

MONTEREY, CALIFORNIA

THESIS

AUTO-CONFIGURATION OF CISCO ROUTERS WITH
APPLICATION SOFTWARE

by

Alexandre Barcellos Prado

September 2003

 Thesis Advisor: Geoffrey Xie
 Second Reader: John Gibson

 Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Auto-Configuration of Cisco
Routers with Application Software

6. AUTHOR(S) Prado, Alexandre

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
 The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 Statement A

13. ABSTRACT

 The context of this research is to facilitate the control of routers with the
Server and Agent based Active Network Management (SAAM), to optimize allocation of
network resources, and to satisfy user Quality of Service (QoS) requirements. The SAAM
network determines the Quality of Service parameters based on current network
conditions and user requirements. These parameters are dynamic, so they must be
uploaded into the Cisco routers to take effect. The focus is on determining the most
efficient way of communicating between the Cisco routers and the SAAM system. This is
accomplished by several key components of the proxy-based solution as the first step
for integrating with a legacy network.
 This thesis develops methods and application software to automatically
update the configurations of Cisco routers based on the current network
condition. These methods are required by any solution that resolves to upgrade
the existing legacy network to provide QoS without expensive equipment
replacement. As a result users are provided with a network they can expect to
function properly.

15. NUMBER OF
PAGES

93

14. SUBJECT TERMS
Cisco, IOS, Console, Ethernet, Telnet, SSH, QoS, Perl, socket,
HyperACCESS, API, HAPI, Visual Basic, C++.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

AUTO-CONFIGURATION OF CISCO ROUTERS WITH APPLICATION
SOFTWARE

Alexandre B. Prado

Major, Brazilian Air Force
B.S., Brazil’s Air Force Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Author: Alexandre Barcellos Prado

Approved by: Geoffrey Xie

Thesis Advisor

John H. Gibson
Second Reader

Peter J. Denning
Chairman, Department of Computer

 Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The context of this research is to facilitate the

control of routers with the Server and Agent based Active

Network Management (SAAM), to optimize allocation of

network resources, and to satisfy user Quality of Service

(QoS) requirements. The SAAM network determines the Quality

of Service parameters based on current network conditions

and user requirements. These parameters are dynamic, so

they must be uploaded into the Cisco routers to take

effect. The focus is on determining the most efficient way

of communicating between the Cisco routers and the SAAM

system. This is accomplished by several key components of

the proxy-based solution as the first step for integrating

with a legacy network.

 This thesis develops methods and application software

to automatically update the configurations of Cisco routers

based on the current network condition. These methods are

required by any solution that resolves to upgrade the

existing legacy network to provide QoS without expensive

equipment replacement. As a result users are provided with

a network they can expect to function properly.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. CONCEPTION ...1
B. THE SCOPE OF THE THESIS3

II. BACKGROUND ..5
A. ELEMENTS OF DYNAMIC MANAGEMENT IN NETWORK QUALITY

OF SERVICE ...5
 1. Automatic and Timely Update of a Router
 Configuration6
 2. Automatic and Timely Collecting of Router
 State Information8
 3. Automatic and Timely Communication Between
 Different Managing Agents9
B. SERVER AND AGENT-BASED ACTIVE NETWORK MANAGEMENT ..11
 1. Architecture12

a. SAAM Server13
b. SAAM Proxy13

C. CISCO ROUTER CONFIGURATION16
 1. IOS and IOS Command Line Interface16
D. THE CISCO ROUTER20
 1. Cisco Console Port22

a. HyperTerminal23
b. HyperACCESS24

 2. Remote Cisco Configuration25
a. Telnet26
b. Perl28

III. COMMUNICATION USING PERL SCRIPT31
A. SIMPLE NETWORK MANAGEMENT PROTOCOL31
 1. Configuration Experiment33

a. Uploading a Router Configuration Using
Perl Script36

b. Collection the Router Configuration
Using Perl Script38

c. Automatic and Timely Communication
Between Different Managing Agents40

d. Code and Answers42
B. CONCLUSION ..46

IV. ROUTER CONFIGURATION USING CONSOLE PORT49
A. HYPERACCESS49
B. SCRIPT LANGUAGES50
 1. Configuration Experiments50

a. Upload of a Router Configuration Using
HyperACCESS with VBScript51

 vii

b. Collection of Router Configuration
Information Using HyperACESS with
JavaScript57

C. CUSTOM-WRITTEN PROGRAMS61
 1. Microsoft Visual Basic62

a. The Code in Visual Basic63
 2. Microsoft Visual C++67

V. CONCLUSION ...69
A. THE PROBLEM69
B. SOLVING ...70
C. FUTURE WORK72

LIST OF REFERENCES ..75
INITIAL DISTRIBUTION LIST77

 viii

LIST OF FIGURES

Figure 1. Example of a Network.16
Figure 2. Lay-out of the Demonstration Network.34
Figure 3. Configuration of Router Using Telnet.39
Figure 4. Upload of the Configuration Data with Open Perl

IDE. ..40
Figure 5. Collection of the data with Open Perl IDE.41
Figure 6. Receipt of a Message from Another Socket.43
Figure 7. Transport of a String to Another Socket.44
Figure 8. HyperAccess Linked with the Router Showing the

Result of the Elapsed Time for the Configuration
Update Interaction Using a VBScript Application. ..55

Figure 9. HyperACCESS linked with the Router Displaying the
Results of the Queue Status Query.59

Figure 10 Visual Basic Accessing the HyperACCESS Library. ...62

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. Table of Metrics in a Network.10

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENT

The human being is an animal that can easily adapt to

many environments. I believe this because after spending

only two years three months and twenty days of my life in

another culture, I quickly adapted too many new experiences

of living.

Everything began with the expectation of receiving a

master’s degree and in living in a country that has the

most powerful economy in the world. The assumption that my

time is finishing comes with the completion of the thesis.

I feel like a winner, but I admit that many people

participated in my victory. First, I would like to thank

God for blessing me everyday. Next I would like to extend

my gratitude to Carla Ribeiro, Marlene Queiroz, Vo Evanyr

and Andrea Silva for their support during some difficult

moments, to my father for being proud of his son, to my

child Eduardo for giving me a new sense of my life.

Additionally, I want to thank my English instructor, Beth

Summe for guiding me through the first step of

communication in the United States, to the faculty and

staff of the Department of Computer Sciences, especially my

adviser Professor Geoffrey Xie and my second reader

Professor John Gibson for their high level of

professionalism. Finally I want to say thanks for the

friendships, good times and the fantastic American people

for their generosity and kindness.

 xiii

This master will be eternalized in my mind and in my

heart as a frontier that I overcame and as a challenge to

know life and myself.

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I. INTRODUCTION

A. CONCEPTION

Government agencies, companies, and individuals

increasingly rely on their networks to run business-

critical applications, such as telephony and video

communications. Therefore, ensuring the provision of

established and accurate network quality of service (QoS)

levels is necessary.

Although characteristics of QoS vary by industry and

government requirements, the term QoS generally describes a

network’s ability to function with a high level of

reliability, to operate with minimal downtime, and to

ensure that the bandwidth-intensive applications, such as

voice and video communications, perform effectively.

Traditionally, a number of different devices are used

at the LAN-WAN interface. These devices include data

service units (DSU) for basic connectivity, WAN probes and

routers to direct data traffic, and other solutions for

monitoring functions (particularly for Service Level

Agreements).

Of these devices, the routers are the most popular way

for interconnecting the network to provide a path of

communication with external hosts.

Quality of service is a critical starting point for

developing methods and application software to update the

configurations of Cisco routers autonomously, based on the

current network condition. The methods are required for any

1

solution that attempts to upgrade the existing legacy

network. This, therefore, establishes a QoS without

expensive equipment replacement while providing users with

a network that function properly.

To satisfy the QoS needs many products are being

developed to provide routers without modifying the IOS. If

the IOS is proprietary software, as is the case with Cisco

products, obtaining the IOS source code or arranging for a

special IOS update is time-consuming and potentially

costly.

Based on this information, the Server and Agent based

Active Network Management system (SAAM) was created. The

goal of the SAAM is to optimize allocation of the network

resources to support the user Quality of Service (QoS)

requirements.

The SAAM network determines the Quality of Service

parameters based on user requirements and allocates network

resources accordingly. These resources allocations are

dynamic and must be uploaded into the Cisco routers for them

to take effect.

Therefore, understanding the parameters of the Cisco

IOS is essential when the Server is configuring or

externally controlling the router. For this approach, an

autonomous method must be created to communicate with the

routers, the core devices of a real commercial and pre-

installed network, and the QoS parameters such as flow

definitions and the routing table entries.

2

This communication must be in two directions. The

first direction makes it possible for the SAAM server to

extract information from the Cisco router or to provide

configuration settings to the router. The other

simultaneously connects the SAAM server to another server

to upload pertinent information to the entire network.

B. THE SCOPE OF THE THESIS

The goal of this research is to develop a method of

remotely and autonomously configuring a router’s interface

parameters to establish and maintain required service

levels. This thesis will consider the software SAAM

architecture, with its relevant applications, standards and

protocols. The thesis will further identify the actions

that must be taken, either by the server or the router, and

the information that must be exchanged between the server

and the router to dynamically and adaptively configure the

router so that the desired QoS level is achieved and

maintained.

In addition, the thesis will demonstrate the benefits

of using software such as HyperACCESS to autonomously

communicate with the router. HyperACCESS, a product of

Hilgraeve, provides an Application Programming Interface

(API) that can be activated from application programs,

developed in JavaScript or VBScript. The API enables the

server to open a session with a router and to configure its

interface parameters.

 Data from tests performed in support of this thesis

will be analyzed to verify the effectiveness of the present

methodology. A successful adaptive and autonomous

configuration of a router test-bed will validate this

research’s contribution of creating an efficient mode of

3

dynamic communication between a router and the Server and

Agent based Active Network Management system.

4

II. BACKGROUND

A. ELEMENTS OF DYNAMIC MANAGEMENT IN NETWORK QUALITY OF
SERVICE

The communication capability of a corporate network

forms the information backbone of any successful

organization. Such a network transports a multitude of

applications and data, including high-quality video and

delay-sensitive data such as real-time voice. Bandwidth-

intensive applications not only press the limits of network

capabilities and resources but they also complement, add

value, and enhance every business process.

Networks must provide secure and dependable services,

often with a guarantee of quality. Achieving the required

quality of service (QoS), a set of measurable network

characteristics that must be managed across network

resources, forms the foundation for a successful end-to-end

business solution. QoS is the set of measurable

characteristics of a network, which must be managed across

network resources.

5

The first step in deploying a consistent, supportable

QoS is to identify and categorize the network traffic

generated by each application. Access control lists (ACLs)

are the most commonly used tools for identifying and

controlling network traffic. The ACLs use information from

Layer 3 (IP address) and Layer 4 (TCP/UDP port numbers) to

categorize traffic. However, using ACLs alone to manage QoS

rapidly increases the size and the number of ACLs required

for a network. Furthermore, they cannot easily identify all

applications because some port numbers are not

standardized, and therefore cannot be associated with a

particular application. In addition, custom applications

use non-standardized ports and therefore cannot be

generally categorized.

