! DRAESTANTIA PER SCIENT 1454 > /

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

MANPOWER REQUIREMENTSDATABASE FOR THE
GREEK NAVY

by
Kyriakos N. Sergis

September 2003

Thesis Advisor: Daniel Dolk
Second Reader: Rudy Darken

Approved for public release; distribution isunlimited

THISPAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2003 Master's Thesis

4. TITLE AND SUBTITLE: Manpower Requirements Database for the Greek | 5. FUNDING NUMBERS
Navy
6. AUTHOR(S) Kyriakos N. Sergis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 wor ds)

The Greek Navy istrying to create a Web-enabled Data Base system, which will enhance and facilitate the process of
assigning duties (jobs) to its officers.

This study provides a prototype of implementing the job-to-officers assignment process by creating a manpower Data
Base accessed via the Internet. This prototype is based on the 3-tier architecture, having both the Web and Data Base design
and implementation. Behind the scenes, is a multi-criteria decision algorithm that takes the officers credentials and the
officers and commands' preferences into account and then it determines the best distribution of the officers to the available
jobs.

This thesis and the supporting research will strive to develop the requirements and a working prototype web site for
the detailer and reduce both manpower and time required to complete the assignment process conducted by the Greek Navy's
Department of Personnel.

14. SUBJECT TERMS Web-Enabled Database, Relational Database, Manpower Systems, Three- | 15. NUMBER OF
Tier Application, Multi-Criteria Decision Problem, Agorithm, Greek Navy, Officer, Command, | PAGES
Credentials, Qualifications, Officer’s Preference, Command’s Preference 341
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited

MANPOWER REQUIREMENTS DATABASE FOR THE GREEK NAVY

Kyriakos N. Sergis
Lieutenant, Greek Navy
B.S., Hellenic Naval Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and
MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Author: Kyriakos N. Sergis

Approved by: Daniel Dolk
Thesis Advisor

Rudy Darken
Second Reader

Peter Denning
Chairman, Department of Computer Science

Dan C. Boger
Chairman, Department of Information Sciences

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The Greek Navy is trying to create a Web-enabled Data Base system, which will
enhance and facilitate the process of assigning duties (jobs) to its officers.

This study provides a prototype of implementing the job-to-officers assignment
process by creating a manpower Data Base accessed via the Internet. This prototype is
based on the 3-tier architecture, having both the Web and Data Base design and
implementation. Behind the scenes, is a multi-criteria decision algorithm that takes the
officers credentials and the officers’ and commands' preferences into account and then it
determines the best distribution of the officersto the available jobs.

This thesis and the supporting research will strive to develop the requirements and
a working prototype web site for the detailer and reduce both manpower and time

required to complete the assignment process conducted by the Greek Navy’s Department
of Personnel.

THISPAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

l. INTRODUCTION ..ottt sttt sttt sseese e e e nsessessesnesaeens 1
A. BACKGROUNDooiiiiiiire ettt 1

B. AREA OF RESEARCH ...ttt 2

C. RESEARCH QUESTIONS.......co i 2

D. SCOPE AND METHODOLOGY ...occviiiieieeeeienie et sne e 2

1 SCOPIE ..ttt ettt ettt e e nr e sra e nnees 2

2. A= g 0o (o] o |V 2RSSR 3

3. Assumptionsand LimitationS........cocceoeererereneneneneseeeesese s 4

. BACK GROUND ...ttt sttt e e e ntesnennenneens 7
A. GREEK NAVY MANPOWER REQUIREMENTS........cccoooeiiirineneni 7

B. RELATED WORK ...ttt s snenne s 8

[11. DATABASE DESIGN ..ottt sttt s 17
A. REQUIREMENTS. ...ttt sttt 17

B. ENTITY RELATIONSHIP DIAGRAM ..ot 41

1 APPHCANT-AUAI ESS....ceeeice e e 43

2 APPHCANT-PRONE........ccieeee e 44

3 APPHCANT-RANK ..o e 45

4. JOD-RANK ... 45

5. APPHCANT-LanNQUAGJEcooueieerieeieseesee et 46

6 I [o] o =TT U = T = 2SS 46

7 APPHCANT-SPECIAITY ..o 47

8 JOD-SPECIAILY ..c.veeiieeceeee e 47

0. Applicant-QuUalifiCation..........cooeererieneeie e 48

10. JOb-QUAlITICALION ...cccuvecrieciiecreece e 48

11. Applicant-Experience-Job.........ccoiiiiiniieeee e 49

12, Applicant-CredentialScccccveeveeiesiere e 49

13, JOD-CredentialS.....ccccooiiieieee e 50

14, JOD-PlACE......oouiciiiieee e 50

15. ComMMAaNA-PIACE........eiiieiee s 50

16. Assignment-Job-Place-Applicantccoeeoeveenieecenieeseece e 51

17. Command Preference-Command- Job Place-Applicant................ 52

18. Applicant Preference- Job Place-Applicantcccoccevvecvivenennnne 53

C. RELATIONAL MODEL ...ociitiietciceeese e 54

[V. DECISION MODEL ...cciitiiiiiiiieiesiese ettt s 59
A. DECISION VARIABLES ...t 59

1 RANK ... e e 60

2 SPECIAILY .. e 60

3 QUANTICALIONS ...ttt ere e 60

4 LANQUAGE.cceiiieeeiiee ettt 60

5 CredentialS.......oooviiireere e 61

V.

6. e d 0= = 1ot USSR 63
7. OffiCEr ' SPreEfEr ENCE....cccc e 64
8. Command’ SPrefErENCEcovee e 64
0. Computation of the Goodness of Fit Index, Hij.........ccccovviiiiiinnnnee 64
B. ALGORITHM ottt sre e snree s 67
1. [T = o] T 67
2. O] = I I =1 o] 1T 67
3. MAX VALUE TabBIE...oeieeeeee et 68
4, USED APPLICANTSTADIEveeieeeee e 68
5. ASSIGNED APPLICANTSTabIE.......ccoovieiiecee e, 69
6. DELETED JOBSTaADIE......oiiieiecee et 69
a. SAME MaAX VAIUB........veiiiicieie ettt 93
b. Min Value AppliCantsS........ccceovveveere e 93
C. Multiple Max ValUES..........ccoeiiieeiirenesee e 93
d. ONEMAX VAIUE......ooceee e 93
C. UTILITY FUNCTION ..ottt st 99
D. TEST RESULTS ..ottt ettt sba s sba e s 105
1. TimeLength EStiMation.........cccocoeviieiie e 106
2. Increases on the Estimate Function Result When Changes Are
Made on the Algorithm’s Solutioncccecceevieiiicnie s, 114
3. Changes on the Algorithm’s Distribution, When Different
Coefficient Weightsfor the Decision Variables Are Given.......... 128
LAY = 3 137
A. S TIER ARCHITECTURE. ... 137
B. WEBSITE STRUCTURE ...ttt 139
C. MENU NAVIGATIONAL TREE ... 148
1. (@] 1 {1 TR ORRTO 149
2 (OF0]1.0] 1 1 7= [SRR 150
3 D = T = GO 151
a. VIEW RECOTUS.....cccctviie ittt erae e 152
b. INSEIt RECONASoccviiecteee e e 155
C. Update RECOISooiiieiieeiesee e 159
d. DElEtE RECOIAS. ...ttt 163
e SOIVEMOAEL ... 166
D. USE CASES ...ttt sttt e bt e s s eba e e sbe e e sbe e e sbeeesnreeeans 168
1. (@ 110 SRR 168
a. Delete a PreferenCe..... e 168
b. Add A PrefEreNCe......cccoieeeee e 173
2. COMMANG ...ttt e eeebee e sebee e sbeeeans 177
a. Delete a PrefereNCe.......ccuveeeeeceiee e 177
b. Add a PreferenCe.......ooovee e 180
3. D= T 1< G 184
a. SOIVEThE MOAE ... 184
E. SYSTEM ARCHITECTURE ... 206
1 Microsoft SQL Server 2000-Management..........ccocveeveeeereeieesenenn 206

viii

a. Database Managementcccocvevveeenesceeseese e 206

b. Stored ProCedUres...... ..o 207

C. Database Diagrams..........ceoeveereereeseesesseeseeseeseesseessesseenns 209

d. Multiple Ways to Construct QUENes.........ccvceevereereeiinsenne 209

2 Manpower Database and Website-Security ISsues..........ccccueneee. 210

a. Security Modes-Manpower Database..........cccccoveevereeniennne. 210

b. Logins-Manpower Database............ccccevveeereereeeeseesie s 211

C. Manpower Website NTFS PErmissions.........cccceeeeereeneeneene 212

d. Manpower Website [1S Permissions........ccccccevcveeeneeneeenene 213

e. SQL Server Logs-Manpower Database..........ccccceveeeeriennne. 214

3. Microsoft SQL Server 2000-Backup and M aintenance I ssues....215

a. Maintenance Plan ... 215

b. o Tex (1 0o L o T 216

VI. CONCLUSION AND RECOMMENDATIONS.......cce e 219
A. CONCLUSIONS. . ..ottt st nn et st 219

B. RECOMMENDATIONS......cc ettt 220

1 Technology SElECtioncccocveeeiecce e 220

2. Definition of User ReqUIremMents.ccooeeveriereenesieseeseeee s 220

C. FURTHER WORK ...ttt s 220

1 Component Distribution..........ccooeeiiiiniiiieee e 220

2. SECUNITY ANAIYSIS....iiiieceieiece e nne e 221

3. SySteMS AT ChItECIUN ... 221

4. Coefficient Weightsand HValue Definitionccccceecvveeveennnne 221

APPENDIX A. TABLES. ...ttt st snne s 223
APPENDIX B. STORED PROCEDURES...........ccooiiririeeere e 231
LIST OF REFERENCES.........o oottt ettt 319
INITIAL DISTRIBUTION LIST ..ottt 321

THISPAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.

Figure 17.

Figure 18.
Figure 109.

Figure 20.

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Figure 27.
Figure 28.

Figure 29.
Figure 30.

Figure 31.
Figure 32.

LIST OF FIGURES

Officer’ s Persona Information-Manpower Database.ccoveeveriereenennnns 18
Command' s Username and Password-Manpower Database.cccccceeeenene 19
Available Jobs-Manpower Dataase..........ccooeeveeiinienerie e 20
Available Platforms/Bases-Manpower Database.cccccvveeveeveeceeneciennenenn 21
Available Job — Platform/Base Pairs-Manpower Database.cccoceeveenne 22
Available Ranks-Manpower Database.coveeeeeereeie s 23
Ranks Required for Different Jobs-Manpower Database.ccocceveeieernenne 24
Officers Ranks-Manpower Database.ccoveeereeresieeneesesee e see s 25
Specialties-Manpower Database.ccooeveerenieniere e 26
Specialties Required for Each Job-Manpower Database.cccccecvvvereennane 27
Officers’ Specialties-Manpower Database.ccevereeneeienieenenie e 28
Education types (Qualifications)-Manpower Database.cccccveceevvereerennne. 29
Education Types (Qualifications) Required per Job-Manpower Database......30
Officers’ Education (Qualifications)-Manpower Database.cccccveveenene 31
Attributes (Credentials)-Manpower Database.cccceeevveenenieneeneeieeen 32
Attributes (Credentials) Required Per Job and Corresponding Minimum

Levels-Manpower DatahDase.ccoceeeereeiienieneeiesee e 33
Officers Attributes (Credentials) and Corresponding Grades-Manpower

DaEtBDASE.o et 34
Languages-Manpower Datalbase.cccevveeeveerieeieseerie e 35
Languages Required Per Job and Corresponding Minimum Levels-

Manpower DatalaSe.ccoveueieeiieiesece e e 36
Languages Officers Can Speak and Their Corresponding Grades-

Manpower Datalase.ccoveveieeiieesecse e e 37
Experience Per Job Required in Y ears-Manpower Database.cccccceeeuneee 38
Experience an Officer Has for Each Job in Y ears-Manpower Database. 39
Officers Preferences-Manpower Database.cccooereeveeienieenenie e 40
Commands’ Preferences-Manpower Database.ccccevveveeieesecceseeseenens 41
Job-Platform Pairs to be Fulfilled-Manpower Database.............ccooeveeriennnnne 106
Officers To Be Assigned to the Job-Platform Pairs Above-Manpower

DLz = 0 < OSSR 107
H Table (Only the First 44 Out of 528 Records Are Shown)-Manpower

DEtBDASE.o e 108
The Solution of the Algorithm-MAX VALUE Table of Manpower

DEtBDASE. ..o e 109
Job-Platform Pairs to Be Fulfilled-Manpower Database.ccccceevevieennne 110
Officers To Be Assigned to the Job-Platform Pairs Above-Manpower

DALADESE. ...t et p e 111
H Table-Manpower Database.cccoovveeiieieneeneeeeesee e 112
The Solution of the Algorithm-MAX VALUE Table of Manpower

DLz = 0 < OSSR 113

Xi

Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

Figure 47.

Figure 48.
Figure 49.

Figure 50.
Figure 51.

Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.

Figure 60.
Figure 61.
Figure 62.

Figure 63.
Figure 64.
Figure 65.
Figure 66.

Figure 67.
Figure 68.

