selected nodes have the same number of Ke, 

equal to two. Therefore, the second criteria must be evaluated, requiring that the 

minimum number of cut sets, min-cuts, given Ke failures, be computed. Execution of the 

simulation program determined that s1 has 5 min-cuts and s2 has 5 min-cuts. Therefore, 

according to Pe model, one would think that the two nodes would be ranked the same. 

However, if the number of failures exceeds Ke, three in this example, the simulation 

program determined that s1 has 58 cut sets and s2 has 62 cut sets, which means the ranking 

of the nodes should not be the same.  

 
Figure 15.   s1 = 6 (source), t =0 (Destination) 

 
Figure 16.   Shows the min-cut computation for s1  
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Figure 17.   s2 =7 (source) and t=0 (destination) 

 

As a result, a connectivity-based survivability metric, developed in [AKT03] was 

used and the heuristic developed in [CHU03] was evaluated. This heuristic is used to 

compare the connection reliability of two nodes to a common destination node when 

these two nodes have the same number of edge-disjoint paths to that destination. It is 

based on estimating the probability of each of the nodes being cut from the server given 

same number of link failures. The topology in Figure 14 was used to validate and refine 

this heuristic.  

The simulation results show that the statement, 

If } failuresedge |1d),{cut(sP 1r eK=  <   } failuresedge |1d),{cut(sP 2r eK=     

then    } failuresedge |1d),{cut(sP 1r n=   <  } failuresedge |1d),{cut(sP 2r n=    

where n > Ke, may not be always true.  This result implies that, while using the Pe model, 

the ranking of the nodes may not stay the same, given that the number of failures is more 

than Ke. 
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V. A REALISTIC APPROACH FOR NETWORK 
SURVIVABILITY 

A. LIMITATIONS OF THE EXISTING FAILURE MODELS 

The survivability computations presented in the previous chapters, from a 

mathematical point of view, assume that: 

1. All failures are equally likely. 

2. The failures are mutually independent. 

These assumptions do not adequately reflect the nature of real world network 

environments. Typically, different nodes or links can have different failure probabilities. 

More important, real systems show correlated failures. Correlated faults can result in 

reduced system reliability and availability [http://oceastore.cs.berkeley.edu, September 

2003].  

Server failures may be correlated because they share network routers, software 

bugs, configuration problems, operating systems, etc. Failure independence of the nodes 

in a network may be searched and a set of independent nodes may be modeled. Then 

selective use of resources from among these independent sets can be implemented to 

fight against correlation of failures.  This can be achieved by grouping highly correlated 

nodes together and consider each group a single domain. The means to model and 

compute the probability of failure of individual correlated domains remains unsolved 

because of complex conditional probability computations involved.  Therefore, our focus 

is relaxing Assumption 2 above by computing all failure probabilities within the network 

while including correlated failures.  This is likely a more realistic metric for network 

administrators. The next section explains the algorithm used to compute the probability 

of failures for correlated components. 

  

B. COMPUTING CORRELATED COMPONENT FAILURES 

In a graph, one first needs to know the entire node-disjoint cut-sets that disconnect 

paths between s and d. Given the probability of failures, one must then compute the 

probability of s-d being cut by attacking the problem in a brute-force manner, since there 
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is not a way of modeling dependent node failures as independent failures.  If all the 

failures can be viewed as independent failures, then computing 

} failureedge |1}d){cut(s,Pr eK== would be trivial by simply multiplying the 

probability values given.  

The heart of the algorithm is to compute the probability of all the node cut-sets. 

Without loss of generality, let us assume there are a total of four cut-sets. Consider the 

recursion given in Equation (3) below: 

 

P (A ∪ B ∪C ∪D) = P (A) + P (B ∪C ∪D) – P (A n  (B ∪C ∪D))       (3) 

 

where A, B, C, and D represent the node cut sets. 

The equation above is a result of the well-established Equation: 

 

P (A ∪B) = P (A) + P (B) – P (An B)                    (4) 

 

Equation (3) can be solved recursively by the following equation: 

 

P (A ∪B ∪C ∪D) = P (A) + P (B ∪C ∪D) – P ((AB) ∪ (AC) ∪ (AD))       (5)  

 

where AB, AC or AD may include correlated component failures. 