 To achieve the desired level of application

performance, establishing the initial QoS policy is

required. Cisco’s QoS constructs enable the network manager

to balance the QoS policy variables (bandwidth, delay, and

jitter and packet loss), and to determine the policies for

delivering the desired application performance.

1. Automatic and Timely Update of a Router
Configuration

Network devices need to be programmed with the correct

set of features and parameters to implement the established

policy. While QoS functionality is rich in features, the

process of an effective implementation requires a thorough

study of the network for which the QoS policy is to be

employed.

Ideally not requiring any modification to the

Internetworking Operating System (IOS), the software of the

Cisco router, is preferred for such uploads. This is

because the IOS is proprietary software. This software is

potentially costly to obtain the IOS source code from Cisco

or arrange for a special IOS update by Cisco. Therefore,

without automation, the QoS configuration challenge can be

very complex.

To manage the packet delay along each link from source

to destination, the data capacity of each link and the

packet loss parameters of a network need to be timely.

This is principally because the traffic and the congestion

in a network can change very quickly. Therefore, a router

6

must maintain its router table with efficiency, following

the set of rules used by the router to reach the desired

QoS.

For a better understanding of this approach it is

necessary to imagine a network configured to satisfy QoS

constraints in its data transmission. The network needs to

establish a reserved-bandwidth path between end systems or

hosts on either side to ensure the availability of adequate

resources.

The need for network resource reservations differs for

data traffic versus real-time traffic, which is live voice

or video information. Suppose this need is restricted only

to real-time traffic. Since such traffic is an almost

constant flow of information, the network must insure in

its movement of the information. Some guarantee must be

provided that service between the hosts will not vary,

because such variance can cause a loss of synchronization

or insufficient bandwidth, which then may cause delay

variations or information loss due to congestion.

The Resource Reservation Protocol (RSPV), an IP

service available in the Cisco router, provides some

mechanisms that enable real-time traffic to reserve

resources necessary for consistent latency. For example, to

enable RSPV on an interface, the command ip rspv bandwidth

[interface-kbps] [single-flow-kbps] must be entered. This

command starts RSPV and sets the bandwidth and single-flow

limits.

This thesis demonstrates the ability of a software

application to cause the execution of this reservation

command without modifying the proprietary IOS or manual

7

entry on an interfaced keyboard. This application may help

to reduce the time and cost of manually managing network

service quality.

2. Automatic and Timely Collecting of Router State
Information

Collecting data on bandwidth, reliability, packet

counts by interface, and other essential information about

the health of a network is crucial for maintaining the

status the network. Automating this collection of

information from the network’s routers is very important

for maintaining the QoS levels of the network. An approach

similar to that given above may be used to automate this

task.

The routers have available information generated

internally, the traffic load offered determines great deals

of which. This load must share the available network

resources and must place constraints on the minimum

services required, which is determined by the traffic type,

such as real-time traffic. This traffic type requires

constant bit-rates or an interactive data application whose

traffic comes in sporadic bursts.

If a host is requesting a specific quality of service

the network devices need to maintain the right mix of

features and set of parameter values to implement the

necessary policy. The configuration that the QoS

determinates must not be time-consuming. The information

acquired from the routers needs to be available all the

time compare with the desired QoS thresholds.

Thus, the collection of router information must be

automated to support responsive QoS management.

8

For example, after the RSPV protocol parameters are

configured to implement the desired network resource

policy, verifying the resulting RSPV settings is possible

by using commands such as show ip rsvp interface [type

number] and show ip rsvp installed [type number]. These

commands display RSPV-related interface, filters, and

bandwidth information. These results can be checked in a

timely manner if the collection of the values is automated

to verify any change that has occurred in the established

parameter values. This automated process makes it possible

to check the router without a change in the proprietary of

operating system or manual entry by the network

administrator, saving both time and money.

3. Automatic and Timely Communication Between
Different Managing Agents

Routers are capable of supporting multiple independent

routing protocols and maintaining routing tables for

several routed protocols. When a router algorithm updates a

routing table, its primary objective is to determine the

best information to include in the table, based on one of

more of the criteria shown in Table 1 (below). When the

desire is to support a particular Quality of Service, many

parameters should be considered. Therefore, many kinds of

networks each with its own characteristics must be managed.

9

The metrics most commonly used by routers are as

follows:

• Bandwidth

Data capacity of a link

• Delay

Length of time required to

move a packet along each link from

source to destination

• Load

The amount of activity on a

network resource such as a router

or a link

• Reliability

Usually refers to the error

rate or packet loss of each network

link

• Hop count-

destination

The number of routers a packet

travels through before reaching its

destination

• Ticks

The delay on a data link using

IBM PC clocks ticks (approximately

55 milliseconds)

• Cost

An arbitrary value, usually

based on bandwidth, monetary

expenses, or other measurements,

assigned by network administrator

Table 1. Table of Metrics in a Network

In this project, software of the agents is associated

with the routers to help manage the router configurations

by proving dynamic control over resources. In this way,

the agents support internetwork connectivity and help

maintain reliable performance and resource flexibility. A

proxy agent must communicate with its associated router and

10

jhgibson
Display his information as a table instead of as a paragraph – note the reference to the respective table I inserted in the next paragraph

other proxies in a timely, reliable, and secure manner.

Based on this approach, finding an effective way to manage

all the agents included in the network is essential to

communicating effectively among the agents. The figure

below shows one such example for using agents.

The router agents automatically collect all the

pertinent configuration and performance information from

the router, and then send it to the server proxy. After

analyzing the traffic situation and received data, the

server proxy sends any necessary configuration change

directives of proxies to the router in order to provide a

continuous QoS.

If the show ip rsvp commands, described above, were

used to collect information from a router to verify the

current RSPV protocol settings, and if the information

showed that the bandwidth of that router is below that

required to sustain the desired QoS, the proxy agent will

send this information to the server proxy. The server then

performs a calculation of the required parameter values and

generates a set of commands to be forwarded to the

pertinent router agents to adjust the rspv bandwidth

appropriately.

B. SERVER AND AGENT-BASED ACTIVE NETWORK MANAGEMENT

The Server and Agent-Based Active Network Management

(SAAM) system is a research project under the DARPA-funded

Next Generation Internet (NGI) initiative that was

initiated in the Naval Postgraduate School in 1998. It is a

distributed control system, which has, as a main goal, the

functionality to optimize allocation of the network

11

resources to support user Quality of Service (QoS)

requirements. The system provides an efficient solution for

managing the support of multimedia applications in the

network.

1. Architecture

The SAAM architecture consists of the SAAM Server that

controls the SAAM system, the SAAM-enabled routers, and the

SAAM proxies. The Server makes decisions based on the

information it collects from SAAM-enabled routers and SAAM

proxies. This information gives the server a global

picture of the specific region of the network it controls.

The SAAM-enabled routers are lightweight routers, in that

they only forward the packets to their destination address

based on routing decisions made by the SAAM Server.

To make the SAAM scalable for large networks, its

Servers are organized into a hierarchy. In the first level,

the network is divided into autonomous regions, called the

SAAM regions. One SAAM Server, for each region. A central

management server controlling the entire network, which

makes a single point of reference possible through the

media applications that coordinate a required Quality of

Service guarantee, supports the regional servers. Instead

of negotiating with local routers or regional servers for

end-to-end service that cannot be guaranteed, the service

request is always sent to the appropriate SAAM server,

which decides how to maintain the QoS level for the

requested end-to-end service.

12

a. SAAM Server

The SAAM server periodically collects information

from its supported SAAM routers and proxies while

monitoring the actual QoS parameters of the controlled

network. This information is aggregating into a read-to-use

database of useful paths. The database is called the Path

Information Base (PIB). By using this database, the SAAM

server can implement network functions, such as routing and

re-routing of real-time flows, which are required to

provide Differentiated Service.

b. SAAM Proxy

A SAAM Proxy handles actual data traffic from the

client applications, acting upon the information received

from the routers. The requests for data transport support

are forward to the SAAM Server for approval. The Server

responds to each request by assigning a path over which to

forward the data or by denying the request. When the path

is first created, the Server sends route-update messages to

all the routers in the path directs them to install

appropriate entries to their routing tables, creating the

packet-forwarding path.

Each proxy is responsible for periodically

sending status to the Server. These status messages allow

the Server to maintain a precise view of the entire

network. The Server then has the capacity to make an

accurate routing decision. The information follows the

hierarchical structure of the SAAM system, where it goes

first to the regional Server and then to the Server in the

next higher level of the hierarchy.

13

Furthermore, the SAAM proxy is designed to

support resident agents, allowing the Management

Information Base in the router to upgrade dynamically. The

precompiled byte code of a resident agent is registered as

a new module by the hosting node. For instance, when the

SAAM Proxy receives a server resident agent it becomes a

SAAM Server, acquiring with this feature a flexibility that

sometimes is necessary due to excessive traffic in the

network or a failure of the regional Server.

For a thorough understanding of the SAAM system,

it is necessary to address some aspects of Quality of

Service characteristics in a network. Three main services

establish the various QoS levels in a network: Best Effort

Service, Integrated Service, and Differentiated Service.

(1) Best Effort. Best Effort Service is the

basic model of the current Internet. It was the first

service provided by the Internet. It gives no guarantees to

clients such that they will receive sufficient bandwidth to

support their offered load or that their packets will

arrive at the destination within a specific time frame.

Some applications such as real-time application would have

problems with this lack of guarantees.

 (2) Integrated Service. Unlike Best Effort

Service, the Integrated Service provides a guarantee for a

minimum bandwidth, as well as bounds on delay and packet

loss rate. The client can negotiate for a specific QoS

level based on the kind of application or session being

supported. Guarantees are customized on a per-client

14

basis. The client application must go through the resource

reservation process and wait for the service provider to

establish a transmission path and reserve resources before

it transmitting packets. This application denied the

resource reservation if insufficient resources are

available for handling the additional traffic.

 (3) Differentiated Service. Due to the

intense use of the Internet by real-time applications, the

IETF first proposed an Integrated Services architecture,

which uses an RSPV protocol to reserve network resources,

to assure the service quality provided. The problem with

this approach is the level of maintenance required by all

the routers and end-systems to support a flow state. To

address this maintenance issue, the Differentiated Service

was created. The service is a mixture of the Best Effort

and the envisioned per-flow heavyweight mechanism of RSVP

and Integrated Service. The Differentiated Service

accommodates heterogeneous application requirements and

user expectations, permitting differentiated pricing of

Internet Services and scalability.

 (4) Example of Architecture. The figure

below shows one possible test environment for the

integration of service types. The configuration includes

three Cisco routers. Linux boxes hosting the SAAM specific

application code implement the SAAM system functionality.