JOB Table-Manpower Database.ccceieerueeeeseeie e e see e esee e seeennens 114
EXPERIENCE Table-Manpower Database.ccccoveeenerneninnenriesesieee 115
JOB LANGUAGE Table-Manpower Database.cccccveveeeeeneeieseesiennnns 116
APPLICANT LANGUAGE Table-Manpower Database.ccccecveeveeneen. 117
JOB CREDENTIALS Table-Manpower Database.cccceverereresierienne. 118
APPLICANT CREDENTIALS Table-Manpower Database......................... 119
JOB QUALIFICATION Table-Manpower Database.ccocevererenierienne. 120
QUALIFICATION APPLICANT Table-Manpower Database. 121
APPLICANT PREFERENCE Table-Manpower Database.ccccceverenee. 122
COMMAND PREFERENCE Table-Manpower Database............c..cceeveee. 123
H Table-Manpower Datahase.ccocveeerieienieeseese e 124
Solution (Screen 1)-Manpower Database.ccccoeeereeveneenenieseesee e 125
Solution (Screen 2)-Manpower Database.cccoeeeveeveieeseese e 126
Change on the Solution and Estimate Function (Screen 1)-Manpower

DALADESE. ...t et b e e 127
Change on the Solution and Estimate Function (Screen 2)-Manpower

DALADESE. ...ttt 128
Coefficient Weights Per Criterion-Manpower Database.ccccceveeveernenne 129
Coefficient Weights Per Criterion After the Weights Change-Manpower

DAEtEDASE.o e 130
H Table Before the Weights Change and the Algorithm Runs-Manpower

DalADASE.ve et naes 131
H Table After the Weights Change and the Algorithm Runs-Manpower

DEtBDASE.o e 132
Solution (Screen 1)-Manpower Database.cccoeeeveeveiieeseese e 133
Solution (Screen 2)-Manpower Database.ccccoeeeveeieneenenieseesee e 134
S-THEr ATCHITECIUE. ..ottt 137
3-Tier Architecture-Manpower Database.coccveeereereneenenieseesee e 138
ODBC connectivity-Manpower WEDSITE.ccccveereereneeseese e 140
Manpower Website Configuration Wizard............ccocceeveneninnnnensesceeseen, 141
DSN Connection-Manpower WEDSILE.ccccvveereeiieeieseesie e 142
Recordset Based on the ksergis.ShowCredentialsldOnApplicantld Stored

Procedure-Manpower WEDSITE.cccveeeiieieceesecsie e 143
Webpage with a Form-Manpower WeDSITE.cocevererienieenine e 145

Master Page-The Repeated Region and the Navigation Bar Are Displayed. 146
Master Page (1% Screen)-How the Repeated Region and the Navigation

Bar Are Displayed onthe Internet. ..o 147
Master Page (2”d Screen)-How the Repeated Region and the Navigation

Bar are Displayed onthe Internet.ccooveve e, 148
The Officer Selects the ‘Already Have a Password? Sign In’-Manpower

WWEDISITE. ...ttt bbbttt 168
The Officer Types the User Name and Password-Manpower Website. 169
The Officer Selects ‘Delete A Preference’ -Manpower Website.................... 170
The Officer Selects Preference Number 2 to Delete-Manpower Website.....171
Preference Number 2 is Selected-Manpower Website.cccccveevveceenieenee. 172

Xii

Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.

Figure 82.
Figure 83.

Figure 84.
Figure 85.
Figure 86.
Figure 87.

Figure 88.

Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.

Figure 95.

Preference Number 2 is Deleted and the Officer Goes Back to the Control

Page-Manpower WEDSITE.c.coeeiiriiiiesee e 173
The Officer Selects the ‘Select A New Assignment’ Option-Manpower
WEDSITE. ... e e 174

The Officer Selects the Communications Officer-Manpower Website.......... 175
The Officer Selects the Frigate 1 and Preference 2-Manpower Website.......176

The Officer Has Applied His’Her Preference-Manpower Website. 177
The Command Selects ‘Delete A Preference’ -Manpower Website. 178
The Command Selects the job Commanding Officer for Frigate 1 with
Preference Number 3-Manpower WeDSIte.ccceveriinieiennneeneseeseeen 179
The Preference Number 3 is Deleted-Manpower Website.ccccceveveeeenne 180
The Command Selects the * Select An Officer’ Option-Manpower Website. 181
The Command Selects Frigate 1-Manpower WebSite.cccooveeeveeriennnnne 182
The Command Selects the Commanding Officer Job and Officer 4 with
Preference Number 3-Manpower WEDSIE.ccevveeereevescen e 183
The Commanding Officer Job and Officer 4 with Preference Number 3 Is
Selected-Manpower WEDSITE.ccceveerieieerecrie e 184
The Detailer Selects the ‘Already Have a Password? Sign In’-Manpower
WEDSITE. ...t 185

The Detailer Types the User Name and Password-Manpower Website........ 186
The Detailer Types the Second Password the Detailer Has-Manpower

QLTS 1S] (ST 187
The Detailer Selects the * Solve The Model’” Option-Manpower Website.188
The Algorithm Solution (Screen 1)-Manpower Website............ccoceveerennenne 189
The Algorithm Solution (Screen 2)-Manpower Website...........cccocceveverieennnne 190
The Page the Detailer Can Change the Solution (Screen 1)-Manpower

WWEDISITE ...ttt bbbttt 191

The Page on Which the Detailer Can Change the Solution (Screen 2). On
That Page the Detailer Selects the MAX Vaue 10 Link That Corresponds
to Job Commanding Officer and Officer 1-Manpower Website. 192
The Job Commanding Officer and Officer 1 is Deleted from the Solution
(Screen 1)-Manpower WEDSITE.ooveirienieie e 193
The Job Commanding Officer and Officer 1 is Deleted from the Solution
(Screen 2)-Manpower WEDSITE.ooveerieiieienee e 194
The Job Communications Officer and Officer 2 is Deleted from the
Solution (Screen 1)-Manpower WEDSITE.ccccovereeieeienee e 195
The Job Communications Officer and Officer 2 Is Deleted from the
Solution (Screen 2)-Manpower WEDSITE.cccovereeienieneesee e 196
The Detailer Selects the CO Link Under the Deleted Jobs-Manpower
WEDSITE. ... e 197
The CO Link is Selected Under ‘Selected Job’ (Screen 1)-Manpower
WEDSITE. ...ttt sttt sreenre e 198
The CO Link Is Selected Under *Selected Job’. Notice the Available
Officers Under ‘Add An Officer’ (screen 2)-Manpower Website................. 199

Xiii

Figure 96.
Figure 97.
Figure 98.

Figure 99.

Figure 100.
Figure 101.
Figure 102.

Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.

Figure 110.
Figure 111.
Figure 112.
Figure 113.

The Detailer Selects Officer 2 Under the ‘Add An Officer’ (Screen 2)-

MaNPOWEr WEDSITE. ..ot 200
Officer 2 Is Selected. The Job Commanding Officer and Officer 2 Appear

in the Solution Domain (Screen 1)-Manpower Website..........ccoceevercenieenee. 201
Officer 2 is Selected. The Job Commanding Officer and Officer 2 Appear

in the Solution Domain (Screen 2)-Manpower Website..........cccoceevercieneenen. 202
Job Communications Officer and Officer 1 Are Selected (Screen 1)-

MaNPOWEr WEDSITE. ..ot e 203
Job Communications Officer and Officer 1 Are Selected (Screen 2)-

MaNPOWEr WEDSITE. ..ottt 204
The Detailer Accepts the Solution. The ‘Accept Solution’ Link is

Selected-Manpower WEDSITE.coceiieiiiiiieesee e 205
The Solution Is Accepted. The Detailer Goes Back to the Detailer Control

Page-Manpower WEDSITE.c.ooeeiiriinieie e 206
Microsoft SQL Server 2000 Enterprise Manager-Manpower Database. 207
Use of Stored Procedure-Manpower Database.ccccceveenerinneenieniinsiennn. 208
Transact-SQL Code Example-Manpower Database.cccccveveeeeervesiennnns 209
Use of SQL Query Analyzer-Manpower Database.ccooeeeevveenesiensennn. 210
SQL Server 2000 Authentication Mode-Manpower Database. 211
Standard Login-Creation of Detailer Login for the Manpower Database.212
The Detailer ‘ksergis as a Member of the Detailer Group-Manpower

WebhSite NTFES PErMISSIONS.ccciiuieieiieiieesiesee et 213
Anonymous Access-Manpower Website [1S Permissions..........ccccccveeeveennnne 214
SQL Server Logs-Manpower Database.ccceeveeeeneenieneenensieseesee e 215
Database Maintenance Plan-Manpower Database.ccccceveeevvevvceeninenne. 216
Backup-Manpower Datalase.ccoovieeiirienieneeeeee e 217

Xiv

Table 1.
Table 2.

Table 3.

Table 4.

Tableb.

LIST OF TABLES

Social Welfare Per Assignment (Change from Unassisted Control Group)....10
Above is the Penalty Function for Not Filling School Seats. The Penalty
is Disproportionately High for Week 1 Classes, Since Unassigned Seats

Will Remain UNULHTIZEd.c.ooeiiiiiinieeeeee e 11
Above is the Exponential Function for Assigning Fitness Points Based on
the Level of Property Satisfied.ccccevveiereereeeseese e 12

Example: Finding a Good Distribution. The first two columns represent
extreme solutions on Fit and Fill. Run 3 achieves excellent Fit, but at some
loss in Fill and Wait. Run 4 makes only a marginal improvement in
Fitness. Run 5 achieves an excellent fit while keeping the best scores on
the Fill and Wait MELIICS........ooieiieeieeeee et 14
All Entities with a Short Description of Each...........ccccoveovvevecce e 43

XV

THISPAGE INTENTIONALLY LEFT BLANK

XVi

ACKNOWLEDGMENTS

| would like to thank Dr. Daniel Dolk for al his instruction and guidance during
the progress of this thesis. His knowledge helped me overcome many obstacles | came
around during the evolution of it. | would also like to thank Dr. Thomas Wu and Prof.
George Zolla who created my interest in the database and 3-tier architecture concepts.

Finally, |1 would like to thank my family because of the support they have provided me
during all these years of studies.

XVii

THISPAGE INTENTIONALLY LEFT BLANK

Xviii

l. INTRODUCTION

A. BACKGROUND

Greek Navy officers are currently assigned to new billets by detailers, much the
same way as the U.S. Navy operates. Detallers are subject matter experts who use
intuition and experience to match officers with available command billets. However,
officer preferences for available billets and command preferences for available officers
are not explicitly taken into account. Thus, it is likely that the assignment of officers to
billets is suboptimal with respect to “goodness of fit” involving preferences from both the

supply and demand sides.

At present, the detailer has no direct on-line access to manpower data for the
naval officers and no direct ability to make decisions. The appropriate data, which are
the individual officer's preferences, the Command's preferences and the officer's
credentials and qualifications, are collected manually, rather than automatically, and then
processed by the detailer who is responsible to make the final decisions. The current
process requires time and effort for the detailer to make a final decision. Changes and
tracking of each job-officer assignments are difficult to accomplish since there is no tool

operated specially for that purpose.

The purpose of this thesis is to develop requirements and a corresponding
prototype database, decision support system, and web site for the Greek Navy’'s
Manpower Requirements. This work will develop a web-enabled database by which the
detailer - the Greek Navy’s Department of Personnel (DoP) officer in charge of the job-
to-officer assignment process - can view manpower data about the officers of the Greek
Navy, view officers preferences for available jobs and commands preferences for
available officers, and finally exercise a pattern-matching heuristic which provides a
straw-man assignment from which he/she can eventually assign the best officers to the
most applicable and available jobs-stations allowing him/her to make appropriate,

relevant and rational decisions.

B. AREA OF RESEARCH

The area of research for this thesis deals with multi-tiered web enabled databases,
the synchronization of distributed databases, and the use of decision support tools.
Currently, the Greek Navy is in the planning stages of developing a “Web-Interface”
whereby the detailer can view manpower data on the officers of the Greek Navy and
assign the best officers to the most applicable, relevant, and available jobs-stations. All
the naval officers will have to visit the website and declare their preferences on-line over
the Internet, while at the same time the Commands will designate their own preferences
for the officers whom they would like to fill their corresponding job vacancies. This
effort will replace the current way of managing manpower data. This thesis and the
supporting research will develop the requirements and a working prototype web site for
the detailer with the objective of improving the assignment process with respect to
goodness of fit while simultaneously reducing both manpower and time required to
complete the assignment process conducted by the Greek Navy’s DoP.
C. RESEARCH QUESTIONS

What is an appropriate design for the data, model, and user interface
components of a decision support system to support the matching of
officers with jobs?

What a multi-criteria, pattern-matching decision model is appropriate for
choosing preferred jobs and/or selecting preferred people to fill specific
jobs?

What overall system architecture model is appropriate for integrating
database with decision tools in a Web-based environment?

D. SCOPE AND METHODOL OGY

1 Scope

Thisthesiswill provide a single user prototype for the assignment process. It will
provide the essentials for designing and creating a database for the jobs-to-officers
assignment process and also integrate some kind(s) of multi-criteria decision model(s)
with that database. It will not use real data in most, if not all, cases, but rather use
fabricated data to show “proof of concept”. Moreover the thesis will provide a means for
accessing the database via the Internet.