A basic Java implementation of this approach can be found in the Appendix. In 

the implementation node cut-sets that disconnect the source node and destination node 

are stored in an array of vectors, depicted as “N [ ]” in Figure 18. Independent node 

failures, dependent node failures, and their corresponding values are stored in a hash 

table. The recursive computation given in Equation (5) is implemented in the procedure 

called findProbability (N [ ]).  The pseudo-code for this algorithm is given in Figure 18. 
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double findProbability((Vector N[ ]) 
{ 
 //base case 
 if (N.length = = 1) 
   

          double p1=1.0 
          if (failures of some nodes of N[0] are correlated) 
                double prob         get the joint failure probability of corresponding 

nodes from the probability table 
 
      N4[ ]   N[0] – {correlated nodes} 
      return  p1 * prob * findProbability(N4) 
 
 
  else     //In this case : failures of all nodes are independent 
   //then simply get the node probabilities and multiply them  
                                     all 

                                        for (each node in N[0]) 
   prob        get failure probability of the node from the 
                                                      probability table 

 
   p1       p1* prob 
       return p1 
   
 else     // now N.length > 1 
  //initialize vectors for recursive computation 
 
  Vector N1[ ] 
  Vector N2[ ] 
  Vector N3[ ] 
 
  N1 = N[0] //only the first vector 
  N2 = { N[1], N[2], ……, N[n] } //removal of the first vector 
  N3 = { N[0].N[1], N[0].N[2],…., N[0].N[n] } //cross product of N1 and 

N2 
 

                         Return 

                                          findProbability(N1) + findProbability(N2) + findProbability(N3) 

Figure 18.   findProbability procedure pseudo code 
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A basic topology example used to run and verify the results of the program is 

given in Figure 19. 

 
 
                               2                    3  
 
 
 
    1                                                                        6 
 
 
 
                               4                   5 
 
 

Figure 19.   Example topology to verify java implementation of algorithm 
 

In this example, Node 1 is the source node and Node 6 is the destination node. 

Nodes 2 and 3 are dependent nodes, as are Nodes 4 and 5. This means if Node 2 fails it 

increases the probability of the failure of Node 3. Node cut sets of this example are: { 

[2,5], [2,4], [3,4], [3,5] }.  

 

The following probability values given: 

P(2|3) = 0.3 (this is the conditional probability value because 2 and 3 are 
dependent nodes) 

P(4|5)  =  0.5 
P(2) = 0.4 
P(3) = 0.3 
P(4) = 0.4 
P(5) = 0.4 
 

The result for this graph P(1 and 6 being cut) = 0.12 is calculated by hand 

computation and verified by the Java simulation given in the Appendix. 
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VI. CONCLUSIONS AND FUTURE WORK 

A.  SYNOPSIS AND CONCLUSIONS 

When there is an attack to a DON/DOD network, critical data servers should be 

relocated based on the current situation. The solution developed by this thesis gives the 

decision makers criteria that will help them relocate the servers to parts of the network 

where the services are more survivable.  This thesis explored this solution in the 

following manner. 

First, to compare and rank the nodes of a network, two criteria were used: 

1. Network survivability metric based on the edge-connectivity factor (Ke). 

2. Probability of failure of a link given Ke number of edge failures. 

Second, an algorithm to enumerate all min-cuts and near min-cuts was introduced. 

The implementations of these approaches were evaluated and tested using various graphs. 

However, because of the complexity issues involved in maximum flow, min-cut 

algorithms, these algorithms were practical only for certain types of networks.  

Third, a heuristic model, Pe, based on edge-connectivity, (Ke), was explained. The 

Pe model had previously been tested for graphs that have less than 12 nodes and the 

results were verified in [CHU03]. During this research it was shown that the assumption, 

If } failuresedge |1d),{cut(sP 1r eK=  <   } failuresedge |1d),{cut(sP 2r eK=     

then    } failuresedge |1d),{cut(sP 1r n=   <  } failuresedge |1d),{cut(sP 2r n=    

(For n =1, 2, 3….where n> Ke ), may not always hold. 

Finally, the limitations of the current survivability metrics were discussed. The 

author proposed a way to relax assumptions of the failure models. Two Java-based 

programs were used to simulate the effects of node failures. The simulation results are the 

computation of the connectivity factor of the nodes and the number of minimum cut-sets 

of the sample network. The implementation platform for the survivability metrics was a 

prototype, called the Server and Agent-based Active Network Management (SAAM) 

system, which was proposed by Prof. Geoffrey Xie in 1998 and developed by graduate 
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students of NPS over the ensuing years. A Java simulation was written by the author to 

verify the viability of the approach taken and to compute 

} failuresedge |1d){cut(s,Pr eK= . The time frame of this research did not allow for 

pertinent statistics to be gathered. 