These boxes are called SAAM proxies. One SAAM Proxy is

required for each Cisco router to be controlled by the SAAM

system. Moreover, a proxy should be placed in the same

local area network as its associated router so that the

proxy is able to inspect the traffic going through the

15

router via a link-layer packet sniffer. In this test

configuration, three SAAM Proxies are deployed. Each is

directly connected to one router through the router’s

console port. The three proxies are also connected to the

entire network by their network interface cards so that

they can communicate with the routers and each other using

the TCP/IP protocol.

 Figure 1. Example of a Network

C. CISCO ROUTER CONFIGURATION

1. IOS and IOS Command Line Interface

16

Cisco’s IOS has many configuration values that

establish the routing of information from one network to

another. A software license is required in order to use

the Cisco IOS.

Many versions of IOS exist. Deciding or choosing the

particular version is based either on the need to implement

a specific IOS feature or the desire to use a specific

Cisco hardware platform.

Cisco uses a special numbering scheme to keep track of

IOS versions. The full version number of an IOS has three

numbers: major version, minor version, and maintenance

release. The major version and minor version numbers are

separated by a period and are referred to collectively as

the major release. The maintenance release number is shown

in parentheses. For example, the IOS version number

11.2(10) refers to maintenance release 10 of major release

11.2. Cisco releases updates often. When they issue an

update for an IOS version, they generally increase a

maintenance release number associated with the major

number. Cisco also issues release notes that contain

descriptions of release changes and additions.

Cisco uses special release designations to show how

stable the software is. These release designations are as

follows: General Deployment (GD), Limited Deployment (LD),

and Early Deployment (ED). As a general rule, GD releases

of an IOS are the most stable. Cisco puts the GD

designation on an IOS release when it has been in the

market long enough to have allowed Cisco to fix most

serious bugs.

17

Feature sets do not change as often as version

numbers. The selection is based on what is being run on the

router. For example, the choice between Internet protocol

(IP) or Novell’s Internetwork Packet Exchange (IPX) needs

to be done based on the desired features of the router and

the required operation of the network.

Cisco has many models of routers that run a version of

Cisco’s IOS. They vary from inexpensive, low-end models to

extremely expensive, high-end models. For the network

backbone, the selection would be from among the high-end

router series: 7000, 7200, 7500, or 12000. These series of

routers are meant to be fast and reliable, and can support

many network interfaces.

To connect an office LAN or WAN to the backbone, one

of the access-type router series is appropriate: 1000,

1600, 2500, 2600, 3600, 3800, or 4000. The commands to

configure a router’s IOS are consistent across the entire

IOS-based router line. This means that only one command-

line interface must be learned. This interface looks the

same whether talking to the router through a console port,

a modem, or a telnet connection.

One of the major components of an IOS configuration is

that of the individual network interfaces. Each Cisco

router model requires network interface configuration. The

possible Physical interfaces available on the Cisco routers

include: Ethernet, Fast Ethernet, Token Ring, FDDI, Low-

Speed Serial, Fast Serial, HSSI and ISDN BRI.

Most IOS configuration is done through the Command

Line Interface (CLI). To configure the IOS-based routers,

it is necessary to fully understand how the CLI works. The

18

change in the command prompt is based on the command mode

that is being used on the mode in which the router is

running. The major command modes are as follows: User Mode,

Privileged Mode, Global Configuration Mode, Sub-

Configuration Modes and ROM Monitor Mode. With the

exception of ROM Monitor Mode, all modes are IOS command

modes, used to configure the IOS.

When operating in the user mode, the prompt consists

of the router’s host name followed by the “greater-than”

symbol (e.g. router2>). This mode cannot do anything that

would affect the IOS operation. It only permits the user

to see the IOS running configuration and startup

configuration.

In the privileged mode, the IOS operation can be

affected or its configuration can be shown. The user mode

enable command tells the IOS that the user wishes to enter

the privileged mode. When the enable command is entered,

the IOS asks for a password before granting access to the

privileged mode. This assumes an “enable” password has been

previously configured and stored as part of the router’s

start-up configuration. The privileged mode is a superset

of the user mode commands.

 The command prompt for the privileged mode consists

of router’s name followed by a number or pound sign. At

this point, the operator has complete control over the

router configuration and operation. To return to the user

mode, the command is disable.

The IOS configuration modes are used for entering IOS

configuration commands that affect the way IOS runs on a

router. The main configuration mode is the global

19

configuration mode from which several other configuration

modes are entered. The configuration mode required depends

on what is being configured and what command is being

entered. All commands that are entered in a configuration

mode affect the running configuration; these commands take

effect immediately after they are entered. To make the

changes persistent, the running configuration must be saved

to the startup configuration, stored in nonvolatile RAM.

The configure terminal command is a privileged mode

command used to enter the global configuration mode if a

terminal is being used to enter configuration commands. IOS

will accept the command only from the privileged mode.

The sub-configuration modes are used to configure

individual components like interfaces and processes. The

command to enter a sub-configuration mode varies based on

the component being configured.

The ROM monitor mode is not really an IOS mode. It is

rather a mode that a router can be in if IOS is not

running. If a router attempts to boot and cannot find a

good IOS image to run, the router will then enter, the ROM

monitor mode.

D. THE CISCO ROUTER

Three different types of ports exist on CISCO routers

with each having an associated connection. These

connections provide the different ways of interfacing and

configuring a router. Before determining how to configure

the routers, one must answer the following questions:

20

• Can a “telnet” session be established with the

console or the auxiliary ports of a router without having a

LAN connection?

• Can the router’s configuration be

programmatically read and changed through the console port

or the auxiliary port using a telnet session or a serial

port communications program, like the “HyperACCESS”

software from Hilgraeve? If so, how is it done?

Specifically, what are the steps to be followed?

• If a router can be configured through its

external ports instead of among the console, auxiliary and

LAN connections, then which method achieves the fastest

response time? How can the execution times of tasks, like

reading a router’s routing table or adding a static route,

for example, be measured?

A Cisco router includes asynchronous serial console

and auxiliary ports. These ports provide administrative

access to the router either locally (with a console

terminal) or remotely (with a modem). Thus, there are three

methods of logging on to a router: Console port, Auxiliary

port and a “telnet” session. Regardless of which connection

method is used, access to the IOS command-line interface is

generally referred to as an EXEC session and is accessed

after entering the “enable” command at the user-mode

prompt.

A router can also be accessed from a remote location

by dialing directly into a modem connected to the Console

or Auxiliary port of the router. In general, the console

port is recommended because it displays router startup

messages; whereas, the Auxiliary port does not provide this

21

information. In addition, if a router hangs in the read-

only memory monitor mode, the system can be rebooted if the

connection is through the console port. However, if a local

terminal is connected to the remote router’s console port,

no other alternative may be available other to connect to

the auxiliary port.

1. Cisco Console Port

The most basic way of logging into an IOS-based router

is through a connection to the console port. The System

Configuration Dialog asks for an enable password.

The console port is used as a direct attachment to a

terminal. The IOS can be accessed through this using an RJ-

45 port on the back of the router. The cable is wired such

that the pin-outs are “complemented” at opposite ends: Pin

1 at one end connects to Pin 8 at the other; Pin 2 connects

to Pin 7, and so forth. This configuration is referred to

as a “roll-over” or “rolled” cable. It connects to an RJ-

45-to-DB9 adapter, which connects to the terminal’s serial

port. The PC uses a terminal emulation program set to 9600

baud, 8 bits, N parity, and 1 stop bit. Another important

aspect to know is that the console port has no password by

default.

To connect to the console port, use a serial port

communications program, like HyperACCESS or HyperTerminal,

configured as 9600/8/N/1 and the “Flow Control” set to

“None”. The terminal emulation should be set to VT100. If

the terminal is running Linux, the program, MiniCom, may be

used. While Minicom has the ability to run scripts

directly, other serial port applications require a custom

22

program to interface with the, communications application

and to execute scripts through it.

 a. HyperTerminal

HyperTerminal is a basic modem communications

program that comes with the Microsoft Windows

95/98/Me/2000/XP operating systems. It is used as a

mechanism to dial into an Internet Unix account to use

text-based Internet programs, such as PINE, TIN and LYNX.

HyperTerminal does not support PPP dial-up access;

therefore, it cannot use graphical Internet Applications,

such as Netscape, Eudora and Internet Explorer. A more

recent version of HyperTerminal, the Private Edition 2.0,

has fixed a few problems identified in the original

version; and adds some useful features. HyperTerminal

should be installed without explicitly making a request.

The program that starts HyperTerminal is HYPERTRM.EXE,

which is located under Start Menu: Programs: Accessories:

HyperTerminal. In general, the use of HYPERTRM.EXE is

necessary when adding a new phone number. If the location

is saved after using HYPERTRM.EXE, the HyperTerminal

directory will store unique icons for these different

locations.

The HyperTerminal, like many Windows

applications, has a button bar on the top of its screen

that incorporates the most used features of the program.

This application can transfer files between network

devices, such as router to computer. It also allows the

terminal to function as a telnet client.

23

b. HyperACCESS

HyperACCESS is the official upgraded application,

built upon HyperTerminal and HyperTerminal Private Edition.

 This application is a 100% 32-bit code and is

built with the latest development tools to ensure full

compatibility with Windows 95, 98, Me, NT, 2000 and XP. The

application provides fast and reliable multi-tasking and

supports long file names. It offers a wide array of

additional capabilities, such as many additional terminal

emulators and file transfer protocols; record and play back

logons and repetitive steps, using Visual Basic Script and

JavaScript; redefined keys and added buttons to the toolbar

with text or bitmap labels; and automated communications

with Visual Basic, VBA, C++, or other languages.

The HyperACCESS has a full support for Active X

Scripting, OLE Automation, and the new Document Object

Model for super integration with Microsoft Office

applications and the Active Desktop. Additional

capabilities may be developed using common high order

programming languages, in conjunction with the API that

improved the applications development. The Object Linking

Embedding (OLE) Automation is used to take advantage of

this ability.

HyperACCESS provides its own file transfer

protocol, and HyperProtocol, which is faster than others,

such as Compuserve B+, Kermit, Xmodem, 1k-Xmodem, Ymodem,

Ymodem-G, and Zmodem. These are some of the faster

protocols available on the market.

Improvements to its display functionality permit

users to expand the terminal view to occupy more of the

24

screen, and to prevent the image from following the cursor

as it shifts out of view. It also includes new options to

support host-controlled printing.

2. Remote Cisco Configuration

As with the console port, the auxiliary port can

directly attach a terminal to the router. It is also useful

for configuring a remote router, using a modem, from which

the IOS can be accessed. Although Auxiliary port was

originally created to support remote administrator access,

many customers use it for dial-up back-up, particularly

when analog lines are desired or when no others means is

available. If a remote router stops responding, it can

still be accessed when it has a modem on its auxiliary

port. Additionally, it can be used to attach a terminal

directly to the router for the purpose of sending packets

from the terminal.

The Ethernet port permits the IOS to be accessed

through the network via “Telnet” or “Secure Shell (SSH)”

sessions. The “telephone network” as this communication is

nicknamed, emulates a dumb terminal and connects over the

network. Ethernet port can access the router from PCs or

other routers on the network. When accessing the router,

the user must be aware that “Telnet” sends and receives

passwords and usernames in plain text, causing the

implementation of the SSH on networks that need more

security.