The scope includes:

Definition and description of the functional requirements of the Manpower
Web Site

Technical description of the ASP scripts written to implement the
functional requirements

Description of a proposed general administration of the web site and local
database

Development of a prototype web site that utilizes a local relational
database

Demonstration of an operational web site on a server. The following
items will be the technical products of my thesis work:

Set up backend database (SQL Sever 2000) containing a
manpower datafile

Set up aweb server (11S-5) and load appropriate HTML and ASP
files

Demonstrate User authentication

The prototype will demonstrate severa different WRITE pages
(data update). The thrust of the prototype is to demonstrate that
this approach can work in principle, not to program 50-100 ASP
web pagesin its entirety.

2. M ethodology
The methodology used in this thesis research follows:
Investigate existing manpower assignment models
Conduct review of 11S-5 web server technology
Conduct review of Microsoft SQL Server 2000 technology
Conduct review of Windows XP Professiona network administration
Design Microsoft SQL Server 2000 database

Build web site containing web pages for the users — Officers, Commands,
Detailer

Build multi-criteriamodel for job preference and candidate preference
Implement multi-criteria matching process

Test produced prototype

Assumptionsand Limitations
Assumptions

Network Architecture and Server Software. The Greek Navy is
more oriented towards the Microsoft software technology. This
justifies the use of a Microsoft’s product like SQL Server 2000 for
this application.

Client Software. Virtualy all of the desktop computers within the
Greek Navy have a Windows-based operating system, usually
Windows 2000 Professional (Client).

Database. Beyond Microsoft Access available in the Microsoft
Office (2000/XP), there is no widely utilized DBMS (Database
Management System) within the Greek Navy. Microsoft Accessis
widely used at the local unit level. Access is an adequate DBMS
client/server product for limited functions, but is not appropriate as
a backend database for larger scale requirements with greater
security needs. The requirements for this database demand a
commercial DBMS. As such, | have selected Microsoft SQL
Server 2000 mainly for the ease of integration with the Microsoft
based networks used throughout the Greek Navy.

Limitations

Data. The manpower web site prototype does not use real data for
a variety of reasons. First, the confidentiality of real data is by
itself a significant reason for not using it. A second reason is the
limited availability of real data. The dispersion of data makes it
difficult to be collected and organized. A final reason is that this
prototype is implemented several miles away from Greece.

Security. Security features of the manpower web site prototype
will be addressed in Chapter V. However, the thrust of this thesis
and the prototype is a proof of technical concept. Before any
actual deployment of the prototype, it would need to be thoroughly
analyzed by security experts to ensure that the manpower data
being accessed is indeed secure.

Scale. The manpower web site prototype developed for this thesis
will not address issues related to scale. Any actual deployment of
the web site prototype could entail a sizable load (number of
connected users) on the web and database server. The manpower
web site prototype is being developed on a home computer that has
neither the hardware nor software to handle/test heavily

web/database traffic. Professonal web and database
administrators would need to be employed to test the manpower
web site prototype.

Reliability. Reliability is on the other side of the coin of scale.
Again, it is beyond the scope of this thesis to analyze and test the
reliability of the web and database server with a heavy load.
Commercial servers and their software have features that provide
for fail-over mechanisms and mirror sites both for the web server
and database server.

In order to fulfill the objectives of this thesis, the material presented will be
organized in the following manner. Chapter 11 will cover background materia regarding
the Greek Navy’s Manpower requirements and related works on that subject. Chapter 11|
will address the database design presenting the Entity-Relationship Diagram (ERD) and
the final relational concepts. Chapter 1V will cover the multi-dimension decision model
and the corresponding pattern-matching algorithm. Chapter V will address the system
architecture of the prototype providing a description of the programming of the web
pages and database queries necessary to support the functional requirements of the
prototype. Finally, Chapter VI will present recommendations, conclusions, and further
work on the web enabled database.

THISPAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND

In order to analyze the requirements and develop a prototype for the Greek Navy
web-enabled database, an understanding of the Greek Navy’s DoP' s process to assign a
job to an officer isrequired. Also, past researches and papers are thoroughly examined in
order to suggest ways and methods that will help to solve the problem more efficiently.
A. GREEK NAVY MANPOWER REQUIREMENTS

Currently the DoP is following a rather old fashioned procedure to select an
officer for a specific job. This does not mean that the DoP doesn't use current
technology in order to help its job perform its job better. The DoP is using proprietary
systems like desktop computers, which have W2K Professional as their operating
systems. Based on the needs of the Navy the DoP examines the jobs and their
requirements. It also examines the qualifications and credentials of the officers. After
that it assigns a job to an officer trying to find the best match between them. It tries to
find a match beginning from the officers with higher ranks through those with lower

ranks.

The whole process, even if it is quite straightforward, it requires significant effort
because of the huge amount of data that is dispersed in different places. The DoP
personnel have to first collect the data first, and then process it, and this may require
significant man months of time. Things may become more complicated when a change
must be made. The personnel might have to reexamine the job and the officers and
probably collect different data than the ones collected before since the requirements
might have changed. Changes and tracking of each job-officer assignments are difficult

to be accomplished since there is no tool operated specially for that purpose.

The DoP decided recently that it will take the preferences of the officers for their
next job assignment into account. Every officer must complete aform, which contains all
the appropriate personnel information such as the officer’s identification number, first
name, last name, rank, preference and then send it back to the DoP via secure mail. The

DoP personnel collect al these forms and use them for the job-to-officer assignment

process. The distribution and collection of the forms may last many days or maybe even
weeks. Should a mistake be made or could a form get lost, the whole process for that

specific form must be reinitiated from scratch.

At present, the detailer has no direct on-line access to manpower data for the
naval officers and no direct ability to make decisions. The officers have to send their
preferences manually instead of automaticaly via an on-line intermediary tool. The
commands currently do not have the ability to specify preferences for the officers that the
commands would like them to occupy the jobs under their command. The appropriate
data, which are the individual officer’s preferences and the officer’s credentials and
gualifications, are collected manualy, rather than automatically, and then processed by
the DoP, with the detailer who is responsible to making the final decisions.

The Greek Navy wants a place where all manpower data related to the Navy
officers and commands will be stored. These data include the credentials and
gualifications of the officer, the officer’s job preferences and the command’ s preferences
for the officers for a particular job under that command. The qualifications of an officer
include the languages that he can speak, and past experience that he/she may have for a
particular job. Diligence, discretion and secrecy are some of the credentials that an
officer may have. Moreover, data such as the rank, the specialty and the minimum sea

time required for an officer’s rank should be stored.

This thesis will suggest an alternate approach to replace the current way of
managing manpower data. It will strive to develop the requirements and a working
prototype web site for the detailer and in order to reduce both manpower and time
required to compl ete the assignment process conducted by the DoP.

B. RELATED WORK

In order to determine an efficient approach to this project, sufficient research

should be done to documents that tried to find an effective solution to the multi-criteria

decision problem of matching officers and jobs.

The meaning of multi-criteria decision problem, in contrast to the one-criterion
decision problem, is that there are at least two criteria as variable inputs in the decision

problem. In this particular case, the first criterion is the preference of an officer for a

8

particular job. For example the x officer prefers the y job (that belongs to the z
command). The second criterion is the command preference for the officers for a
particular job under that command. In other words “the y job (that belongs to the z
command) specifies a preference for the x officer”. The third criterion is the credentials
and qualifications of the officers. For example an x; officer may be eligible only for jobs
y1 and y, but not for job ys, whereas an x; officer may be eligible for jobs y, and ys, but

not eligible for job y;, but he may be more qualified for the job y; than x; is.

We will examine two approaches to this problem that have appeared in the recent
literature. The first adopts agent-based technology as away of establishing a marketplace
for jobs and officers, whereas the second adopts a more traditional operations research

optimization approach based upon the assignment algorithm.

The first approach is described in William R. Gates and Mark E. Nissen with title
“Two-Sided Matching Agents for Electronic Employment Market Design: Social Welfare

Implications [Reference 1]”.

The paper describes an exploratory experiment to assess the performance of five
aternative employment market designs. These are the following: a. unassisted, b.
assisted, c. personnel mall, d. two-sided matching algorithm and e. optimization. In the
first two methods, the job-to-seeker matching process is conducted by people. In the
remaining methods, this matching is conducted automatically by different market
mechanisms. As the name implies, the unassisted condition is used to assess the
performance of people performing the matching task with no technological or agorithmic
support. In the assisted condition people use a product called Logica Decisions for
Windows (Logical Decisions 1993) to assist them with the matching task. The Personnel
Mall uses software agents to represent both employers and job seekers, and quasi-prices
(i.e., inverse utilities) to represent employer and job seeker preferences. The fourth
experimental condition automates the matching task through a two-sided matching
algorithm, which is set up to simultaneously consider the preferences of all employers
and job seekers. Lastly, the fifth experimental condition automates the matching task
through an optimization algorithm, which explicitly seeks to minimize average quasi-

price across the entire set of employers, job seekers, or both.

9

Table 1 summarizes job seeker, employer and total social welfare for each of the
experimental conditions. It appears from these results that the optimization approach
produces an increase for both the job seeker and employer social welfare, while the
combined optimization produces the highest payoff in terms of total social welfare. The
latter conclusion illuminates the need of an optimization algorithm that automates the

job-to-officer matching process for the current thesis.

Aggregate Ageregate
Experimental Condition Job Secker Employer Total

Social Wellare Social Welfare Social Wellare
Unassisted $6.08 $6.52 $12.60
Assisted $6.13 $6.55 $12.68
P-Mall — Emplover $6.13 $6.63 $12.76
P-Mall — Job Seeker $6.89%%% 13.4% $7.01%** 7.5% $13.90%*% 10.4%
Matching Algorithm $7.00%** 15.2% $6.84%*%* 4.8% $13.84%**% 9.8%
Optimization — Emplover $6.09 §7.48**%% 14.7% 513.57*** 7.7%
Optimization — Job Secker $7.32%%% 20.5% $3.96%**F _835% $13.20%*%% 55%
Optimization — Combined $7.06%%* 16.2% $7.24%** 11.0% $14.30%** 13.5%

##% Significant at 99%

Table 1. Social Welfare Per Assignment (Change from Unassisted Control Group).

The second approach, which was conducted by Hemant K. Bhargava and Kevin J.
Snoap, is described in “Reengineering Recruit Distribution in the U.S. Marine Corps
[Reference 2]. The purpose of this paper is to improve the way that the U.S. Marine
Corps new recruits are distributed to entry-level schools. The system that performs the
distribution is called RDdss and uses a computer-based model caled RDM. The RDM
finds the best distribution by trying to minimize the total number of unfilled seats over all
the entire schools. This paper describes some improvements on that system taking into

account a variety of additional factors not heretofore considered.

First of all, the desire of the Marine is fulfilled through a contract guarantee called
a PEF (program enlisted for), specified during the recruiting process. A PEF establishes
which schools a recruit wishes to go to. A second concern in recruit distribution is that

the Marine should be checked to see whether he/she is suitable for a specific school. The

10

Suitability is determined by matching a Marine's qualifications and a school's
requirements, described as properties. This is analogous to the Greek Navy preference

system we are proposing.

Third, the timing of the distributions is of great significance since schools may
have different starting dates whereas Marines are seeking for jobs every week. Any seats
left unfilled in classes are a wasted resource.

Finally, since there may be alack of seats in the only classes for which a Marine
is eligible for, or perhaps because a Marine is not qualified for any of the schools
consistent with his or her PEF guarantee, there is a possibility that some Marines may be

left unassigned in the end.

The new approach develops a penalty function in which week 1 school seats have
a disproportionately high shortfall penalty, since seats left empty in these schools will
never get filled. Beyond week 1, shortfall penalty is an inverse function of the school's
start date. Table 2 shows the penalty for each unfilled seat per days to school start date.

180

[60

10

12001

100

80

60

40

04

Penalty for each unfilled seat

— o Oh Lo T e e S '
L] (]

[R e, — L o =~ — iy
|ﬂ-'.ﬂ'.—,r':r—,rlr.l.r.'q:~..55

Y]

PR ol A=
f~ - o oo &

Days to school start date

Table 2. Above is the Penalty Function for Not Filling School Seats. The Penalty
is Disproportionately High for Week 1 Classes, Since Unassigned Seats Will
Remain Unutilized.

11

RDM was based on a procedure meant to minimize unfilled seats. It is not
concerned about the quality of the assignment decisions. There is an obvious tradeoff
between the desire to fill more seats and the desire to achieve good fit in the distributions.

For that purpose a multi-criteria objective function is used:
Maximize Total Utility = K gy - FitnessScore — K gy - PenaltyScore

Coefficients Kyi; and Ky are control parameters which the model manager can use

to create multiple alternative solutions.

In order to compute the FitnessScore, the properties of each school and the
qualifications of each Marine are taken into account. Each school has some mandatory
properties that affect eligibility. Moreover it may have some desirable properties. These

properties are ranked along descending importance in levels 1 through 6.

Fitness points

2 3 4 3 [

Level of property

Table 3. Above is the Exponential Function for Assigning Fitness Points Based on
the Level of Property Satisfied.

The procedure for computing Marine-to-School fitness can be summarized in two
steps asfollows.