 

B. FUTURE WORK 

Given current engineering practices, developing models that are reasonably 

independent of the details of failure nodes, probabilities and correlations is difficult at 

best.  However, modeling dependent node failures in a way such that they can be 

represented as independent node failures will ease the complexity of the computation of   

} failuresedge |1d){cut(s,Pr eK= .  Methods for implementing such models should be 

investigated 

Metrics, other than Ke, need to be established to quantify the fault tolerance, 

safety, reliability, and performance of the nodes in a network. 

Finally, more work needs to be done to verify and implement the proposed 

algorithm for large-scale networks. 
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APPENDIX.  JAVA SIMULATION CODE 

import java.util.*; 

import java.awt.*; 

import java.awt.event.*; 

 

import javax.swing.*; 

 

 

/** 

 * Title: Computer (s,t) failure probability  

 * Description: Brute-force computation and working with correlated node 
failures. 

 *  1. Link failures have been converted into node failures by transforming the 
graph. 

 *  2. Correlated node failures modeled as joint failure probabilities. 

 *  

 * Copyright:    Copyright (c) 2003 

 * Company: 

 * @author Ozlem Ozkok & Geoffrey Xie 

 * @version 1.0 

 */ 

 

public class ComputeProbability { 

 

 

  private final int NUM_CUT_SETS = 4; 

  private Vector nodeCutSets[] = new Vector[NUM_CUT_SETS];  

  private double p; 

  private Hashtable probTable;  

 

 

  public ComputeProbability()  
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  { 

    for (int i = 0; i < NUM_CUT_SETS; i++)  

    { 

      nodeCutSets[i] = new Vector(); 

    } 

 

    //Known node cutsets 

    //Note: The cutset are not mutually exclusive. 

    nodeCutSets[0].add(new Integer(2)); 

    nodeCutSets[0].add(new Integer(5)); 

 

    nodeCutSets[1].add(new Integer(2)); 

    nodeCutSets[1].add(new Integer(4)); 

 

    nodeCutSets[2].add(new Integer(3)); 

    nodeCutSets[2].add(new Integer(4)); 

 

    nodeCutSets[3].add(new Integer(3)); 

    nodeCutSets[3].add(new Integer(5)); 

     

     

    //Known failure probabilities 

    //Note: Failures of node 2 and 3 are correlated and so are node 4 and 5. 

    probTable = new Hashtable(); 

     

    probTable.put("2.3", new Double(0.3)); 

    probTable.put("4.5", new Double(0.5)); 

    probTable.put("2", new Double(0.4)); 

    probTable.put("3", new Double(0.3)); 

    probTable.put("4", new Double(0.4)); 

    probTable.put("5", new Double(0.4));     
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    System.out.println(probTable); 

 

    p = findProbability(nodeCutSets); 

 

  }//end constructor 

 

 

 

  private double findProbability(Vector N[]) 

  { 

    if (N.length == 1)  

    { 

      System.out.println("Inside the base case " + N.toString()); 

      double p1 = 1.0; 

       

      int numNodes = N[0].size(); 

       

      for (int nodeCount = numNodes; nodeCount > 1; nodeCount--) 

      {         

        //Now search the probTable; starting with longest key 

        for (Enumeration e = probTable.keys(); e.hasMoreElements();) 

        { 

          String key = (String) e.nextElement(); 

          if (key.length() == nodeCount * 2 - 1)  //account for "." 

          { 

            //Convert key e.g., "1.2.3" into vector {Integer(1),Integer(2),Integer(3)}  

            Vector keyVector = convertToVector(key);   

             

            //check for match 

            boolean matching = false; 

            System.out.print("Key Vector = " + keyVector + "; N[0] = " + N[0] + 
"\n");             
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            for (int j = 0; j < keyVector.size(); j++) 

            { 

              matching = false; 

              for (int k = 0; k < N[0].size(); k++) 

              { 

                if ((keyVector.get(j)).equals(N[0].get(k))) 

                {  

                  matching = true; 

                  break; 

                } 

              } 

              if (!matching) 

                break;   

            } 

             

            if (matching) 

            { 

              if (!probTable.containsKey(key)) 

              { 

                System.out.println("Error: Required probability variable not given for 
node sequence " + key); 

              } 

              else 

              { 

                Double prob = (Double) probTable.get(key); 

                 

                //Remove corresponding nodes from N[0] since their joint probability is 
found. 