25

The flexibility of multiple port accesses means a

router can be configured from many locations. Upon initial

installation, the network administrator typically

configures the networking devices from the console

terminal, which is connected via the console port. If the

administrator is supporting remote devices, a local modem

connection at the device’s auxiliary port permits the

administrator to configure those network devices.

After initial startup, there are additional external

sources for software downloads are accessible through

router interfaces. Routers with established IP addresses

that allow “Telnet” and “SSH” connections for configuration

tasks can download a configuration file from a Trivial File

Transfer Protocol (TFTP) server and can also be configured

via a Hypertext Transfer Protocol (HTTP) browser. These

methods assume an active IP configuration and network

connectivity to the router.

With “Telnet” or “SSH”, the connection to the router

is through a LAN. If the router is already configured for

the network it is using, one only needs to “telnet” to its

IP address. The program, HyperACCESS, can also be used to

“Telnet”, so one can apply the same scripting, with very

few changes, as done for the serial communications. With

Linux, writing a shell script to use “Telnet” and execute

the various required commands is necessary while sending

all output to a file for later review.

a. Telnet

26

This application is a terminal emulation program

for TCP/IP networks, such as the Internet. The Telnet

program allows the host terminal to connect to a remote

device and interact with that device as if it were directly

connected to it. Possible devices, which may be accessed

using Telnet, include both servers and routers along with

other appropriately configured workstations. Telnet allows

a terminal, such as a PC, to access remote, Telnet capable

devices over TCP connections and to execute console

commands. The Telnet server can pass data it has received

from the client to many other types of devices, including a

remote login server.

Telnet uses the Network Virtual Terminal (NVT), a

set of communication facilities that utilizes TCP/IP

protocol. At the user or client end, the telnet client

program is responsible for mapping incoming NVT codes to

the actual codes needed to operate the user’s display

device. It is also responsible for mapping user generated

keyboard sequences into NVT sequences.

The NVT uses seven-bit codes of characters and is

only required to display the standard printing ASCII

characters represented by those seven-bit codes. It must

also recognize and process certain control codes. The

seven-bit characters are transmitted as eight-bit bytes,

with the most significant bit set to zero. An end-of-line

is transmitted as the character sequence, carriage return

(CR) followed by a line feed (LF).

A variety of options can be negotiated between a

telnet client and a server using commands at any stage

during the connection. They are described in detail in

separate RFCs.

Options are agreed upon by a process of

negotiation, which results in a client and server having a

common view of various extra capabilities that affect the

session and the operation of applications. Sub-option

negotiation allows some of the negotiable options values to

27

be communicated once both devices have agreed upon support

of a particular option.

Further information can be found in RFC854, which

was first published in 1983.

b. Perl

The Practical Extraction and Report Language

(Perl) optimized for string manipulation, I/O, system

tasks, and incorporate syntax elements from the Bourne

shell, csh, awk, sed, grep, and C. It provides a

straightforward and powerful interface to TCP/IP, while

making it possible to create robust, maintainable, and

efficient custom client/server applications. Additionally

Perl is widely used in the World Wide Web as a quick and

effective way to model applications that provide much of

the web’s interactivity.

Larry Wall established this language and first

posted Perl in 1987. He created it as a text processing

language for Unix-like operating systems. Version 4 of

Perl had become very stable and was a standard Unix

programming language. It worked well when was used in small

programs; however, this version was heavy in large software

applications. The first release of version 5 came out in

late 1994, making this language a convenient tool for

system administrator. Based on natural language, like

English, it is an easy way to write programs, providing

flexibility and clarity. Some of its modules are very

useful, such as support for Telnet, Net::Telnet. It

includes some additional functionality for dealing with

Cisco routers Net::Telnet::Cisco. These modules were

28

developed as free software and can be redistributed and

modified under the same terms as Perl itself.

This chapter began with an assertion regarding

the necessity of dynamically managing network resources

autonomously to satisfy the various constraints of QoS

guarantees. It then provided a short description of

several of the many tools available for monitoring and

controlling network resource usage. The next chapter will

provide an example of custom application software used for

communication between a remote terminal and another

computer or a Cisco router. This application is a good

demonstration of the utility of the Perl scripting

language.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

III. COMMUNICATION USING PERL SCRIPT

A. SIMPLE NETWORK MANAGEMENT PROTOCOL

To achieve the goal of this research, the proxy must

communicate with its associated routers and other proxy

servers in a timely and secure manner.

Uploading the proxy is specific QoS parameters, such

as flow definitions and routing table entries, to a Cisco

router and extracting current state information from the

router requires software providing communication that is

fast, efficient and suited to the task of the remote router

configuration management.

If there are control mechanisms in the router, such as

RSVP, Integrated Services, and Differentiated Services, may

be easier integrating capabilities of a proxy to the

network. Prior studies attempted a solution using the

Simple Network Management Protocol (SNMP).

The SNMP was created for providing remote control of

many different types of network devices. It easily provides

the ability to remotely monitor, configure and receive

notification of important or useful events from the

routers. Many network management tools are based on SNMP

for just that reason.

31

In the Cisco environment, the router will contain an

SNMP agent and generate the Management Information Base

(MIB) used by the agent. An MIB is information that

represents parameters of the network device, such as

traffic, CPU processes, management information, etc. These

values are integers, strings, counters, and others. A

manager can request a value from or store a value into a

particular MIB. An agent is responsible for collecting and

maintaining information stored in the MIBs about its local

environment. The agent provides the information to a

manager, either in response to a request or in an

unsolicited fashion when something noteworthy happens.

Previous studies have concluded that it is impossible

to use the SNMP to upload some of the SAAM specific

configurations into a router because such capabilities

would require modification of the vendor’s proprietary

operating system, and would need the vendor’s support.

However, the protocol may be a better choice for extracting

router state information than the IOS CLI because the

latter option requires parsing of complex command output

text strings.

Therefore, finding another mechanism capable of

controlling the router is necessary. Several ideas have

been considered, such as using an agent to translate the

proxy directives into commands understandable by the

router’s operating system and then using the router’s

standard interface to dynamically configure the router.

However, maintaining quality of service guarantees

requires the router status and performance be continuously

monitored. In the same way, the proxies need the capability

of dynamically interacting with each other.

Thus, establishing automated interfaces to the router

and to the proxies, using scripting languages, is essential

to the task of remotely configuring, monitoring, and

controlling the proprietary network traffic delivery

devices.

32

The Perl script language is not only appropriate but

also fast, efficient, and easy to learn. It is one of the

scripting languages used in this research. In the last

chapter Perl was introduced as being an interpreted

language that is optimized for string manipulation and as

being a programming language that uses a natural language

for writing code.

1. Configuration Experiment

First of all, reiterating the goal of this project is

necessary. The goal is to develop an effective way of

communicating between proprietary devices and computers.

Understandably the research did not focus on all of the

commands for controlling the QoS in the network, however,

the research provides insight just enough into the ability

to update and control a router through a software

application.

The main topology used for this research included a

notebook and a desktop computer with a direct link to a

hub. This hub was linked to one of the Ethernet ports of a

CISCO router. A desktop computer was also linked through

its serial port to the console port of the router. The

laptop computer was connected to a printer through its

serial port. The topology is diagrammed in the figure

below.

33

Figure 2. Layout of the Demonstration Network

To work with Perl scripts some software needs to be

installed, such as Active 5.6.1, which is the Perl program

that includes the module packets, the interpreter software,

and the Open Perl IDE, This IDE is a user interface for

writing and debugging Perl scripts for use with Windows

95/98/NT/2000.

Depending on the purpose of the Perl script being

developed, some packages may need to be installed to

increase the utility of this Perl IDE. In the case of this

project, the modules Net::Telnet::Cisco and Net::SSH::Cisco

were included to provide communication using “Telnet” and

“SSH” with the Cisco router.

The Net::Telnet module provides utilities to support

client connections to a TCP port using the Telnet protocol.

Telnet is a character-oriented application. Simple

methods, such as print and get, or many more sophisticated

features are provided since connecting to a Telnet port was

originally intended for human interaction with the remote

or host system. The module includes the ability to specify

a time-out parameter and to wait for pre-specified

character patterns to appear in the input stream, such as

the prompt from a shell. This package provides a simple

34

way to make client connections to TCP services. These

services may include the means to specify the connection

time-out period, reading or writing files or configuration

parameters and may communicate with an interactive program

through some sockets or pipes waiting for certain patterns

to occur.

Net::Telnet::Cisco provides additional functionality

to Net::Telnet specific to working with Cisco routers. Some

files, such as cisco.pm, need to be appended to the

directory, Net/Telnet/Cisco, before having the desired

effect in this module’s use. The directory is created when

the module is installed

Another approach for connecting through a Transmission

Control Protocol (TCP) session is the use of the Secure

Shell (SSH). This remote connection application provides

enhanced security over Telnet. Note that Version 1 is the

only one implemented in the Cisco IOS software.

The SSH server feature enables a SSH client to make a

secure, encrypted connection to a Cisco router. The server

will work with publicly and commercially available SSH

clients. It supports DES (56 bit) data encryption and

Triple DES (168 bit) data encryption software images.

The authentication, authorization, and accounting

(AAA) feature and the IP Security Protocol (IPSec) feature

are available in the Cisco routers. However, the Cisco IOS

security Configuration Guide, Release 12.1, and Cisco’s IOS

Security Command Reference, Release 12.1, specify that the

router must have an IPSec encryption software image from

Cisco IOS Release 12.1(1) T installed on the router.

35

a. Uploading a Router Configuration Using Perl
Script

The main purpose of a configuration upload

capability is to maintain a dynamic and timely

configuration of the router to support the QoS management

without the network suffering from any problems due to the

configuration traffic.

The lab topology described above will be used to

measure the time necessary for the commands to upload to

the Cisco router. Some screenshots were captured to verify

that the configuration was uploaded and implemented

successfully. These screens include the configuration of

the router before using telnet access (Figure 2), and the

Open Perl IDE showing the result of the upload session,

including the elapsed time and the commands executed

(Figure

3).

36

Figure 3. Configuration of the Router Using Telnet

Figure 3 shows the script of the Perl program

containing the Cisco IOS command ip rsvp reservation-host

131.120.64.18 131.120.64.17 tcp 255 255 ff rate 1000 1000.

This script configure a static RSVP interface, with a

reservation established between the destination hosts,

131.120.64.18 and 131.120.64.17, using TCP port 255 for

both destination and source interfaces. It establishes a

single reservation (ff) with a guaranteed bit rate service

(rate) of 1000 kbps and a reserved average bit rate of 1000

kbps.

The difference between the start and completion

times, which were retrieved using the command, sh clock,

and stored in the variables, @clock1 and @clock2, is 521

37

ms. This proves that this kind of communication can quickly

upload the desired configuration to the router.