For each school, assign a fixed initial score to al Marines who meet the
eligibility criteria for that school (ineligible Marines get a score of zero).
This score (a typical vaue is 70) represents the weight given to the
mandatory properties in computing suitability. Then, examine desirable
properties and assign additional points according to the level of the

12

property to Marines who meet each desirable property (see Figure 3). The
result isan initia fitness score for each Marine for the given school.

For each school, normalize the initial scores so that the average fitness
score computed over all Marines eligible for that school is 100. This
condition is critical for gaming RDdss to produce good recruitment
decisions.

Given the assignment model, it may seem that the solution with the highest utility
isthe best distribution. However, thisis not alwaystrue. First, the utility score cannot be
used for comparative purposes, partly because it is vulnerable to the choice of scales for
measuring penalty and fitness. Second, the relative importance of fit and fill has not been
established in the Marine Corps. Third, while fit and fill are important aspects of solution
quality they are not the only ones.

For that purpose there are four metrics for evaluating the solution that are defined.
The first metric is the total number of unfilled seats in schools starting in the first week.
These represent wasted resources. The second metric is the average number of weeks
Marines wait before beginning school. The third metric is the total number of Marines
not assigned to any school and finally the fourth metric is the fitness premium (averaged
over al schools), compared to an average distribution. Thisis the difference between the
average fitness for the proposed distribution and the average fitness (by definition, 100)

for an average distribution.

Now it may be seen why it is important to normalize fitness scores. Since all
schools have an average fitness score of 100, an average distribution will have a score of
100 for every problem instance. Hence any increase (decrease) in average fithess can be
interpreted as a fitness premium that can then be traded off against any loss (gain) in the
other 3 metrics. This concept of a fitness premium supports the tradeoff analysis that is
necessary to choose a good final solution.

Giving different values to Ky and Ky, different values for the four metrics are
produced. Below is a procedure that determines what Ky; and Ky values should be used
and when the comparison should stop.

Run the model with Ks; = 0 and Ky = 1. The “fill” and “wait” scores for
this run are, by definition, the best achievable fill and wait scores for the
given problem instance.

13

Run the model with Ky to 1 and Ky to 0. The “fit” score for thisrun is
the best possible fithess for the given instance, and this usualy is
accompanied by alargelossin fill and wait.

Set Kyt to 1 and Ky to around 10. This run closes part of the fitness gap,
but possibly resultsin somelossin fill and/or wait.

Conduct additional runs by successively increasing (or decreasing) the fill
weight depending on whether the aim is to improve fill (or fit). The fina
decision is made by comparing the scores on the 4 metrics.

Table 4 gives a representative example of this procedure.

Fun 1 | Bun 2 | Bun 3 | Bun 4 | Run 5
K (Fit Fill) (0.1} (1.0 (1.1} (1.6) i(1.4)
[Unfilled Seats (wk 1) 23 38 o5 23 23
Average Fitness Premium 25 J4 33 21y 33
[Tnassigned Marines 3 3 3 3 3
Average Wait (weels) 1.8 1.7 .4 1.3 1.32
Table 4. Example: Finding a Good Distribution. The first two columns represent

extreme solutions on Fit and Fill. Run 3 achieves excellent Fit, but at some lossin
Fill and Wait. Run 4 makes only amarginal improvement in Fitness. Run 5
achieves an excellent fit while keeping the best scores on the Fill and Wait
metrics.

The methods and concepts of both papers were the guide and directive, on which
this thesis multi-criteria decision model is built. The first paper makes an in depth
research over labor market economics and information systems. It conducts five
experimental conditions and it considers socia welfare as a metric to measure the
effectiveness of each one of the experimental conditions. This paper illuminates the need
to create and develop an optimized two-sided matching tool and algorithm as it is
described through the optimization experimental condition. What is different from the
paper is the metrics that this thesis uses. This paper does not provide any clues over the
design and implementation of such an algorithm, or any clues about the nature of the two-
sided matching tool.

14

Many of the principles that are used in this thesis are based upon the results of the
second paper. The Marines-to-schools distribution concepts are quite similar to those of
the jobs-to-officers. One difference is that on the Marines-to-schools distribution model
there is a tolerance for having seats unfilled in the end. However, this is not the same
case for us. The algorithm should take care of this issue and provide the maximum
number of filled jobs. This means that there is no need for having a penalty function
concerning unfilled jobs. On the other hand it is necessary to provide priorities to the
jobsin order to fill available jobs with the most suitable officers. In other words, the job
of the Chief of the Navy must have higher priority than the Fleet Commander and the
latter job must have higher priority than the Commanding Officer of a Frigate, and so on.

Moreover, the algorithm for this thesis must take the officer’s suitability for ajob
into account. Every matching of ajob with an officer is assigned a value that refersto the
degree of fitness between the job and the officer. This value is a number that describes
the officer’ s preferences for that job, the command’ s preferences for the officer to occupy
that job and finally the officer’s credentials. Each one of these criteria may have different
importance. This importance is measured by a coefficient, just like the Ks; and Ky
coefficients that are used in the paper. These coefficients are actually weight factors that
multiplied by the corresponding criteria values give a weighted estimation of the criteria
importance. Again, these coefficients are used as control parameters through which the

model manager can create multiple alternative solutions.

A magjor difference between this thesis and [2] is that the latter considers a utility
function as a way to find different distributions and also evaluate them post facto. This
thesis uses a greedy-choice algorithm in order to find a distribution. The need for a
utility function is based upon being able to evaluate the impact on the solution from any

change(s) the detailer may decide to make.

Since the algorithm tries to fill up the maximum number of jobs by aways
following the same pattern, a change to each coefficient value is not going to affect or
change the jobs the algorithm selects. The jobs are always the same. Only the fitness
values change, depending on the coefficient values. By changing the coefficient values,
the distribution of the officers to the jobs is changed. This means that there is no need to

15

use the various metrics described in [2]. Any change on the coefficients is made on an
experimental basis. The utility function estimates how much “worse” off the change the

detailer makesisin contrast with the solution the algorithm produces.

Before we implement any pattern matching algorithms, we must first establish an
appropriate database design to hold the necessary data for the detailer to evaluate any
assignment. The next chapter discusses this database design.

16

1. DATABASE DESIGN

The data that are stored in the database reflect the needs and the purpose of this
project. The database should store an officer’s personal information such as his/her
name, phone and address, a job’s information and information about the platform or base
that this job belongs to. It must also contain the credentials and qualifications of an
officer and the qualifications that a job requires from an officer in order to be eligible to
get that job.

A. REQUIREMENTS

In order to design an appropriate ERD and create a suitable database for this
thesis, it is necessary to define the requirements. These requirements are derived from
specific queries that the users of the database/website should perform in order to do their
job. These queries are the following.

Who are the officers that participate in the job-to-officer distribution?
What is their personal information (e.g., address, phone number or email)
in order to contact them?

This query presents the need of a special place to store persona
information such as the first, last and middle name of the officer. Also,
the address including the street and city the officer lives in should be
provided. The different phone numbers and email addresses the officer
has should be stored too. Below is an example from this project’s
database.

17

23 Manpawes - [Dats in Table AFPLICANT in ‘Manpewer’ oa 'LOCALY]

B Fe Whndow Hap Iﬂ'ﬁl
i e = S R -
%m@u [Firzihiore [Lesitiome [Fedirione [Upertiyme | £ [Emihctiemn |
i 1 L | L 1 A e 0T
2 2 2 2 2 2iByshan.com
3 3 3 3 3 3 3 sahan com
q 4 q I 3 E SEsshon com
Figure 1. Officer’s Personal Information-Manpower Database.

Who is a valid user for the database/website? What is the username and
password of each of the database/website users?

The officers and commands' usernames and passwords should be stored
too, in order to accept valid users only for logon to the services that the
website/database provides. The figure below shows the various usernames
and passwords for the Manpower database.

18

e o] SEE
i Fe vindow Hap =]
e R I [
g | Lsertane | |

HAH Aeet Hand qusiders L 1ididiid

FAH Friga es Heacguer tery 2 Zrnen

MEH Haval BEoucabion Headnuariers 3 Echxkkck

rvH gy Hescdgpertsrs -+ ———

PEH Paircd Bosks Hesdguarters g EE5EEEE

= Submerines Headguarters] e]

Figure 2. Command' s Username and Password-Manpower Database.

What are the Navy’s jobs to which officers may be assigned? Since ajob
could exist on many platforms or bases (for example the Navigation job
exists in al the ships of the Greek Fleet), which are the Navy’'s
platforms/bases the Navy?

An entity should be created in order to store all the available jobs the Navy
has. Moreover, al the available platforms/bases should be stored in a
separate entity as well. Also, since a job can exist in many
platforms/bases (like the example just mentioned), or a job can exist in
some platforms/bases and not in others (for example the Base Commander
does not exist in any of the Fleet’ s ships but existsin al the Navy’s bases),
there should be a place to store the jobs per platform/base. The figures
below show some examples of all these just mentioned.

19

o dar ypoweer - [Dads in Table "0 in ‘Manpower’ on ' [LOCALY']

i e 0
B EEE P etk

ol

JRI5EERESE0
i
5

BLTTTTITITTT I

Figure 3.

Available Jobs-Manpower Database.

20

ain Table BLACE in 'Manp

Tl Pl Window Halp

B =EwSA &5 Hileth
| Paertinme [Fxcelnage [Comnandtnds |
Frigabe L F-%50.4pa FRH |
Frigabe 2 F-51.pp FrH
Frigabe 3 F-E1jg FRH |
Frigabs 4 F-33000 rRH
Frigate 5 FE4jeg FRH
Frigehs b 35 100 ran
Frigats 7 F.asjog FaH
Frigate B F-fli0 MRH
Frigats @ F.aElipg Fa
Fleat Hezdouarters <MAL>x MiH
Frigabes Haadouarters T R
Haval Education Headguartars <MLL > M
Ky Heaclquariers “MHAL: MeH
Patrol Boaks Headouartes <MLL FLH
Submarre 1 51X SH
Submarire 1 S-11lipg H
Submarnme 3 112900 S
Sbmarine 4 EREIR]
Submanres Hesdouerbers <MAL: FH

Figure 4.

Available Platforms/Bases-M anpower Database.

21

o Manpower - [Dats in Table J0R_PCACT in Manpower oo ‘{LOCALY]

T Ae windos Hep | :EI:
B EEECR Y AT AE

o
o
ExXO
R0

FL
FL
FL
FL

Figure 5. Available Job — Platform/Base Pairs-Manpower Database.

Which officers are eligible for which jobs? What ranks must an officer
have in order to be éligible for ajob?

An Ensign should never be able to be assigned to the Chief of the Navy
job. This means that first there should be a place to store all the available
ranks, and there should be a place to store the ranks that are required for a
specific job (for example a Commanding officer could be either a
Commander or a Captain). Third, the rank of each officer should be
stored too. The figures below show corresponding examples.

22

o Manpower - [Dats im Table RAHK' in Manpower on ‘| LOCALY]

Figure 6. Available Ranks-Manpower Database.

23

ol Manpowes - |Dats in Table " 308 _RANK' in 'Manpower” on “|LOCALT] 3
R iy e _ls|x]
B EEEC Al gt iES

a a1
pal o1
=] o
L] 21

Figure7. Ranks Required for Different Jobs-Manpower Database.

24

'T1 Manpmwer - [Oats in Table 'SPPLICANT in ‘Manpewer’ on [LOCALY] =S
i Fe vindow Hap =]
(B EEEOA R R

Figure 8. Officers Ranks-Manpower Database.

Which specialty should an officer have in order to be eligible for a specific
job?

An officer should be able to get assigned to a specific job, according to
his’her specialty. For example an officer should have the Navigation
speciaty in order to be assigned to the Navigation job for a ship, so there
needs to be an entity that describes al the specialties. Also, there should
be an entity that describes the specialties each job requires. Moreover, an
officer’s specialty must be stored too. The figures below show examples.

25

SIREAREEE

Figure9. Specialties-Manpower Database.

26

il Manporser - [Dats in Table " J08_SPECIALTY” in 'Manpower on “{LOCALY]

_'I__]_Hn_um_ g ___:|g|£1

B EEECF &Y R

o Ay
Corag HAY
EXQ HAY
WA HEY

Figure 10. Speciaties Required for Each Job-Manpower Database.

27

T+ Manpawes - [[ats in Table WPPLICANT in Manpower on (LOCALY]

B Fe Whndow Hap
I =R R | h¥ kN

13
[

+

- [Firzihiore

;.wm.—E
et
Fi

Figure 11. Officers Specialties-Manpower Database.

What is the education type an officer must have in order to be eligible for
a specific job? Which education type does an officer have?

An officer’s education type is one of the criteriafor assigning an officer to
a gpecific job. An entity must be created that contains the whole set of
education types, and another entity must describe the education that an
officer requires for a specific job. The officer’s education type must be
stored too. The figures below show pertinent examples.