                //Note: their joint failure is independent of failures of the other N[0] 
nodes 

                   

                Vector N4[] = new Vector[1]; 

                N4 = formN4(N, keyVector); 
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                return (p1 * prob.doubleValue() * findProbability(N4)); 

              }   

                        

            } 

            else 

            { 

               System.out.println("No match for key: " + key + "\n"); 

            }                        

              

          }//end of if (key.length == ...  

           

        } 

      } 

       

      //Now nodeCount is 1 and in this case, failures of all nodes are independent. 

      //So just multiply their failure probabilities together 

      System.out.println("Now failures of all nodes in N[0] are independent.\n");      

       

      for (int i = 0; i < N[0].size(); i++) 

      { 

        String key = "" + N[0].get(i); 

                       

        if (!probTable.containsKey(key)) 

        { 

          System.out.println("Error: Required probability variable not given for node 
" + N[0].get(i)); 

          System.exit (1); 

        } 

        else 

        { 

          Double prob = (Double) probTable.get(key); 

          p1 = p1 * prob.doubleValue(); 
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        } 

      } 

       

      return p1;      

       

    } 

    else 

    { 

      Vector N1[] = new Vector[1]; 

      Vector N2[] = new Vector[N.length - 1];      

      Vector N3[] = new Vector[N.length - 1]; 

         

      N1 = formN1(N); // subset with only the first vector 

      N2 = formN2(N); // after removal of first vector 

      N3 = formN3(N); // cross product of N1 and N2 

       

      return findProbability(N1) + findProbability(N2) - findProbability(N3); 

 

    } 

  }//end method findProbability 

 

 

 

  private Vector[] formN1(Vector temp[]) 

  { 

    Vector N1[] = new Vector[1]; 

    N1[0] = temp[0]; 

    return N1; 

  } 

 

  private Vector[] formN2(Vector temp[]) 

  { 

    Vector N2[] = new Vector[temp.length-1]; 
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    for (int c = 1; c < temp.length; c++) 

    { 

      N2[c-1] = temp[c]; 

    } 

 

    return N2; 

  } 

 

 

  private Vector[] formN3(Vector temp[]) 

  { 

    Vector N3[] = new Vector[temp.length-1]; 

     

    for (int c = 0 ; c < temp.length - 1; c++)  

    { 

      N3[c] = new Vector(); 

    } 

 

    for (int i = 1; i < temp.length; i++) 

    { 

      //Merge elements of temp[0] and temp[i] and put them into N3[i-1] 

      for (int j = 0 ; j < temp[0].size(); j++)  

      { 

        N3[i-1].add(temp[0].get(j)); 

      } 

 

      for (int k = 0; k < temp[i].size(); k++) 

      { //no duplicate is added 

        if (!N3[i-1].contains(temp[i].get(k)))  

        { 

          N3[i-1].add(temp[i].get(k)); 

        } 
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      } 

 

    } 

 

    return N3; 

  } 

 

 

  private Vector [] formN4(Vector temp[], Vector removeVector) 

  { 

    Vector N4[] = new Vector[1]; 

    N4[0] = new Vector(); 

 

    for (int count = 0 ; count < temp[0].size(); count++)  

    { 

 

      Integer temporary = (Integer) temp[0].get(count); 

      System.out.println("N4[0] = " + N4[0] + "; temporary = " + temporary); 

 

      if (!removeVector.contains(temporary))  

      { 

        N4[0].add(temporary); 

      } 

    } 

    return N4; 

  } 

   

   

  private Vector convertToVector(String key) 

  { 

    Vector v = new Vector(); 

     

    StringTokenizer token = new StringTokenizer(key,"."); 
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    while (token.hasMoreTokens())  

    { 

      Integer id = Integer.decode(token.nextToken()); 

      v.add(id); 

    } 

 

    System.out.println("Key = " + key + " ; new vector = " + v.toString()); 

    return v; 

  } 

   

   

  public String toString()  

  { 

    return "(s, t) Cut Probability = " + p; 

  } 

   

  public static void main( String args[] ) 

  { 

    ComputeProbability test = new ComputeProbability(); 

    System.out.println(test.toString()); 

       

  }//end main 

}//end ComputeProbability 
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