 Figure 4. Upload data with the Open Perl IDE

b. Collection the Router Configuration Using
Perl Script

As noted earlier, collecting the data on

bandwidth, reliability, and interface packets counts, and

other crucial information on the health of the network is

crucial for maintaining a base of all of the proposed

services in the network. Based on the same approach used in

the experiment where the router was updated using a Perl

script, the screenshot below shows some essential

information taken from the router. This information is

available by using some Cisco commands and comparing them

38

to the parameters settings necessary for maintaining the

monitored network’s required QoS level.

Using the show queueing and show ip traffic

commands, the script acquires the state of the queue in the

router and the state of the router’s traffic. It is

important to mention that almost all the commands for

collecting the data from the Cisco router are executed in

the Privileged Mode of the IOS Command Line Interface.

 Figure 5. Collection of the data with Open Perl IDE

39

c. Automatic and Timely Communication Between
Different Managing Agents

The Perl script was used for communication

between the proxies, based on the idea that each proxy

agent must communicate with other proxies in a timely and

secure manner. Socket mechanisms were used for this kind

of link. They permit the program to communicate, either

within the same machine or across the network, where each

entity is identified by a unique address.

The employed method creates a program for

receiving a connection request, and then asks the operation

system to create a connection and bind it to a port. The

program listens to the socket created for incoming

connections. The same approach is used for creating an

outgoing socket for communication with the caller. The

caller needs to specify an address and a port number for

the receiving end.

After the two sockets are configured they can

exchange information, each by writing to and reading from

the associated sockets.

Perl provides support for the socket API through

the module, IO::Socket. The API works with the script to

create a wrapper for the Cisco commands.

The figure below shows one code example that was

created to receive a message from another host. The

expected message was “Communication with SAAM Proxy.” The

code is used to receive all the connections interested in

exchanging information.

40

 Figure 6. Receipt of a Message from Another Socket

The other participant in the communication needs

to create another socket with the address and port of the

station to which the host is interested in sending

information. In addition the receiving station needs to be

prepared by creating the required socket. To do so, the

code that creates the socket must be executing.

Another important issue is that the communication

can reach a deadlock if the two sockets try to read or

write simultaneously and no a way exist to determine

whether or not the other end has finished sending data.

There must be a protocol between them that denotes logical

sections of the communication in the contents of

41

transmitted messages. Therefore, the two sockets must

follow a common procedure, upon which they have agreed,

when exchanging data.

 Following the example above, the figure below

shows a code with the embedded message, “Communication with

SAAM Proxy,” which was sent.

 Figure 7. Transport of a String to Another Socket

d. Code and Answers

42

There are a lot of possibilities are available

for using for using Perl scripting to satisfy the intent of

this thesis. The project included one example of each kind

of required communication in order to give a good idea what

Perl can do in the context of router configuration control.

The presented programs demonstrated how to upload

and to collect data from the Cisco routers. They also

showed how to send information between two agents in the

network. Further information on the use of Perl can be

found in two ways: either by exploring Internet sites, such

as www.perldoc.com or in books documenting the Perl

language. For the purpose of this project, either the

commands or modules relevant to network communications are

essential in understanding how to configure them.

Knowing about the Cisco commands is critical for

manipulating the IOS Command Interface to obtain the

desired information. Such manipulation can extract a great

deal of important data. Surprisingly, manipulating the

commands in the Cisco router can improve the network

performance. Again, the command information can be learned

either from Internet sites, such as www.cisco.com, or in

Cisco publications.

The Perl code for uploading and downloading the

router configuration setting are shown in the appendices,

along with some of the results observed during its

execution. However, a short explanation of that code

follows to facilitate understanding.

 (1) Upload and Collection of Cisco router

data. The following Perl statement shows how to import or

integrated modules in the code:

use strict and use Net::Telnet::Cisco.

 The next two lines define the address where

the connection was made, in case, with a Cisco router and

was assigned it to a variable.

43

my $router = '131.120.64.145'

my $S1 = Net::Telnet::Cisco -> new (Host=>

$router).

 The variables used to store the time

information included

my @clock1, my @clock2, my @output1, my

@output2.

 The login information for establishing the

Telnet session with the username and the password, was sent

to the socket and $S1, by the following statement:

$S1 ->login ('AlexPrado','SAAM').

 Likewise, the “enable” command and the

privileged mode password was sent to the router by the

following statement:

$S1 ->enable('cs4552').

 The configuration upload start time was

extracted from the router with the following statement:

@clock1 = $S1->cmd('sh clock').

 Router queue status was retrieved and loaded

in the variable, @output1, by the statement

@output1 = $S1->cmd(‘sh queueing’).

 Router traffic information retrieved and

stored by the command

@output2=$S1->cmd(‘sh ip traffic’).

The router’s configuration mode was set by

$S1 ->cmd ('config t').

 The statement to send the command to set the

reservation for the path in the router was

$S1 ->cmd ('ip rsvp reservation-host

131.120.64.18 131.120.64.17 tcp 255 255 ff rate 1000

1000').

44

 To print the clock results, the following

statement was executed:

print "The time one : @clock1\n".

 Finally, to exit the command mode and

terminate the telnet session, the following statements were

executed.

$S1->disable and $S1->close.

 (2) Communication with two managing agents.

The module described below provides an easier way to manage

the socket using a native API wrapper:

use IO::Socket

 This command creates a socket specifying the

parameters need for creation.

my $sock = new IO::Socket::INET (

Local Host=> specified the local hostname.

Local Port=> defined the local port to

communicate.

PeerAddr=> specified the remote address for

the information.

PeerPort=> specified the remote port for the

information.

Proto=> specified the communication protocol

to be used.

Listen=> established the maximum number of

connections that can be queue to the socket.

Reuse=> directed the system to reuse the

port after the program exits.

 The method accept() returns a new socket

that can communicate with the requesting socket.

my $new_socket = $sock ->accept ().

 The information that arrived was read or

written to the new socket and was then displayed on the

45

screen. This was done in an infinite while loop which

terminates when the socket is closed

while (new_socket){

 print $_

}

 Error conditions, encountered either during

socket creation or communication, were displayed on the

console screen using the enclosed string.

die "Could not create socket: $!\n" unless

$sock.

 The information extracted from the socket

was displayed with the following statement.

print $sock "Communication with SAAM

Proxy\n".

 Finally, the following statement was used to

close the connection.

close($sock).

B. CONCLUSION

This chapter provided an example of how Perl scripting

can be used to monitor, manage, and control the

configuration of Cisco routers. It also described a

network topology set up to experiment with Perl script

based remote router configuration. The chapter then

examined the semantics of the sample scripts.

The Perl method requires Telnet or a similar TCP/IP

based protocol to remotely access the Cisco IOS CLI. The

next chapter describes how to access the IOS CLI directly

via the serial interface of the router’s console port. An

application program performs this direct access

46

written in C++ or Visual Basic and is made of building

blocks provided by a serial communication package called

HyperACCESS.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

 IV. ROUTER CONFIGURATION USING CONSOLE PORT

A. HYPERACCESS

The most direct way of logging into an IOS-based

router is by connecting to the router’s console port. The

console port based access is desirable because it is much

easier to secure a console connection than a dial-up

connection or a telnet connection. However, the console

port is designed for manual, interactive communication with

the router. Therefore, a software utility must be

developed to automate the console port access.

After initial research, it was concluded that

HyperACCESS, developed by Hilgraeve, is a good software

platform for automating communication between a control

agent and its router using the console port. HyperACCESS

provides an Application Programming Interface (API) that

can be called from JavaScript or VBScript programs. The API

may also be integrated with code written in full-fledged

programming languages, such as Visual Basic (VB) and C++.

The VB or C++ support is important because the resulting

code is more efficient and more extensible than high level

scripts.

This research makes use of HyperACCESS Version 8.3.

HyperACCESS provides some tools for automating interactive

and often repetitive tasks, such as production and

delivering of many keystrokes to the remote system and

waiting for prompts from a remote system before sending

responses. These tools are used to execute sample VBScript

or JavaScript programs to communicate with the router

49

through a serial link. Several VB and C++ examples are also

developed to demonstrate how to use the low level

HYPERACESS libraries.

B. SCRIPT LANGUAGES

The HyperACCESS package provides access to the

HyperACESS API (HAPI) by any Object Link Embedding (OLE)

Automation enabled with external a programming language.

HyperACCESS has a GUI based programming tool for VBScript

and JavaScript generation. Writing, testing, and running

programs is possible without leaving the GUI application.

Alternatively, scripts and programs can be developed with

external development systems and integrated through HAPI.

In this work, many VBScript or JavaScript scripts were

created to test the hypothesis that router configurations

can be autonomously queried and updated to satisfy QoS

requirements. Most of these were not automatically created

using the HyperACCESS tool because uploading configurations

to and collecting data from the router require many

specific calls to HAPI functions.

A program that uses ActiveX scripting (either VBScript

or JavaScript) has a file name with a .txt extension. When

the program is used as a function for another language,

such as C++ or Visual Basic, it is compiled with the

program using that language. This produces a regular

executable file with an .exe extension.

1. Configuration Experiments

The experiment topology is the same as shown in Figure

1 in Chapter III. To establish a serial connection with the

50

router’s console port, the HYPERACCESS terminal emulation

program was configured to use the COM 1 or COM 2 port of

the host computer with the connection parameters set to

9600 baud, 8 bits, N parity, and 1 stop bit. After the

serial connection was established with the router’s CLI,

launching command scripts from within the terminal

emulation program configured the router. The same setup was

used for testing each JavaScript or VBScript program.

Experiments were also conducted to establish and utilize

agent-router serial connections with customized programs

written in C++ or Visual Basic, which are linked with the

HyperACCESS libraries.

The experiments first evaluated programs in JavaScript

or VBScript. The examples demonstrate that it is possible

to upload a configuration to a router or collect data from

it using VBScript and JavaScript programs through a

HyperACCESS connection. Such actions can be very useful

for communicating between the SAAM server and its routers.

a. Upload of a Router Configuration Using
HyperACCESS with VBScript

As noted, HyperACCESS has an Applications

Programming Interface (API) that can be used by a VBScript

or JavaScript. It is a good tool for effectively

maintaining a dynamic router configuration in a responsive

manner to support the QoS requirements of the network,

using the console port of the router.

In the experiment, a VBScript object was created

using the HAPI to upload a router configuration command.

Based on the same approach used for Perl scripts, where the

necessary time to enter and execute the command was

51

measured to assess the utility of the upload, the VBScript

enters and executes a configuration command while measuring

the elapsed time.

Figure 8 shows the HyperACCESS display of the

interchange between the console and the router as the RSVP

configuration command, ip rsvp sender 131.120.64.145

131.120.64.18 tcp 0 0 131.120.66.2 Ethernet0/1 3750 7500,

is entered and executed. This command configures a static

RSPV path between the destination address, 131.120.64.145,

at Port 0, and the source address 131.120.64.18, on Port 0.

The transport protocol, TCP, is specified, and a previous

hop address of 131.120.66.2 is configured while an average

data rate of 3750 kilobytes is reserved and a maximum burst

rate of 7500 kilobytes is declared. While the router due to

the lab’s restricted configuration rejected the command,

the experiment successfully demonstrates the ability, using

a VBScript, to send a command to a router through the

console port and cause it to execute.