28

an '{LOCAL]]

COMGR Comre.rscstiors Srhaol Greece
(OMISA Corrranications School LS
o] Dameage Corimal Schad
DGO Damace: Contral Schodd
jncal Carmaage Cortral Schad
DoCCH Mibzal Sehwoed Graat Briain
v wc: Medcal School Grese
DOCLES Mudbcal Schosl LSA

EL55H Hedraonics Schoo! Graat Brian
T Bactronics School Graes
ELGEA Eledranics Gohool UEA

FLLGE Firarcal Schoal Great Britan
FLLGR FArancal 5thed Gresse
FCLUSA Firarcel Schoal LSA,

MEOE Nechariza Sohool Great Britan
MEOSR Mecharic Sdhocd Greeoe
MECLISA Necharica Sohool USA
EVER hrvigation Schoal Gres firtan
AR harvigation School Grescs
MEVLSL tevigation Schoal US6
MPECS Cormputor Scion o NS

rEmE Herinizal Engnesring NP5
e Tl i Bt Sxjanes NPS:

= o] Oper sibons School Greai Britan
CPELEA Opar stiona Scheal LEA
FAMGE Prop_isan Schad Great Brian
PRRKGR,

PANUEA

Figure 12. Education types (Qualifications)-Manpower Database.

29

¥ Manpower - [Dats im Table 0B _QMRSLIFICATION & Manpower on “|LOCALF]

B EEEP ! T s

L] AW
MO HAYEE
EXO AW
M NEWR

Figure 13. Education Types (Qualifications) Required per Job-Manpower Database.

30

B EEE S & ‘B %

Figure 14. Officers Education (Qualifications)-Manpower Database.

What are the attributes an officer must have for a specific job? What is
the accepted level of each attribute for an officer to be assigned to a
specific job? What are the attributes and levels for each one of the
officers?

Diligence, bravery, and discipline are some of the attributes an officer
should have for ajob. An entity must be created to store al the available
attributes. Also, the minimum level of these attributes for each of the jobs
must be stored too. Another entity is required to describe the level of
attributes each officer has. The figures below show these examples.

31

+ 3, Manpawes - [Osta in Tahle TREDENTIALS in "Manpowes on. ' {LOCAE]]

B EEEP ! T s

o1 Diligenio=
o2 Cimereber
003 SALTECY
004 Moralty
05 Bravery
] Jried gero=
a7 Ciacipline
] [
[er] Coriedy
[k e} Grag=
[eEEY Fadrmess
o1z Mznzgament
Q13 Farsenty

Figure 15. Attributes (Credentials)-Manpower Database.

32

¥ Manpower - [Dats im Table "J0B_CAEDENTIALS fn ‘Mapposes’ on “[LOCALF]

i il S =25
B EEES ! ks

BEABYEAESEEEREAR

Figure 16. Attributes (Credentials) Required Per Job and Corresponding Minimum
Levels-Manpower Database.

33

CENEEEEENEENEEENS

Figure 17.

Officers’ Attributes (Credentials) and Corresponding Grades-Manpower
Database.

What are the languages an officer should speak in order to be applicable
for ajob? What are the minimum levels of these languages for a specific
job? What languages and at what level does the officer speak?

English and German could be language requirements for the job of the
Greek Naval Attachéin Germany. All these languages should be stored in
a specia entity created for that purpose. Also the languages that are
required for a specific job should be stored too, with their corresponding
minimum levels. Finally, the languages an officer can speak must be
stored too, as the figures below show.

¥ Manpower - [lsts in Table TARGUAGE in "Manpower on [LOCALY]

B e o mix]

B EEEO A Rt e

Figure 18. Languages-Manpower Database.

35

i Manpower - [Dats im Table "J0B_LAHGUAGL in ‘Manpower” on '(LOCALY]

i il S
B EEES s

BESGRTHE2RE

Figure 19. Languages Required Per Job and Corresponding Minimum Levels-
Manpower Database.

36

T2 Manpawes - [Dats i Table AFFLICANT_LANGUAGE' in Manpswer” sa ‘(LOCALY]

R
E 4 fo= o
Figure 20. Languages Officers Can Speak and Their Corresponding Grades-

Manpower Database.

Can an inexperienced officer be eligible for a job? What are the
acceptable levels of experience an officer should have for ajob?

The database should store the years of experience a job requires an officer
to have. It should also store the officer’s experience. For example, in
order to be a Navigation officer, somebody must have at least 1 year of
ship experience (see Figures 19 and 20).

37

i Manpower - [Dats im Table 0B in ‘Manpower' on '(LOCALY| |
i e [x|
B EEE) R

|

wa

2
g

Figure 21. Experience Per Job Required in Y ears-Manpower Database.

38

T Manpawer - [Dats i Table EXPERENCE in Manpawss on LDCALY]

By A hndow Heip

ggggggggggeaea

MAVD
v

A P T PP RS A S

R =

in

D s S S Sy

Figure 22.

Experience an Officer Has for Each Job in Y ears-Manpower Database.

What is the preference of an officer for a specific job belonging to a
specific platform/base?

The database should provide the means to store the preferences an officer
has for specific jobs. The officer’s relative preferences for different jobs
should be stored too. For example, an officer may prefer to be a
Navigation officer for a small ship or better, a Commanding officer for a
smaller ship. The figure below provides an example of officers
preferences.

39

‘a1 Marguwes - [Data in Table APPLICANT_PREFEREMCE in ‘Manpower’ on "{LDCALY]

W ofl widow Hep
BEEEC S e KR

~ls|x]

FLITITITTITITTTTT I+

-

Linbid
]
OO

gegagaze

2 M 2
?ageﬁé
E5¥°E

[Phaoeods [Preimrenosiogiond |
1
1

a

Figure 23. Officers’ Preferences-Manpower Database.

What are the command’ s preferences of the officers for a job that belongs
under that command?

The database should also store the various preferences a command has for
the officers that may occupy a job under that command. For example the
Frigate’s Command may prefer to have officer O; for the Commanding
Officer’s position of the FG HYDRA over officer O,. Figure 22 below
provides an example of acommands' preferences.

40

" Manpowes - [[sta in Table ‘COMMAND_PREFERENCE in ‘Mangower' on 'fLOCAL Y]

s] | MaceCode |Cormandlnde | PreferenoeCommand]
]t ﬁ.ﬂ FRA [

com Fin L
1 Esl FRH 2

[T mEH 3
] fua} FiH 2
E coma rEn 0
=2 B FRH 3
= hac ran L
EHE ca Fin L
| cowa FRH 3
] Eall #e o
=[a (s FRH 2
[iE] o FRi 3
= coma FRH 2
E] EuI] FRi 1
[|4 HaC FRH o
1 |

Figure 24. Commands' Preferences-Manpower Database.

B. ENTITY RELATIONSHIP DIAGRAM

The Entity Relationship Diagram (ERD) is a method of describing the entities and
the relationships between them. Since the ERD in this application is quite large, it is
reasonable to break it into parts in order to better understand the entities and the relations

between them. The entire ERD is presented in the Appendices.

In order to be consistent with the Greek Navy’s manpower database requirements
as outlined in the previous section and before describing the ERD in depth, we provide a

table listing all the entities with a short description of each.

41

Number

Entities

Description

JOB

Includes all the job information such as the job
name and the experience required for a job. It
also contains the priority of ajob. The priority is
ranked along ascending importance in levels 1
through 10. It is stored by the detailer and
describes the importance of a particular job.

APPLICANT

It contains the officer’s information like the
officer’s identification number, the officer’s last
name, first name, middle name, email address,
username and password for the website and
finally the officer’s rank and specialty.

ADDRESS

It includes the officer’ s address information, like
the city that the officer lives in, the street name
and number, the apartment and the zip code.

PHONE

It includes the officer’s phone numbers, like the
home phone number, the cell phone number or
any additional phone number the officer might
have.

COMMAND

It includes the command's data like the
command’'s name and the username and
password that is used for the website.

PLACE

It includes information like the base’ g/platform’s
name (where different kinds of jobs exist) and
image (a photo of the base/platform).

ASSIGNMENT

It includes al assignment information like the
job, the platform/base and the officer that is
assigned a particular job, the report date and the
detach date.

RANK

It includes al the possible ranks that an officer
may have or that ajob requires from an officer to
have.

LANGUAGE

It includes all the possible languages that an
officer may speak or that a job requires from an
officer to speak.

10

SPECIALTY

It includes all the possible specialties that an
officer may have or that a job requires from an
officer to have.

11

QUALIFICATION

It includes all the possible qualifications that an
officer may have or that a job requires from an
officer to have. An example of it is an entire
catalog of al the schools or educational
programs.

12

CREDENTIALS

It includes all the possible credentials that an
officer may have or that a job requires from an
officer to have. Some of them are diligence,

42

Number | Entities

Description

discretion, secrecy, discipline, etc.

13

EXPERIENCE

It includes the experience in years that an officer
has for a particular job. For example an officer y
has 1 year of experience for the job x. This
experience can be directly compared with the
experience that a job requires, which is stored in
the table of the entity JOB.

14

APPLICANT
PREFERENCE

It describes an officer's preference for a
particular job. It includes the officer, the job, the
platform/base and the preference. The latter one
is ranked along descending importance in levels
1 through 10.

15

COMMAND
PREFERENCE

It describes a command’ s preference concerning
a particular job that belongs to this command,
for which officer the command prefers to occupy
that job. It includes the officer, the job, the
platform/base, the command and the preference.
The latter one is ranked aong descending
importance in levels 1 through 10.

Table5.

All Entities with a Short Description of Each.

Below we present the various segments of the Manpower Database ERD.

1 Applicant-Address

APPLICANT

Applicantld

FirstName

LastName

MiddleName

ADDRESS

Foreign Key CityOrTown

Street

Number

1.1 0..M AQartment

RankCode

SpeciatyCode

UserName

Password

Email Address

DetailerCheck

DetailerPassword

ZIP

Applicantld

The relation is one-to-many since an officer may live in more than one residence.

Thus, the officer may have more than one address. The attribute Applicantld is the
foreign key from the entity ADDRESS referencing the entity APPLICANT.
2. Applicant-Phone

APPLICANT

Applicantld

FirstName

LastName

MiddleName

RankCode

SpeciatyCode

UserName

Password

EmailAddress

DetailerCheck

DetailerPassword

Foreign Key

0.1

PHONE

HomePhoneNumber

CedllPhoneNumber

OtherPhoneNumber

Applicantld

The relation is one-to-one. An officer may have one home phone number or one

cellular phone number or possibly another phone number. The attribute Applicantld is
the foreign key from the entity PHONE referencing the entity APPLICANT.

3. Applicant-Rank

APPLICANT

Applicantld

FirstName

LastName

MiddleName

RankCode

SpecialtyCode

UserName

Password

Email Address

DetailerCheck

DetailerPassword

1.M

Foreign K
/1.‘.31¥
>

RANK

RankCode

RankName

The relation is many-to-one since an officer has only one rank, but a rank may be

applied to many officers. For example an officer can have only the rank O2, but O2 can

be the rank of more officers. The attribute RankCode is the foreign key from the entity

APPLICANT referencing the entity RANK.

4, Job-Rank

JOB RANK
Jobld 1.M 1..N RankCode
< |
JobName RankName

ExperienceRequired

Priority

The relation is many-to-many since the ranks that a job requires for the officers to

have may be more than one. Also arank may be required for more than one job. For

example a Commander can be an officer with rank O3 or O4 or O5, and an officer with

rank O4 can be a Commander or a Base Commander.

5. Applicant-L anguage

APPLICANT

Applicantld

LANGUAGE

L anguageCode

FirstName

LastName

MiddleName

RankCode

SpecialtyCode

UserName

Password

Email Address

DetailerCheck

DetailerPassword

L anguageName

The relation is many-to-many since an officer can speak many languages, and

since a language can be spoken by many officers. For example an officer can speak

English and German, but also the German language can be spoken by many officers.

6. Job-L anguage

JOB LANGUAGE
JOBID <0..M O..I\l LANGUAGECODE
JOBNAME LANGUAGENAME

EXPERIENCEREQUIRED

PRIORITY

The relation is many-to-many since there can be many languages that a job

requires for the officers to speak. Also alanguage may be a requirement for many jobs.

For example a job can require an officer to speak both English and Spanish, while

English can be considered by many jobs as a requirement.

7. Applicant-Specialty

APPLICANT SPECIALTY

Applicantld Foreign K SpecialtyCode
FirstName 1.M /11' SpeciatyName
>

LastName

MiddleName

RankCode

SoecialtyCode

UserName

Password

Email Address

DetailerCheck

DetailerPassword

The relation is many-to-one since an officer has only one specialty, but a specialty
may be applied to many officers. For example, an officer can only have one specialty
like the Weapons speciaty. The Weapon specialty can be assigned to many officers.
The attribute SpecialtyCode is the foreign key from the entity APPLICANT referencing

the entity SPECIALTY.
8. Job-Specialty
JOB SPECIALTY
Jobld 0..M 1.N SpecialtyCode
JobName < > SpeciatyName

ExperienceRequired

Priority

The relation is many-to-many since the specialties that a job requires for the
officers to have may be more than one. Also a specialty may be applied for more than
one job. For example, a Commander can be an officer with Weapons specialty, or an
officer with Navigation speciaty, while the Weapons specialty can be a requirement for
both the Commander and the Weapons officer.

47

9. Applicant-Qualification

APPLICANT QUALIFICATION

Applicantld 1.M 1..N | QudlificationCode

FirstName QualificationName

LastName

MiddleName

RankCode

SpecialtyCode

UserName

Password

Email Address

DetailerCheck

DetailerPassword

The relation is many-to-many since an officer can have many qualifications, and
one qualification can be applied to many officers. For example, an officer can be a
graduate of both the Greek and the US Weapons Schools. Also, there could be many
officers that graduated the Greek Weapons School.

10. Job-Qualification

JOB QUALIFICATION
Jobld < 0..M > QualificationCode
JobName 1.N QualificationName

ExperienceRequired

Priority

The relation is many-to-many since a job can have many qualifications, and one
qualification can be applied to many jobs. For example a job may require that the
officers should have been graduated from both the Greek and the US Weapons Schools
and the Greek Weapons School could be arequirement for many jobs.

48

11.

APPLICANT

Applicantld

FirstName

LastName

Foreign Key

1.M

Applicant-Experience-Job

EXPERIENCE

Jobld

Applicantld

>

<1..1

MiddleName

RankCode

SpecialtyCode

UserName

Password

Email Address

DetailerCheck

DetailerPasswo
rd

Experience

Foreign Key JOB
> Jobld
JobName
1.M 11 ExperienceRequired
P > p €q
Priority

These are the relations between the three entities, the APPLICANT, the
EXPERIENCE, and the JOB entity. The attribute Applicantld is the foreign key from the
entity EXPERIENCE referencing the entity APPLICANT. The attribute Jobld is the
foreign key from the entity EXPERIENCE referencing the entity JOB.

12.

FirstName

<

LastName

MiddleName

RankCode

SpecialtyCode

UserName

Password

Email Address

Applicant-Credentials
APPLICANT

Applicantld 1.M

1.N

DetailerCheck

Detail erPassword

49

CREDENTIALS

Credentidsld

CredentiadsName

The relation is many-to-many since an officer can have many credentials, and a
credential can be assigned by many officers. For example an officer can be diligent and
brave, but also bravery can be a credential for many officers.

13. Job-Credentials

JOB CREDENTIALS
Jobld }..M 1..|* Credentidsld
JobName CredentialsName

ExperienceRequired

Priority

The relation is many-to-many since a job may require many credentials, and one
credential can be applied to many jobs. For example a job may require that the officers
should be diligent and brave and also bravery could be a requirement for many jobs.

14. Job-Place

JOB PLACE
Jobld 1.M 1.N PlaceCode
JobName < > PlaceName
ExperienceRequired Placelmage
Priority CommandCode

The relation is many-to-many since a platform/base may have more than one job.
Also, ajob can be in more than one platform/base. For example, the Navigation job is a
jobinevery ship. Also aship has many jobs like the navigation and the weapons jobs.

15. Command-Place

COMMAND PLACE
CommandCode Foreign Key PlaceCode
CommandName 1. 1.M PlaceName
UserName < > Placelmage
Password CommandCode

50

The relation is one-to-many. A Command may have many Platforms/Bases under
its command. The Platform/Base belongs to only one Command. For example, the
Frigates Headquarters have many ships under their command (e.g. FG HYDRA, FG
SPETSAI). On the other hand, FG HY DRA belongs only to the Frigates Headquarters.

16. Assignment-Job-Place-Applicant

JOB

Jobld

JobName

ExperienceRequired

Priority

1.1

11

PLACE

ﬂaceCode’

Pl aceNa??(e

P acel/iﬁage

CtyﬁmandCode

11

PlaceCode
ReportDate
DetachDate

APPLI(“(NT

Applicantld®

FirstName

LastName

MiddleName

RankCode

SpecialtyCode

UserName

Password

Email Address

DetailerCheck

DetailerPassword

51

This is a ternary relationship between the ASSIGNMENT, JOB, PLACE,
APPLICANT entities. The attribute Applicantld is the foreign key from the entity
ASSIGNMENT referencing the entity APPLICANT. The attribute Jobld is the foreign
key from the entity ASSIGNMENT referencing the entity JOB. The attribute PlaceCode
isthe foreign key from the entity ASSIGNMENT referencing the entity PLACE.

17. Command Preference-Command- Job Place-Applicant

JOB PLACE 1.1 COMMAND
Jobld Co*mmandCLde
PIaceCodek C}zfmmandName
UserName
1N / Password
COMMAND
EFERENCE
Ahgligantld /
S/
PlaceCode /
CommandCode ’
1.1 PreferenceCommand
APPLICANT
Applicantld ¥
FirstName
LastName
MiddleName
RankCode
SpeciatyCode
UserName
Password

Email Address

DetailerCheck

DetailerPassword

52

This is a ternary relationship between the COMMAND PREFERENCE,
COMMAND, JOB PLACE, APPLICANT entities. The attribute Applicantld is the
foreign key from the entity COMMAND PREFERENCE referencing the entity
APPLICANT. The attribute Jobld is the foreign key from the entity COMMAND
PREFERENCE referencing the entity JOB PLACE. The attribute PlaceCode is the
foreign key from the entity COMMAND PREFERENCE referencing the entity JOB
PLACE. The attribute CommandCode is the foreign key from the entity COMMAND
PREFERENCE referencing the entity COMMAND.

18. Applicant Preference- Job Place-Applicant
APPLICANT | 1.1 1.M APPLICANT
PREFERENCE
Applicantld | Foreign Key Applicantld
FirstName Jobld
LastName PlaceCode
MiddleName PreferenceApplicant
RankCode
SpeciatyCode
UserName
Password
Email Address
DetailerCheck
DetailerPassword

1M 1.1
< —>

| Fosonkey i

JOB PLACE

v

This is a ternary relationship between the APPLICANT PREFERENCE, JOB
PLACE, APPLICANT entities. The attribute Applicantld is the foreign key from the
entity APPLICANT PREFERENCE referencing the entity APPLICANT. The attribute
Jobld is the foreign key from the entity APPLICANT PREFERENCE referencing the
entity JOB PLACE. The attribute PlaceCode is the foreign key from the entity
APPLICANT PREFERENCE referencing the entity JOB PLACE.

53

C. RELATIONAL MODEL
The ERD can be automaticaly transformed into a set of tables which form a

schema in a target database management system such as SQL Server 2000 or Microsoft
Access. The attributes that are underlined below are the primary keys, the values of
which uniquely identify each row of the corresponding table. The attributes that in italics
are foreign keys, which are the primary keys of other tables embedded in order to
represent a relationship between the two tables.

APPLICANT (Applicantld, FirstName, LastName, MiddleName, RankCode FK,
FoecialtyCode FK, UserName, Password, Email Address, DetailerCheck,
DetailerPassword)

Applicantld is the officer’s identification number (e.g. A001), FirstName is the
officer’s first name (e.g. Kyriakos), LastName is the officer’s last name (e.g. Sergis),
MiddleName is the officer’s middle name (e.g. Nikitas), UserName and Password are the
officer’s user name and password the officer uses for the web site, EmailAddress is the
officer’s email address, DetailerCheck is a special Boolean attribute that is ‘yes for the
detailer and ‘no’ for the rest officers, and DetailerPassword is an extra password that only
the detailer has.

JOB (Jobld, JobName, ExperienceRequired, Priority)

Jobld is the job’s identification number (e.g. BCO), JobName is the job’s name
(e.g. Base Commander), and Priority is the priority of the job as it was described

previoudly (e.g. 9).

ADDRESS (CityOrTown, Street, Number, Apartment, ZIP, Applicantld FK)

CityOrTown is the city or town the officer lives (e.g. Athens), Street is the street
the officer’s residence exists (e.g. Markora), Number is the number of the building the
officer’s residence sits (e.g. 302), Apartment is the number of the officer’s apartment
(e.g. A), and ZIPisthe ZIP or Postal Code of the areathe officer lives.

54

PHONE (Applicantld FK, HomePhoneNumber, = CellPhoneNumber,
OtherPhoneNumber)

HomePhoneNumber is the officer’'s home phone number, CellPhoneNumber is
the officer’s cellular phone number, and OtherPhoneNumber is any other phone number

the officer has.

RANK (RankCode, RankName)

RankCode is the rank code (e.g. O3), and RankName is the name of the rank (e.g.
Lieutenant)

LANGUAGE (LanguageCode, LanguageName)

LanguageCode is the language code (e.g. EN), and LanguageName is the name of
the language (e.g. English)

SPECIALTY (SpecialtyCode, SpecialtyName)

SpecialtyCode is the specialty code (e.g. WPS), and SpecialtyName is the name
of the specialty (e.g. Weapons)

QUALIFICATION (QualificationCode, QualificationName)

QualificationCode is the qudification code (eg. WPSGR), and
QualificationName is the name of the qualification (e.g. Weapons School Greece)

EXPERIENCE (Jobld FK, Applicantld FK, Experience)

Experience is the years of experience e.g. 3 that the officer with Identification
Number (ID) Applicantld has for the job with ID Jobld.

55

COMMAND (CommandCode, CommandName, UserName, Password)

CommandCode is the command code (e.g. FRH), CommandName is the name of
the command (e.g. Frigates Headquarters), and UserName, Password are special user

names and passwords for each one of the commands.

PLACE (PlaceCode, PlaceName, Placel mage, CommandCode FK)

PlaceCode is the Platform or Base code (e.g. F-450), PlaceName is the name of
the Base/Platform (e.g. FG HYDRA), and Placelmage is the image of the Platform/Base

(e.g. F-450.jpeg)

APPLICANT PREFERENCE (Jobld FK, Applicantid FK, PlaceCode FK,
PreferenceA pplicant)

PreferenceApplicant is the preference (e.g. 7) of the officer with ID Applicantld
for the job with ID Jobld that is cited in the Platform/Base with code PlaceCode.

COMMAND PREFERENCE (Jobld FK, Applicantld FK, PlaceCode FK,

CommandCode FK, PreferenceCommand)

PreferenceCommand is the preference (e.g. 7) of the command with command
code CommandCode for the officer with ID Applicantld for the job with ID Jobld that is
sited in the Platform/Base with code PlaceCode.

CREDENTIALS (Credentialsid, CredentialsName)

Credentialsld is the ID of the credential (e.g. 001), and CredentialsName is the

name of the credential (e.g. diligence)

ASSIGNMENT (Applicantld FK, Jobld FK, PlaceCode FK, ReportDate,
DetachDate)

ReportDate and DetachDate are the report and detach dates of each one of the
assignments. Each assignment has aso the Applicantld of the officer who is assigned the

job with ID Jobld that sites in the Base/Platform with code PlaceCode.
56

In order to achieve redundancy of tables and to perform some additional
functionality, the following tables/entities are al so defined.

APPLICANT CREDENTIALS (Applicantld FK, Credentialsild FK,
CredentialsGrade)

CredentialsGrade is the grade (e.g. 7) of the credential with ID Credentialsld that
an officer with ID Applicantld has.

APPLICANT LANGUAGE (Applicantld FK, LanguageCode FK,
LanguageDegree)

LanguageDegree is the grade (e.g. 70) of the language with code LanguageCode
that an officer with ID Applicantld has.

JOB CREDENTIALS (Jobld FK, Credentialsid FK, CredentialsGrade)

CredentialsGrade is the minimum grade (e.g. 8) of the credential with ID
Credentialsld that an officer should have to be qualified for the job with ID Jobld.

JOB LANGUAGE (Jobld FK, LanguageCode FK, LanguageDegree)

LanguageDegree is the minimum grade (e.g. 8) of the language with code
L anguageCode that an officer should have to be qualified for the job with ID Jobld.

JOB PLACE (Jobld FK, PlaceCode FK)

Jobld is the ID of the job and PlaceCode refers to the Platform/Base the job
belongs to.

JOB QUALIFICATION (Jobld FK, QualificationCode FK)

Jobld is the ID of the job and QualificationCode refers to the qualification that is
required for that job.

57

JOB RANK (Jobld FK, RankCode FK)

Jobld is the ID of the job and RankCode refers to the rank that this job requires

from an officer to have.

JOB SPECIALTY (Jobld FK, SpecialtyCode FK)

Jobld is the ID of the job and SpecialtyCode refers to the specialty that this job

requires from an officer to have.

QUALIFICATION APPLICANT (Applicantld FK, QualificationCode FK)

Applicantld is the ID of the officer and QualificationCode refers to the
qualification that this officer has.

The table schema described above is actually the set of tables that was entered
into SQL Server 2000 in the Manpower Database and is described in section B.

The Manpower database meets al the requirements that are necessary for the
distribution of officers to jobs. The following chapter makes one step further on this
direction. It describes the algorithm, which is responsible for creating that distribution.
Then the detailer can intervene and change that distribution according to the Navy’'s
needs.

58

V. DECISION MODEL

In Chapter 111, we discussed the design of the database that holds all the relevant
information for the officers to jobs distribution. This distribution is achieved by an
algorithm that, when executed, solves the multi-criteria problem. The detailer can alter
any part of the entire solution according to the wishes of the Navy, and subsequently see

what effect it has on the overall “goodness’ of the assignment.

This chapter presents in full detail the philosophy and implementation of the
algorithm and utility function. In this chapter and in order to simplify the algorithm, the
word “job” will refer to the combination of ajob with a specific platform/base.

A. DECISION VARIABLES
In order for the algorithm to determine the most suitable officer for a specific job,

the algorithm takes into account the following decision variables.
Rank
Specialty
Qualifications
Language
Credentials
Experience
Officer’'s Preference

Command' s Preference
These variables are expressed in the form of values, which determine the

suitability of an officer for a specific job. This suitability is named H;; (wherei, j are the
indices of thei-th job J and j-th officer G; accordingly) and is expressed as a function of
the above eight variables.