 (1) The code for a command upload. The

VBScript technique was chosen for demonstrating the upload

of a configuration command to the router. Notepad was used

as the text editor, resulting in a file with a“.txt”

extension, as noted above. All the commands below are in

bold letters and the result of their execution is shown in

Figure 7. The key script statements are preceded by a

short description.

 The language declaration statement specifies

to the HAPI which scripting or programming language was

used to define the application attempting to establish a

52

HyperACCESS link. Note that the name of the router to be

commanded is "Router2."

 $LANG = "VBScript"

 The variable, cr, is initialized to the

value of the carriage return character before the

subroutine declaration, giving cr a global scope. This

allows it to be used in event subroutines without being

declared again. This variable is used with string

constants to send the router text strings it would normally

be receiving from an interactive user at a keyboard. Since

the console port utility normally interacts with a human on

a keyboard, the carriage return indicates to the router

that a command has been completed and should be acted upon.

 cr = Chr(13)

 Should an error occur with any HAPI function

the connection automatically aborts the script, based on

the following command.

 haAbortOnError

 The global variable, cr, is transmitted as a

string of characters to the console port. Initialized to a

carriage return, the string represents the initial carriage

return that the router is expecting to initiate as a

session with a console terminal user. Thus, the following

command enables the link between the HyperACCESS

application and the router.

 haTypeText cr

53

 Since the console port configuration

facility of the router was designed as an interactive,

text-based session, delays must be inserted in the script

to allow the router to properly respond before another

command is entered. The specified function causes the

script to pause until the string, “Router2>,” is received

from the router. This is the normal response by the router

to an initial carriage return entered either through a

console port or a Telnet session. If this string does not

appear after 100 seconds or it is not followed by a .3

second delay the program times out and exits.

 haWaitForPrompt "Router2>"

 The command “en” and the carriage return are

sent to the router as a string of characters. When received

by the router, the string is interpreted as a command to go

to the privilege mode of the router.

 haTypeText "en"&cr

 The script must then wait for the string

“ssword:” (password), which is querying the console for the

privilege mode password.

haWaitForPrompt "ssword: "

 The password used for the lab is “cs4552” to

which the carriage return appended and the resulting string

transmitted.

haTypeText "cs4552"&cr

 As before, the script must pause until the

router sends the appropriate response, in this case the

string “Router2#,” which indicates the router has entered

the desired privileged mode.

haWaitForPrompt "Router2#"

 The command “sh clock” and the carriage

return are then sent as a string of characters, asking for

the router’s exact time to be returned to the script.

haTypeText "sh clock"&cr

 This returned time value is then loaded in

the variable t1.

t1 = Timer()

54

 The command “config t” and the carriage

return are sent to the router directing it to enter the

“configure from terminal” mode

 haTypeText "config t"&cr

 The script must then wait for the router to

respond with the string, “config)#,” which indicates the

router has entered the mode allowing the configuration to

be modified through the console. The entire string returned

by the router is Router2 (config)#.

haWaitForPrompt "config)#"

 At this point the script can configure a

static RSVP path, as described above. Note that the

carriage return variable is appended to the string constant

and the resulting string is sent to the router.

haTypeText "ip rsvp sender 131.120.64.145

192.120.64.18 TCP 0 0 192.120.66.2 Ethernet0/0 3750

7500"&cr

 The command “exit” is entered in response to

the configuration mode prompt, causing the router to return

to the privilege mode.

haTypeText "exit"&cr

 The router’s exact time is again extracted

and the result assigned to the variable, t2.

haTypeText "sh clock"&cr

t2 = Timer()

 The command “exit” is then sent to close the

console port interface

haTypeText "exit"&cr

 The difference between the time value stored

in t1 and t2 is then computed to determine the elapsed

time.

 t3 = t2 -t1
55

 A dialog box, with an appropriate message,

is displayed to the user on the terminal screen.

 haMessageBox "Difference of time", t3, 1

Finally, the script ends the HyperACCESS session.

 haTerminate

Figure 8. HyperACCESS Linked to the Router Showing the
Result of the Elapsed Time for the Configuration Update
Interaction Using a VBScript Application

 The elapsed time, 2.40625 seconds, was not

as short as that experienced when using a Perl script and

Telnet. The main reason is that the software HyperACCESS

interacts with the router, command by command. Therefore,

it requires a delay after each command line while waiting

for the resulting response from the router.

56

 There is also a way to hide the HyperACCESS

program from the viewer, using the API “haSizeHyperACESS”

with parameters HA_S_HIDE. The function is normally used in

a script created object using a language of programming

such as Visual Basic or C++. This allows the application

to run in the background without delaying for updates to

the console terminal monitor.

b. Collection of Router Configuration
Information Using HyperACESS with JavaScript

Information collected from the router’s running

configuration is essential for maintaining the network’s

QoS level. Extracting the router’s interface status was

based on the same approach as that used when updating the

router’s configuration using HyperACCESS. The key

difference is that the command sequence, shown in the

Figure 8, does not measure the required time to update a

router configuration parameter, but rather extracts the

interface queue status. Furthermore, the script used was

JavaScript, demonstrating the flexibility of the

HyperACCESS utility.

 (1) The code for collecting information from

the router. Following the same approach used above to

describe the key statements of the VBScript, the bold words

below are the JavaScript commands. Among the differences

are that the JavaScript that uses parentheses to

encapsulate all the function call parameters and that

complete each command with a semicolon.

57

 The language with which the HAPI was

accessed is first declared, as in the case with the

VBScript, above.

$LANG = "JavaScript"

 The variables, vtr and cr, are declared, and

the latter initialized to the ASCII value of a carriage

return

var vtr;

var cr = "\r";

 As with the VBScript, an application

termination is forced if an error occurs.

 haAbortOnError();

 A carriage return is sent to the router to

initiate the console session. The carriage return, in this

case, is the single character string, cr, initiated above.

 haTypeText (cr);

 As noted in the previous example, the script

must wait for the proper response to be returned by the

router to each interactive command. If this expected string

does not appear after 100 seconds or is not followed by a

.3 second delay the program times out and exits. In each

delay statement the key phrase is included as a string and

specified to what value the function is to react.

haWaitForPrompt ("Router2>");

 The command “en” and the carriage return are

transmitted as a string to direct the router to enter the

privileged mode.

haTypeText ("en"&cr);

 The script then waits for receipt of the

password prompt string.

 haWaitForPrompt ("ssword: ");

58

 The script then transmits the password

“cs4552” along with the necessary carriage return and

paused for the proper router response, “Router2#.” The #-

symbol is Cisco’s default indicator that the router has

entered the privileged mode.

 haTypeText ("cs4552"&cr);

haWaitForPrompt ("Router2#");

 The command to enter the configuration mode

using a terminal was then entered and the proper router

response was anticipated.

haTypeText ("config t"&cr);

haWaitForPrompt ("config)#");

 The “show queuing” command is then sent,

followed, as is the case with each command, by a carriage

return.

haTypeText("sh queueing"+cr);

 The function, haWaitForString, checks

characters read from the connected device to verify they

matched a specified character string. In this case, the

string “configuration” is required because it indicates

that the router has responded with the requested

configuration status information.

haWaitForString ("configuration:");

 The function haGetInput takes data received

from the remote system after the command haWaitForString.

The received character string is then loaded in the

variable vtr.

vtr = haGetInput (1, 290, 100, 100);

 The received information is then displayed

to the user using a dialog box.

haMessageBox ("Queue info: ", vtr, 1);

59

 The command “exit” is sent to leave the

configuration mode and resent to close the Console port.

haTypeText ("exit"&cr);

The script exits with a call to the function,

haTerminate();

 Figure 9. HyperACCESS Linked with the Router

Displaying the Results of the Queue Status Query

 The information that appears on the screen

of the console terminal when the JavaScript is executed is

shown in Figure 8. It supports the hypothesis that using

dynamic scripts objects with HyperACCESS can extract all

the information from the router required to verify the

SAAM-directed configuration.

60

C. CUSTOM-WRITTEN PROGRAMS

Special security considerations or corporate

implementations may require a customized user interface.

Custom applications may also require a specific

communication interface, or a more capable programming

language to be developed.

As previously recognized, HyperACCESS is a software

utility that provides access to any OLE automation,

enabling external programming languages to use the

available methods in the HyperACCESS API, and HAPI. The OLE

automation allows developers, familiar with another

language or compiler, such as Visual Basic and C++, to

integrate and develop their own applications programs and

to utilize the HyperACCESS communications utility, through

the HAPI without learning a new programming tool.

Many development environments include instructions on

how to call Windows API functions. Since HAPI is similar to

these functions calls, everything that is applicable to the

Windows API is applicable to the HAPI.

Every external program accessing HyperACCESS must

create a script object. In order for the script object to

be used, the OLE Automation is essential in the external

program. The external program accesses an automation

server, such as HyperACCESS, through a standard set of

functions, called a dispatch interface. An automation

client can call any function that is exposed through the

dispatch interface. HyperACCESS implements two dispatch

interfaces, the HyperACCESS interface and the HAScript

61

interface. Currently, the only purpose of the HyperACCESS

interface is to return HAScript interfaces to the

automation client.

Some steps need to be completed to automate the

functions in HyperACCESS. First, the program has to obtain

the active instance of HyperACCESS or to create a new

instance of HyperACCESS. Second, it must query the active

HyperACCESS instance for the HyperACCESS interface. Third,

the function, haInitialize, which returns a HAScript

interface, must be called. Then the program can call HAPI

functions through this interface. When the program is

finished with its tasks, it must call the function,

haTerminate, to end its session, and then must release the

interfaces, HAScript and HyperACCESS.

1. Microsoft Visual Basic

The programming language, Visual Basic, offers

excellent support for OLE automation, principally because

Microsoft based on the functionality of Visual Basic

created the OLE. In order for a Visual Basic program to

use the functions of HyperACCESS, it needs to declare the

objects that will be used, obtained or created the active

instance of HyperACCESS, obtain the script object, and

initialize the object. When finished with the calls to the

HAPI methods, the program must call the function,

haTerminate, to close properly.

The Visual Basic for Applications environment provides

utilities to create programs associated with other

Microsoft application software, such as Access and Excel,

which can use HyperACCESS to download information.

62

The example software, in Figure 9, shows Visual Basic

code using HAPI functions to connect with the router and

receive information about the state of the router’s queues.

The library, hawin32, shown in the object browser of the

Visual Basic IDE demonstrates that the OLE automation was

activated to provide access to the functions of

HyperACCESS.

 Figure 10. Visual Basic Accessing the HyperACESS

Library

a. The Code in Visual Basic

Following is an explanation of the key components

of the Visual Basic code. As with the other code examples,

the full code can be found in the appendices.

63

The HyperACCESS interface objects must be

declared and initialized. Here it is assumed that a

HyperACCESS instance is not already running; otherwise, the

function, getObject() would be called instead of

CreateObject ().