Hi = Function (Rank, Speciaty, Qualifications, Language, Credentials,

Experience, Officer’s Preference, Command’ s Preference)

More specifically, the values of each one of the decision variables are as follows.

59

1 Rank

The Rank is expressed by a value, which is 1 if the O; officer has the appropriate
rank for the J job or O if the officer has not.

2. Specialty

The Specidty is expressed by a value, which is 1 if the O, officer has the
appropriate speciaty for the J job or O if the officer has not.

3. Qualifications

The Qualifications are expressed by a value, which is 1 if the O; officer has the
appropriate qualifications (qualification is considered the education of the officer for a
specific job) for the J job or O if the officer has not.

4, L anguage

The Language is expressed by a value in the rea interval [0,10], computed as
follows: First, the summation of the grades the O, officer has for the languages that are
required for the J job is computed. Then the summation of the minimum grades of these
languages required for the J; job is computed aso. If the first summation is smaller than
the second, the Language variable’'s value is 0. Else, the Language variable' s value is a
number between 1 and 10, according to a formula that takes into account the relative
difference of these two summations. Below is pseudocode that describes the computation

of the Language variable’'s value. Keep in mind that the maximum grade of each

language is 200.
Step 1: SUM1 = (Sum of grades the O, officer has for the languages required for J
job)
Step 2: SUM2 = (Sum of minimum grades of the languages required for J; job)
Step 3: COUNT = (Number of the languages required for J job)
Step 4: IF (SUM1 < SUM2) THEN
BEGIN
Step 5: Language; -> 0
END
Step 6: ELSE
BEGIN

60

Step 7: IF (COUNT x 200 = SUM2)

BEGIN
Step 8: Language; -> 1
END
Step 9: ELSE
BEGIN
Step 10: Language; -> [(SUM1-SUM2) x 9 / ((COUNT x 200)-
SUM2)] +1
END

END
The following example makesiit clear.

Consider an officer O, that is eligible for ajob J;. J; job requires the languages
English and German with minimum grades 160 and 120 (O is the minimum and 200 is the
maximum grade) accordingly. Officer O; speaks English with a grade of 180 and
German with agrade of 110. The value of the variable Language for the O, officer and J;

jobisasfollows.

Step 1: SUM1 = 180 + 110 = 290
Step 2; SUM2 = 160 + 120 = 280

Step 3: COUNT =2

Step 6: SUM1 = 290 > 280 = SUM2

Step 9: COUNT x 200 = 400 > 280 = SUM2

SUM1-SUM2=10
COUNT x 200 — SUM2 =400 — 280 = 120
Step 10: Language;; =[10x 9/120] +1=1.75
5. Credentials
The Credentials variable is an integer in the interval [0,10] and is computed as
follows: First, the summation of the grades the O; officer is evaluated for the credentials
that are required for the J job is computed. Then the summation of the minimum grades
of these credentials required for the J job is computed too. If the first summation is
smaller than the second, the Credentials variable's value is 0. Else, the Credentials

61

variable’'s value is a number between 1 and 10, according to a formula that takes into
account the relative difference of these two summations. Below is a pseudocode that
describes the computation of the Credentials variable’s value. Have in mind that the

maximum grade of each language is 10.

Step 1. SUM1 = (Sum of grades the O; officer is evaluated for the credentials
required for J job)
Step 2: SUM2 = = (Sum of minimum grades of the credentials required for J; job)
Step 3: COUNT = (Number of the credentials required for J job)
Step 4: IF (SUM1< SUM2) THEN
BEGIN
Step 5: Credentialsj -> 0
END
Step 6: ELSE
BEGIN
Step 7: IF (COUNT x 10 = SUM?2)
BEGIN
Step 8: Credentialsj -> 1
END
Step 9: ELSE
BEGIN
Step 10: Credentias; -> [(SUM1-SUM2) x 9 / ((COUNT x 10)-
SUM2)] +1
END
END

The following example makes it clear. Consider again officer O; that is eligible
for the job Ji. J; job requires the credentials Diligence and Bravery with minimum grades
9 and 8 (0 is the minimum and 10 is the maximum grade) accordingly. O; officer's
credential grades are 10 and 8 for Diligence and Bravery accordingly. The value of the

variable Credentials for the O, officer and J;job isasfollows.

62

Step 1: SUM1=10+8=18

Step 2: SUM2=9+8=17

Step 3: COUNT =2

Step 6: SUM1 = 18> 17 = SUM2

Step : COUNT x 10 = 20 > 17 = SUM2

SUM1-SuUM2=1
COUNT x10-SUM2=20-17=3
Step 10: Credentials;; =[1x9/3]+1=4
6. Experience
The Experience variable is expressed by a value in the rea interval [0,10],
computed as follows. If the experience the O, officer has on the J job is smaller than the
minimum experience required for the J job, the Experience variable’s value is 0. Else,
the Experience variable's value is a number between 1 and 10, according to a formula
that takes into account the relative difference of the experience the G; officer has on the J
job and the minimum experience required for the J job. Below is pseudocode that
describes the computation of the Experience variable’s value. Keep in mind that the
maximum experience an officer can have for a job is 15 years, and the minimum

experience required for ajob cannot be more than 10 years.

Step 1. OfficerExperience = (Experience the O, officer has on the J; job)
Step 2 JobExperience = (Minimum experience required for J, job)
Step 3: IF (OfficerExperience < JobExperience) THEN
BEGIN
Step 4 Experiencegj -> 0
END
Step 5: ELSE
BEGIN
Step 6: Experience; -> [(OfficerExperience — JobExperience) x 9/ (15 —
JobExperience)] + 1
END

63

The example with the same job and officer makes it clear. Consider again officer
O that is eligible for the job J;. J; job requires 3 years of experience. If the O, officer
has 1 year of experience on that job, the value of the Experience variable is 0. If the O,
officer has 4 years of experience on that job, the value of the Experience variableis[(4 —
3)x9/(15-3)] + 1 onatotal of 1.75.

7. Officer’s Preference

The Officer’s Preference value is an integer in the interval [1,10]. Since the value
stored in the APPLICANT PREFERENCE table is ranked by descending importance in
levels 1 through 10, the Officer’s Preference value is 11 minus the APPLICANT
PREFERENCE table value. If the officer does not have any preference for the job, the
Officer’s Preference valueis 0.

8. Command’s Preference

The Command’s Preference value is an integer in the interval[1,10]. Since the
value stored in the COMMAND PREFERENCE table is ranked by descending
importance in levels 1 through 10, the Command's Preference value is 11 minus the
COMMAND PREFERENCE table value. If the command does not have any preference
for the officer occupying the job that belongs to that command, the Command's
Preference valueisO.

0. Computation of the Goodness of Fit Index, Hj;

If the O; officer has a value of O for any of the Rank, Specialty or Qualifications
variables concerning job J, the H;; value is NULL. This means that the O; officer is not
eligible for the job J;.

In the case that O; officer is eligible for the J, job, the Hjj value is a function of the
remaining five decision variables. Each one of these variables may have different
importance, measured by the coefficient that is stored in the COEFFICIENT table (atable
that contains the coefficients and the coefficient numbers that are used to weight the
importance of each criterion described above). It is actualy a weight factor that, when
multiplied by the corresponding variables value, gives a weighted estimation of the

variables’ importance.

64

k=5
H, =1+& (C x Variablg,)
k=1

Addition with number 1 is necessary since the summation can be a non-negative
number and O values are not desirable for the utility function as we shall see below. ¢ is

the decision variable coefficient’ s value.

Now it may be seen why it is important normalize al the variable values to have
the same maximum and minimum scores, 10 and O respectively. If one variable has a
greater maximum value than the rest, it would have a bigger advantage over the
remaining variables and conversely, if one variable has lesser minimum value than the
rest, it would suffer a bigger disadvantage compared to the remaining variables especially

when multiplied by a coefficient.
The following example makes the computation of the H;; function clear.

Consider again officer O, and job J;. If one of the Ranky;, Speciatyi;, or
Qualificationsy; values is 0, then the O, officer is not eligible for the J; job, and the Hy;
valueisNULL.

Hll =NULL

Assume that Rank;;, Specialtys;, or Qualifications;; value are all greater than 0 as
follows:
Language Coefficientis1.c; =1
Credentials Coefficientis1l.c, =1
Experience Coefficientis1l. c3=1
Officer’s Preference Coefficientis2. ¢, = 2
Command’ s Preference Coefficient is2. cs = 2

J1 job requires the languages English and German with minimum grades
160 and 120 accordingly. Officer O, speaks English with a grade of 180
and German with a grade of 110.

Ji1 job requires the credentials Diligence and Bravery with minimum
grades 9 and 8 accordingly. O; officer’s credential grades are 10 and 8 for
Diligence and Bravery accordingly.

65

J1job requires 3 years of experience. Officer Oy has 4 years of experience
on that job.

Officer O, preference for the J; job, as it is stored in the APPLICANT
PREFERENCE tableis 2.

There is no preference of the command concerning the J; job for the Oy
officer. Thus, thereisno record in the COMMAND PREFERENCE table.

The H1; value is computed as follows.
From above, Language;; = 1.75
From above, Credentials;; = 4
Experiencer; = [(4—-3)x9/(15-3)] +1=175
Officer's Preference;; =11-2=9
Command' s Preference;; = 0

Hi1=1+ (C]_ X Languagell) + (Cz X Credential'511) + (C3 X Experiencell) +
(c4 x Officer’s Preferencer;) + (cs x Command's Preferencey;) = 1 + (1 x
1.75) + (1x 4) + (Lx 1.75) + (2x 9) + (2 x 0) = 26.5.

The computation of the H;; values is done with the ksergis.dec_H_Function stored
procedure. Also, the ksergis.dec_H_Fill stored procedure stores these H;; values in the H
table described in the previous chapter. Both of these procedures are presented in the
Appendix.

The nature of the utility function needs H;; valuesin the real interval [1,10], so the
Hij values need to be ‘normalized’ between these two limits. In order to perform this
‘normalization’, the maximum H;; value among all the O; officers per each J; job is first
stored in the MAX VALUE ALL JOBS table described in the previous chapter. This
table contains the max (H.;) for every J job. Then, for each O; officer every Hj; value is

normalized using the following function.
Hij = [Hij X 9/ max (H.j)] +1

The ksergis.dec H_Normalize stored procedure performs this conversion and the

new H;j value is stored back to the H table. This procedure is presented in the Appendix.

Take the last example and assume that max (H.;) = 28. Since the Hjy; value is
26.5, the new Hj; valueisthe following:
Hiy =[Hux9/max (H.)] +1=[26.5%x9/28] + 1=9.5178

66

B. ALGORITHM

The philosophy of the algorithm is greedy choice. It tries to pick the maximum
Hij value from the remaining O; officers per J job, beginning from the job with the
highest priority through the job with the lowest one. At the same time, it tries to

minimize the number of unassigned jobs.

The algorithm uses the following tables.

1 H Table

The H table contains the Job (Jobld, PlaceCode as described in Chapter 3), the
Officer and the corresponding HValue.

A visua representation is shown on the table below. Every H;; value is a number

between 1 and 10. There could be cellswith NULL values as it was mentioned before.

J1 J2 Jn
O1 Hi1 Hio Hin
O, Ho1 Ho Hon
Om H ml H m2 H mn

2. PRIORITY Table

The PRIORITY table contains the Job (Jobld, PlaceCode), the Detailer’s Priority
(the JOB entity’s Priority - different per Jobld as described in Chapter 3), the overal
Priority (a Counter that describes the sorting order of each Jobld, PlaceCode pair
according to the Detailer’ s Priority) and a Flag. An exampleis shown in the table below.

67

Job Detailer’sPriority Priority Flag
J 10 1 1
N} 10 2 1
N 9 3 1
N/ 9 4 1
NS 9 5 0
N’ 8 6 0
N/ 7 7 0
N 4 n 0

3. MAX VALUE Table

The MAX VALUE table contains the Job (Jobld, PlaceCode), the Officer
(Applicantld) and the Hjj max value (MAXValue), a value that is selected after the
algorithm completes the jobs-to-officers distribution. Applicantld corresponds to the
officer who has the MAXValue for the specific Job-Platform/Base pair. An example is
shown on the table below.

Job Officer Hi; max value
J Oy 6.83
N 02 8.76
Jn O« 9.52

4, USED APPLICANTSTable

The USED APPLICANTS table contains the Job (Jobld, PlaceCode) and the
Officer (Applicantld). Thisentity contains the officers of the used max H;; values per job
J, while the algorithm checks for any available max value on the 3., job. An exampleis
shown in the table below.

68

Job Officer
J 01, O3, Os
N O
N Os, Og

5. ASSIGNED APPLICANTSTable
The ASSIGNED APPLICANTS table contains the Officers (Applicantld) that
have been already assigned to jobs. An example is shown on the table below.

Officer

O,

Os

6. DELETED JOBS Table
The DELETED JOBS table contains the Jobs (Jobld, PlaceCode) for which a

match cannot be found. An example is shown on the table below.