 Dim haHyper As Object

 Dim haScript As Object

 Set haHyper = CreateObject (“HAWIN32”)

 Set haScript = haAuto.Initialize ()

The program then opens the file router.HAW that

is a script associate for use by HyperACCESS.

 haScript.haOpenSession “C:\Program

Files\HAWin32\MyFiles\router.HAW”

The HyperACCESS display to the screen is then

hidden so that monitor updates do not delay the program

execution.

 haScript.haSizeHyperACCESS HA_S_HIDE

The HyperACCESS interface then connects to the

open session and waits for the connection to be

established. A time-out is specified to prevent a program

delay in the event the connection cannot be established.

 haScript.haConnectSession HA_CNCT_STANDARD

 haScript.haWaitForConnection HA_CONNECTED,

100000

As with the scripting examples, any error

automatically aborts the application.

 haScript.haAbortOnError

64

Once the connection is established with the

router through HyperACCESS, a carriage return must be

transmitted to open the console-port session and the

application must be paused pending receipt of the proper

router response. Again, a time-out is established by the

pause command to prevent the application from pausing

indefinitely.

 haScript.haTypeText Chr(13)

 haScript.haWaitForPrompt "Router2>"

The command “en” and the carriage return are sent

as a string of characters directing the router to enter the

privileged mode.

 haScript.haTypeText "en"& Chr(13)

 haScript.haWaitForPrompt "ssword: "

Upon receipt from the router of the prompt for a

password, the appropriate password string is sent and the

application is paused for verification that the router

indeed entered the privileged mode, as indicated by receipt

of the proper prompt string.

 haScript.haTypeText "cs4552"& Chr(13)

 haScript.haWaitForPrompt "Router2#"

The character string, “config t” and the carriage

return, are transmitted to place the router in the

“configure router via terminal” mode. The receipt of the

proper prompt verifies the mode.

 haScript.haTypeText "config t"& Chr(13)

 haScript.haWaitForPrompt "config)#"

65

The function, haTypeText, then forwards the

command to the router to show the queuing status.

 haScript.haTypeText "sh queueing"+ Chr(13)

The function, haWaitForString, checks characters

read from the connected device to see of they match a

specified character string. In this case, the string

“configuration” is expected from the router.

 haScript.haWaitForString "configuration:"

The function, haGetInput, extracts character data

received from the remote system. The data is then loaded

in the variable, vtr. The parameters 1, saying for

processing backspaces, 290 is the number of characters to

wait for, 100 is the timeout value, measure in

milliseconds, the last 100 is the timeout, measure in

milliseconds, which determines how long to wait between

characters.

 vtr = haGetInput (1, 290, 100, 100)

The results are then displayed in a dialog box to

the user on the screen.

 haScript.haMessageBox "Queue info: ", vtr, 1

The command “exit” is entered to return to the

privilege mode and the application pauses pending receipt

of the appropriate router response.

 haScript.haTypeText "exit"& Chr(13)

 haScript.haWaitForPrompt "Router2#"

The command “exit” is entered again to close the

console port session.

66

 haScript.haTypeText "exit"& Chr(13)

The script concludes the link with a call to the

terminate function.

 haScript.haTerminate

2. Microsoft Visual C++

To work with OLE Automation, the C++ software must to

have a compiler that supports the Microsoft Foundation

Classes. Therefore, the Visual C++ IDE was selected, since

it supports OLE Automation at its most primitive level. A

software application developed in Visual C++ will represent

the SAAM Proxy Agent, using the console port.

The Visual C++ IDE offers limited support for using

the OLE Automation when compared to Visual Basic.

Therefore, developing some procedures is necessary to allow

the use of the HyperACCESS haScript interface as used by

the preceding Visual Basic example. The generation of

wrapper classes for the haScript interface is essential.

These classes have member functions that perform the actual

function and call to the dispatch interface. When a member

function is called, the called function looks like an

ordinary C++ class member function.

67

A globally unique identifier (GUID) must also be

created because the OLE Automation needs to specify each

automation server. The programmer using the program

GUIDGEN.EXE creates the GUID. The returned identification

number is guaranteed to be unique for that moment in time.

The GUIDs for the HyperACCESS Class ID is 5178CCE0-AAEF-

11CE-AE75-00AA0030EBC8 and the HyperACCESS Interface ID is

5178CCE2-AAEF-11CE-AE75-00AA0030EBC8. These numbers are

unique, and they are not generated each time the program

executes.

To complete the tasks necessary to permit the Visual

C++ IDE to work with OLE Automation, should be implemented

the Unknown Interface. This interface lets external

programs query an object from an interface the Unknown

Interface supports, such as IHyperACCESS or IHAScript.

The previous actions enable the Visual C++ IDE to use

the functions of HyperACCESS. Any developed application

code must point to the created script object and include

the file, ha_auto.h, which is in the HyperACCESS directory.

68

V. CONCLUSION

A. THE PROBLEM

Day by day, individuals increasingly rely on their

networks to run critical applications, such as video and

telephony. This fact highlights the need for the network to

function efficiently. To address this need, Quality of

Service requirements for network service levels were

defined. These requirements underscore the idea that a

service has the goal of enabling the reliability,

availability, and performance of the network.

The characteristics of network services vary by

different application needs. Therefore, many kinds of

services need to be described to adequately support the

user requirements.

The most important device that interconnects networks

is the router, which may monitor all the aspects that are

extremely important in providing an adequate end-to-end

communication system. These aspects include bandwidth

availability, packet loss rates, and delivery delays

through the network. It is perfectly viable to draw a

parallel between a router’s functionality and the Quality

of Service provided.

69

The problem addressed by this research begins here

since current network conditions and user requirements

determine the values of Quality of Service parameter

thresholds whether and those thresholds being exceeded.

These parameters are dynamic, and they must be responsively

uploaded to the Cisco routers so that the new values affect

a change in the network performance. Not requiring any

modification to the router IOS for such uploads is

preferable because the IOS is proprietary software. While

such changes to the IOS are necessary to allow autonomous,

dynamic configuration changes by the router, it is time-

consuming and potentially costly to obtain the IOS source

code from Cisco or arrange for a special IOS update

release. For this reason, it was the tendency is to develop

a means of using the Server and Agent-Based Active Network

Management system (SAAM) to control the runtime

configuration of Cisco routers functioning within the SAAM-

enabled network. Dynamic, responsive management of network

resources, based on communication between the SAAM Server,

the SAAM capable routers, and SAAM proxies controlling non-

SAAM-enabled routers is essential. This insures necessary

dynamic resource management without proprietary software

changes.

A main goal of the SAAM system is to optimize

allocation of network resources to support the users’

Quality of Service requirements. This thesis demonstrated

several key components of a solution to integrate the SAAM

system with a legacy network.

B. SOLVING

A SAAM proxy must communicate with its associated

router and other proxies in a timely and secure manner.

This thesis focused on the means to achieve that goal. The

first step was to understanding those aspects of the Cisco

IOS that were configured and/or controlled externally by a

SAAM proxy. The next step was to develop automated methods

of uploading the SAAM specified QoS parameter values to the

70

controlled Cisco router, such as flow definitions

implemented by router interface configurations and

reservations as well as routing table entries.

Additionally critical was a means of extracting the current

state information from a Cisco router. The final step was

to develop a reliable means of communicating between the

SAAM proxies.

A Cisco router typically has two ports for serial

connections with an external control terminal, and the

Console and Auxiliary (AUX) Ports. These ports provide the

only means of direct access to the Command Line Interface

(CLI) of the router’s IOS. In addition, the AUX port can

be accessed via a modem to permit remote configuration by

way of dial-up communication. Securing a console

connection is much easier than that of a dial-up

connection. However, the console port is designed for

manual, interactive communication. Therefore, a software

utility must be developed to automate the console port

access by a SAAM proxy, thereby eliminating the need for

any system administrator intervention.

After the initial research, I concluded that

HyperACCESS is a good software platform for automating the

communication between a SAAM proxy and its router.

HyperACCESS provides an Application Programming Interface

(API) that can be called from JavaScript or VBScript

programs. The API may also be integrated with code written

in other programming languages, such as C++ and Visual

Basic. The API provides access to library methods that

allow the console port session to be manipulated by an

application program rather than just by a person.

71

Since the SAAM proxies and their associated routers

are in the same TCP/IP network, the SAAM proxies may also

remotely communicate with the routers via the TELNET

protocol. A proxy can use a script, written in a language

like Perl, to open and maintain a TELNET connection with a

Cisco router. The TELNET access should be secured with the

Secure Shell (SSH) protocol.

The Simple Network Management Protocol (SNMP) provides

another alternative for extracting state information from a

Cisco router. However, previous studies concluded that it

is impossible to use that protocol to upload some of the

SAAM specific configurations into a router. The SNMP may

be a better choice for extracting router state information

than the Cisco IOS Command Line Interface because the

latter option requires parsing of complex command output

text strings.

C. FUTURE WORK

The demonstration of the sample scripts for uploading

configuration settings, collecting interface statistics,

and establishing communications between proxy agents

easily indicates the potential for using script languages,

such as Perl, JavaScript, and VBScript, to monitor, manage,

and control the configuration of Cisco routers. These

demonstrations should be expanded to validate the concept

over a more demanding network, using traffic generators to

stress the router interfaces.

In order to verify the assertion that custom

applications can be developed using high order languages to

satisfy security or organizational requirements, a C++,

72

Visual Basic, or Java-based application should be developed

to stress the communication used in the SAAM system between

the Server, the enabled routers, and the proxy agents.

This application should generate Cisco configuration

changes by the proxies based on messages received from the

SAAM Server regarding flow allocations.

 This kind of communication technique could support

not only Quality of Service implementations but also many

solutions that could be used to economize the usage of

resources. This technique will also improve the use of

existing information system resources. The Cisco router was

chosen to demonstrate communications between a SAAM proxy

and a proprietary router, but other devices or brands of

routers could be used. The only requirement would be to

understand the operating system software functionality of

the targeted device.

Worth mentioning also is that products like Cisco

routers are becoming very complex, as they evolve to meet

the needs of the individuals and corporations utilizing the

networks. The prices are decreasing and becoming very

attractive. This price drop could be an obstacle for

implementing solutions that use only SAAM-enabled devices.

Therefore, it is prudent to find efficient solutions for

dynamic communication between networking devices, since

these solutions may find usefulness beyond just SAAM-based

implementations. Doing so ensures they can be separated

from the SAAM system and be utilized for many proposes

other than just for QoS enforcement. Such solutions insure

a timely, automatic and secure way of communicating between

network devices.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

LIST OF REFERENCES

1. Network Programming with Perl- Lincoln d. Stein.

2. NET::TELNET::CISCO PERL module – Appendix B.

3. CCNA – Cisco Press; Wendell Odom.

4. Configuring CISCO Routers using Telnet, Key Ehresman.

5. Experiment with CISCO MIBs, QoS, and SNMP Features for
Adapting SAAM Flow/Path Based Routing and Control, Cary

Colwell.

6. Programming CISCO Router using SNMP, Spring/2002 CS4552
Project Report –Valter Monteiro Jr.

7. James M. Lacey, Visual C++ 6 Distributed, Exam Cram.

8. HyperACCESS for Windows Version 8.3, Application
Programming Interface Manual.

9. Fatih Turksoyu, “Realistic Traffic Generation
Capability for SAAM Testbed”, Thesis, March 2001,

Computer Science Department Naval Postgraduate School.

10.http://www.cisco.com. Jul/2003

11.http//www.cisco.com/univercd/cc/doc/products/software/

ios121/121cgcr/funr/frprt3/frd3003.html#xtocid2298129

Jul/2003

12.http//www.cisco.com/warp/public/471/mod-aux-exec

Jul/2003

13.http//www.cisco.com/en/US/products/sw/iosswrel/ps1834/

products_feature_guide09186a Jul/2003

75

 14.http//www.perldoc.com Jul/2003

 15.http//perl.org Aug/2003

 16.http://www.1024kb.net/texts/perlnet.html Aug/2003

 17.http//nettelnetcisco.sourceforge.net Aug/2003

 18.http//cpan.org Aug/2003

 19.http//open-Perl-ide.souorceforge.net Aug/2003

 20.http//perlfect.com/articles/sockets.shtml Aug/2003

 21.http//computer.howstuffworks.com/perl.htm Aug/2003

 22.http://theoryx5.uwinnipeg.ca/CPAN/data/Net-

Telnet/Net/Telnet.html Aug/2003

 23.http://www.strom.com/pubwork/hyperaccess.html

Sept/2003

76

77

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Oswaldo Zanelli
DCEA
Rio de Janeiro, Brazil

4. Prof. Peter J. Denning, Chairman, Code CS
Naval Postgraduate School

 Monterey, CA

5. Prof. Geoffrey Xie, Code CS/Xg
Naval Postgraduate School
Monterey, CA

6. Prof. John Gibson, Cod CS/LN

Naval Postgraduate School
 Monterey, CA

	INTRODUCTION
	A. CONCEPTION
	THE SCOPE OF THE THESIS

	II.BACKGROUND
	
	
	
	To achieve the desired level of application perfo

	1. Automatic and Timely Update of a Router Configuration
	2. Automatic and Timely Collecting of Router State Information
	3. Automatic and Timely Communication Between Different Managing Agents
	1. Architecture
	a. SAAM Server
	b. SAAM Proxy
	(1) Best Effort. Best Effort Service is the basic model of the current Internet. It was the first service provided by the Internet. It gives no guarantees to clients such that they will receive sufficient bandwidth to support their offered load or th
	(2) Integrated Service. Unlike Best Effort Service, the Integrated Service provides a guarantee for a minimum bandwidth, as well as bounds on delay and packet loss rate. The client can negotiate for a specific QoS level based on the kind of application
	(3) Differentiated Service. Due to the intense use of the Internet by real-time applications, the IETF first proposed an Integrated Services architecture, which uses an RSPV protocol to reserve network resources, to assure the service quality provided.
	(4) Example of Architecture. The figure below shows one possible test environment for the integration of service types. The configuration includes three Cisco routers. Linux boxes hosting the SAAM specific application code implement the SAAM system fun

	1. IOS and IOS Command Line Interface
	1. Cisco Console Port
	a.HyperTerminal
	b. HyperACCESS

	2. Remote Cisco Configuration
	a. Telnet
	b. Perl

	III.COMMUNICATION USING PERL SCRIPT
	
	1. Configuration Experiment
	a. Uploading a Router Configuration Using Perl Script
	b. Collection the Router Configuration Using Perl Script
	c. Automatic and Timely Communication Between Different Managing Agents
	d. Code and Answers
	(1) Upload and Collection of Cisco router data. The following Perl statement shows how to import or integrated modules in the code:
	use strict and use Net::Telnet::Cisco.
	The next two lines define the address where the connection was made, in case, with a Cisco router and was assigned it to a variable.
	my $router = '131.120.64.145'
	my $S1 = Net::Telnet::Cisco -> new (Host=> $router).
	The variables used to store the time information included
	my @clock1, my @clock2, my @output1, my @output2.
	The login information for establishing the Telnet session with the username and the password, was sent to the socket and $S1, by the following statement:
	$S1 ->login ('AlexPrado','SAAM').
	Likewise, the “enable” command and the privileged
	$S1 ->enable('cs4552').
	The configuration upload start time was extracted from the router with the following statement:
	@clock1 = $S1->cmd('sh clock').
	Router queue status was retrieved and loaded in the variable, @output1, by the statement
	@output1 = $S1->cmd\(‘sh queueing’\).
	Router traffic information retrieved and stored by the command
	@output2=$S1->cmd\(‘sh ip traffic’\).
	The router’s configuration mode was set by
	$S1 ->cmd ('config t').
	The statement to send the command to set the reservation for the path in the router was
	$S1 ->cmd ('ip rsvp reservation-host 131.120.64.18 131.120.64.17 tcp 255 255 ff rate 1000 1000').
	To print the clock results, the following statement was executed:
	print "The time one : @clock1\n".
	Finally, to exit the command mode and terminate the telnet session, the following statements were executed.
	$S1->disable and $S1->close.
	(2) Communication with two managing agents. The module described below provides an easier way to manage the socket using a native API wrapper:
	use IO::Socket
	This command creates a socket specifying the parameters need for creation.
	my $sock = new IO::Socket::INET (
	Local Host=> specified the local hostname.
	Local Port=> defined the local port to communicate.
	PeerAddr=> specified the remote address for the information.
	PeerPort=> specified the remote port for the information.
	Proto=> specified the communication protocol to be used.
	Listen=> established the maximum number of connections that can be queue to the socket.
	Reuse=> directed the system to reuse the port after the program exits.
	The method accept() returns a new socket that can communicate with the requesting socket.
	my $new_socket = $sock ->accept ().
	The information that arrived was read or written to the new socket and was then displayed on the screen. This was done in an infinite while loop which terminates when the socket is closed
	while (new_socket){
	print $_
	}
	Error conditions, encountered either during socket creation or communication, were displayed on the console screen using the enclosed string.
	die "Could not create socket: $!\n" unless $sock.
	The information extracted from the socket was displayed with the following statement.
	print $sock "Communication with SAAM Proxy\n".
	Finally, the following statement was used to close the connection.
	close($sock).

	IV.ROUTER CONFIGURATION USING CONSOLE PORT
	
	1. Configuration Experiments
	a. Upload of a Router Configuration Using HyperACCESS with VBScript
	\(1\) The code for a command upload. The VBScr�
	The language declaration statement specifies to the HAPI which scripting or programming language was used to define the application attempting to establish a HyperACCESS link. Note that the name of the router to be commanded is "Router2."
	$LANG = "VBScript"
	The variable, cr, is initialized to the value of the carriage return character before the subroutine declaration, giving cr a global scope. This allows it to be used in event subroutines without being declared again. This variable is used with string co
	cr = Chr(13)
	Should an error occur with any HAPI function the connection automatically aborts the script, based on the following command.
	haAbortOnError
	The global variable, cr, is transmitted as a string of characters to the console port. Initialized to a carriage return, the string represents the initial carriage return that the router is expecting to initiate as a session with a console terminal user.
	haTypeText cr
	Since the console port configuration facility of the router was designed as an interactive, text-based session, delays must be inserted in the script to allow the router to properly respond before another command is entered. The specified function causes
	haWaitForPrompt "Router2>"
	The command “en” and the carriage return are sent
	haTypeText "en"&cr
	The script must then wait for the string “ssword:�
	haWaitForPrompt "ssword: "
	The password used for the lab is “cs4552” to whic
	haTypeText "cs4552"&cr
	As before, the script must pause until the router
	haWaitForPrompt "Router2#"
	The command “sh clock” and the carriage return ar
	haTypeText "sh clock"&cr
	This returned time value is then loaded in the variable t1.
	t1 = Timer()
	The command “config t” and the carriage return ar
	haTypeText "config t"&cr
	The script must then wait for the router to respo
	haWaitForPrompt "config)#"
	At this point the script can configure a static RSVP path, as described above. Note that the carriage return variable is appended to the string constant and the resulting string is sent to the router.
	haTypeText "ip rsvp sender 131.120.64.145 192.120.64.18 TCP 0 0 192.120.66.2 Ethernet0/0 3750 7500"&cr
	The command “exit” is entered in response to the
	haTypeText "exit"&cr
	The router’s exact time is again extracted and th
	haTypeText "sh clock"&cr
	t2 = Timer()
	The command “exit” is then sent to close the cons
	haTypeText "exit"&cr
	The difference between the time value stored in t1 and t2 is then computed to determine the elapsed time.
	t3 = t2 -t1
	A dialog box, with an appropriate message, is displayed to the user on the terminal screen.
	haMessageBox "Difference of time", t3, 1
	Finally, the script ends the HyperACCESS session.
	haTerminate

	b. Collection of Router Configuration Information Using HyperACESS with JavaScript
	(1) The code for collecting information from the router. Following the same approach used above to describe the key statements of the VBScript, the bold words below are the JavaScript commands. Among the differences are that the JavaScript that uses pa
	The language with which the HAPI was accessed is first declared, as in the case with the VBScript, above.
	$LANG = "JavaScript"
	The variables, vtr and cr, are declared, and the latter initialized to the ASCII value of a carriage return
	var vtr;
	var cr = "\r";
	As with the VBScript, an application termination is forced if an error occurs.
	haAbortOnError();
	A carriage return is sent to the router to initiate the console session. The carriage return, in this case, is the single character string, cr, initiated above.
	haTypeText (cr);
	As noted in the previous example, the script must wait for the proper response to be returned by the router to each interactive command. If this expected string does not appear after 100 seconds or is not followed by a .3 second delay the program times o
	haWaitForPrompt ("Router2>");
	The command “en” and the carriage return are tran
	haTypeText ("en"&cr);
	The script then waits for receipt of the password prompt string.
	haWaitForPrompt ("ssword: ");
	The script then transmits the password “cs4552” a
	haTypeText ("cs4552"&cr);
	haWaitForPrompt ("Router2#");
	The command to enter the configuration mode using a terminal was then entered and the proper router response was anticipated.
	haTypeText ("config t"&cr);
	haWaitForPrompt ("config)#");
	The “show queuing” command is then sent, followed
	haTypeText("sh queueing"+cr);
	The function, haWaitForString, checks characters
	haWaitForString ("configuration:");
	The function haGetInput takes data received from the remote system after the command haWaitForString. The received character string is then loaded in the variable vtr.
	vtr = haGetInput (1, 290, 100, 100);
	The received information is then displayed to the user using a dialog box.
	haMessageBox ("Queue info: ", vtr, 1);
	The command “exit” is sent to leave the configura
	haTypeText ("exit"&cr);
	The script exits with a call to the function,
	haTerminate();

	1.Microsoft Visual Basic
	a. The Code in Visual Basic

	2. Microsoft Visual C++

	V.CONCLUSION
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