Job

s

J

Before presenting the algorithm, there is a need to present a predicate that will be
used extensively in the algorithm. V; contains all the H;; values of the J job that are not
NULL and the corresponding O; officers do not belong to either the ASSIGNED
APPLICANTS table nor the USED APPLICANTS table. V; = {{H;j ? H for J job
(excluding NULL values)} —{H;; ? H: O; ? ASSIGNED APPLICANTS table} —{ H; ?
H: O; ?USED APPLICANTS table for J; job}}

69

Algorithm:

i refersto Priority of job J

Step 1: Compute the PRIORITY table and fill the Flag entries with O.
Step 2: Compute the H table.
Step 3: Delete thejobs on the PRIORITY table that have only null values on the H

table (adjust the Priority numbers on the Priority table) and populate the DELETED
JOBS table.

Step 4 i->1
Step 5: WHILE (i <= PRIORITY table length)
BEGIN

Step 6: Calculate V;
Step 7: IF (i =1) AND (Flag; = 1) AND (V1 = 0) THEN

BEGIN
Step 8: Delete Higher Priority Job (lowest Priority number) with
Flag=0
Step 9: Recalculate PRIORITY table length
Step 10: Delete al J, entries from the USED APPLICANTStable
Step 11: Recalculate V4

END
Step 12: IF (V; ?0) THEN

BEGIN
Step 13: Compute MAX(Hix) from the V; set
Step 14: Input MAX(Hik), Ok inthe MAX VALUE tablefor job J
Step 15: Input Oy in the ASSIGNED APPLICANTS table
Step 16: Flag -> 1
Step 17: i->i+1

END

70

Step 18: ELSE

BEGIN
Step 19: Delete H;.;r and P, from the MAX VALUE table for job J.;
Step 20: Delete O, from the ASSIGNED APPLICANTS table
Step 21 Input Oy inthe USED APPLICANTS table for job J.;
Step 22 Delete dl J entries from the USED APPLICANTS table
Step 23: i->i-1

END
END

The following example considers the case when there are five officers to be

assigned to 6 Jobs. For this demonstration and in order to keep it smple, the Hj; values

are considered to be positive numbers with no upper bound limit.
After Step 1the PRIORITY tableis:

Job Detailer’s Priority Priority Flag

J 10 1 0

N 10 2 0

N 9 3 0

N/ 8 4 0

I 8 5 0

J 7 6 0

Suppose that after Step 2 the H table looks like:
J1 Jz J3 J4 Js Js

O, 10
0O, 20 40 15 60
O3 35
O4
Os 40

71

The empty cellsare NULL values.

After Step 3 the H table becomes:

J 1 Jz J3 J5 'J6
O 10
O, 20 40 15 60
O3 35
Oy
Os 40
The Priority table becomes:
Job Detailer’s Priority Priority Flag
J 10 1 0
N} 10 2 0
N 9 3 0
N 8 4 0
Js 7 5 0
And the DELETED JOBS table becomes:
Jobs Js

After Step4:i=1

After Step 5: WHILE (1 <=5)

After Step 6: V1 = {{10, 20} - 0- 0} ={10, 20}

Step 7 IF statement is False since Flagy =0and V1, ? 0
Step 12 IF statement is TruesinceV, ? 0

After Step 13: MAX(Hix) = Hi2= 20 for Oy
After Step 14 20, O, are put in the MAX VALUE tablefor job J;

72

MAX Vauetable:

Job Officer

max value Hj;

J]_ O2

After Step 15 O2 is put in the Assigned Applicants table

Assigned Applicants table:

Officer

O,

After Step 16 Flag; = 1

The PRIORITY table becomes:

Job Detailer’s Priority Priority Flag
J 10 1 1
N} 10 2 0
N 9 3 0
N3 8 4 0
J 7 5 0

After Step 171 =2

After Step 5: WHILE (2 <=5)

After Step 6: V, ={{40, 35}-{40} - 0} ={35}
Step 7 |IF statement is False sincei = 2

Step 12 IF statement is TruesinceV, ? 0
After Step 13: MAX(Hz) = Haz= 35 for O3

After Step 14 35, Oz are put in the MAX VALUE table for job J,

73

MAX Vauetable:

Job Officer max value Hj;
J 02 20
N/) O3 35
After Step 15 Ozis put inthe ASSIGNED APPLICANTStable
Assigned Applicants table:
Officer 02, O3
After Step 16 Flag, = 1
The PRIORITY table becomes:
Job Detailer’s Priority Priority Flag
N} 10 1 1
N 10 2 1
I 9 3 0
J 8 4 0
J 7 5 0

After Step 171 =3

After Step 5: WHILE (3 <= 5)

After Step 6: V3 ={{15}-{15} - 0} =0
Step 7 IF statement is False sincei =3
Step 12 IF statement isFalse since V3 =0

Step 18 Else statement is True
After Step 19 Hyz and Os are deleted from the MAX VALUE table for job J,

MAX Vauetable:
Job Officer max value Hj;
J O, 20

74

After Step 20 Os is deleted from the ASSIGNED APPLICANTS table

Assigned Applicants table:

Officer O,

After Step 21 Oz isput inthe USED APPLICANTS table for job J,

USED APPLICANTS table:

Job Officer

N/} O3

After Step 22 dl J; entries are deleted from the USED APPLICANTS table. In this case
thereisno entry for J;

After Step 231 =2

After Step 5: WHILE (2 <=5)

After Step 6: V, ={{40, 35}-{40}-{35}} =0

Step 7 |F statement is False since i = 2

Step 12 IF statement isFalsesince V, =0

Step 18 Else statement is True

After Step 19 Hi, and O, are deleted from the MAX VALUE table for job J. The MAX
VALUE table is empty

After Step 20 O, is deleted from the ASSIGNED APPLICANTS table. The ASSIGNED
APPLICANTS tableis empty

After Step 21 O, isput inthe USED APPLICANTS table for job J;

Used Applicants table:

Job Officer
J]_ O2
N} O3

After Step 22 all J, entries are deleted from the USED APPLICANTS table.

75

Used Applicantstable:

Job Officer

J]_ O2

After Step 23i =1

After Step 5: WHILE (1 <=5)

After Step 6: V1 ={{10, 20}- 0- {20}} = 10

Step 7 |IF statement is False sinceV, ? 0

Step 12 IF statement is TruesinceV; ? 0

After Step 13: MAX(Hw) = H1; =10 for Oy

After Step 14 10, O, are put in the MAX VALUE table for job J;
MAX Valuetable:

Job Officer max value Hj

J O: 10

After Step 15 O1 isput in the ASSIGNED APPLICANTS table

ASSIGNED APPLICANTS table:

Officer o]}

After Step 16 Flag; = 1

After Step 171 =2

After Step 5: WHILE (2 <=5)

After Step 6: V, ={{40, 35}- 0- 0} ={40, 35}

Step 7 |IF statement is False sincei = 2

Step 12 IF statement is TruesinceV, ? 0

After Step 13: MAX(Hz) = Hz = 40 for O,

After Step 14 40, O, are put in the MAX VALUE table for job J,

76

MAX Vauetable:

Job Officer max value Hj;
J O 10
N7 Oz 40

After Step 15 Oz isput inthe ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer Oy, Oz

After Step 16 Flag, = 1

After Step 171 =3

After Step 5: WHILE (3 <=5)

After Step 6: V3 ={{15}-{15} -0} =0

Step 7 IF statement is False sincei =3

Step 12 IF statement isFalsesince V3 =0

Step 18 Else statement is True

After Step 19 Hy, and O, are deleted from the MAX VALUE tablefor job J,

MAX Value table:
Job Officer max value Hj;
J O 10

After Step 20 O, is deleted from the ASSIGNED APPLICANTS table

ASSIGNED APPLICANTS table:

Officer o]}

After Step 21 Ozisput inthe USED APPLICANTS table for job J,

77

USED APPLICANTS table:

Job Officer
J]_ O2
N/} O

After Step 22 all J; entries are deleted from the USED APPLICANTS table. In this case
thereis no entry for J;

After Step 231 =2

After Step 5: WHILE (2 <=5)

After Step 6: V, ={{40, 35} - 0-{40}} =35

Step 7 |IF statement is False sincei = 2

Step 12 IF statement is True since V, ? 0

After Step 13: MAX(Hz) = Haz= 35for O

After Step 14 35, Oz are put in the MAX VALUE table for job J,

MAX Vauetable:
Job Officer max value Hj;
J O, 10
N/ O3 35

After Step 15 Ozis put in the Assigned Applicants table

Assigned Applicants table:

Officer 01, O3

After Step 16 Flag, = 1

After Step 171 =3

After Step 5: WHILE (3 <= 5)

After Step 6: V3 ={{15} -0-0} =15
Step 7 IF statement is False sincei =3
Step 12 IF statement is True since V3 ? 0

78

After Step 13: MAX(Hgk) =Hs=15 for 02
After Step 14 15, O, are put in the MAX VALUE table for job J;

MAX Valuetable:
Job Officer max value Hj;
J O, 10
N/) O3 35
N O, 15
After Step 15 O, isput in the ASSIGNED APPLICANTS table
ASSIGNED APPLICANTS table:
Officer 04, 03, 02
After Step 16 Flags = 1
The PRIORITY table becomes:
Job Detailer’s Priority Priority Flag
N} 10 1 1
NS 10 2 1
I 9 3 1
N3 8 4 0
Js 7 5 0

After Step 171 =4

After Step 5: WHILE (4 <=5)

After Step 6: V4 = {{60}-{60} - 0} =0
Step 7 IF statement is False sincei = 4
Step 12 IF statement isFalsesince V4 =0

Step 18 Else statement is True
After Step 19 Hs, and O, are deleted from the MAX VALUE table for job Js.

79

MAX Vauetable:

Job Officer max value Hj;
J O 10
N7 O3 35

After Step 20 O, isdeleted from the ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer Oy, O3

After Step 21 Oisput inthe USED APPLICANTS table for job Js

USED APPLICANTStable:

Job Officer
J Oz
N O,
I O,

After Step 22 all J, entries are deleted from the USED APPLICANTS table. In this case
thereisno entry for Js

After Step 231 =3

After Step 5: WHILE (3 <=5)

After Step 6: V3 ={{15} - 0-{15}} =0

Step 7 IF statement is False sincei =3

Step 12 IF statement is False since V3 =0

Step 18 Else statement is True

After Step 19 Hpz and Oz are deleted from the MAX VALUE table for job J,.

80

MAX VALUE table:

Job

Officer

max value Hj;

J

O

10

After Step 20 Osis deleted from the ASSIGNED APPLICANTS table

ASSIGNED APPLICANTS table:

Officer

O1

After Step 21 Ozisput inthe USED APPLICANTS table for job J,

USED APPLICANTS table:

Jaob Officer
J O,
N Oy, O3
N O,

After Step 22 all J; entries are deleted from the USED APPLICANTS table.

USED APPLICANTS table:

Job Officer
J]_ O2
N/} 0O,, O3

After Step 231 =2

After Step 5: WHILE (2 <= 5)

After Step 6: V,={{40, 35} - 0- {40, 35}} =0

Step 7 IF statement is False sincei = 2

Step 12 IF statement isFalsesince V, =0

Step 18 Else statement is True

After Step 19 Hy; and O; are deleted from the MAX VALUE table for job J. The MAX
VALUE tableis empty

81

After Step 20 O, is deleted from the ASSIGNED APPLICANTS table. The ASSIGNED
APPLICANTS table is empty
After Step 21 Oy isput inthe USED APPLICANTS table for job J,

USED APPLICANTStable:

Job Officer
J O, O1
N/} O, O3

After Step 22 all J, entries are deleted from the USED APPLICANTS table.

USED APPLICANTStable:

Job Officer

J Oy, O

After Step 23i =1

After Step 5: WHILE (1 <=5)

After Step 6: V, ={{10, 20} - 0-{10, 20}} =0

Step 7 IF statement isTruesincei =1, Flagg=1andV; =0

After Step 8 Js is deleted from the PRIORITY table, since it’s the Higher Priority Job
(lowest Priority number) with Flag=0

The H table becomes;

J1 J2 Js Js
O 10
0)) 20 40 15
O3 35
O4
Os 40

82

The PRIORITY table becomes:

Job Detailer’s Priority Priority Flag
J 10 1 1
N 10 2 1
I 9 3 1
Jo 7 4 0

And the DELETED JOBS table becomes:

Jobs I, Js

After Step 9 the PRIORITY table length isrecalculated to 4

After Step 10 all J; entries are deleted from the USED APPLICANTS table. The USED
APPLICANTS table is empty

After Step 11: V, ={{10, 20} - 0- 0} ={10, 20}

Step 12 IF statement isTruesinceV; ? 0

After Step 13: MAX(Hw) = H12= 20 for O,

After Step 14 20, O, are put in the MAX VALUE table for job J;

MAX VALUE table:
Job Officer max value Hj;
J O 20

After Step 15 O,isput in the ASSIGNED APPLICANTS table

ASSIGNED APPLICANTS table:

Officer O,

After Step 16 Flagy = 1
After Step 171 =2
After Step 5: WHILE (2 <=4)
83

After Step 6: V, ={{40, 35}-{40} - 0} ={35}

Step 7 |IF statement is False sincei = 2

Step 12 IF statement is Truesince V, ? 0

After Step 13: MAX(Hz) = Haz= 35 for Os

After Step 14 35, Oz are put in the MAX VALUE table for job J,

MAX VALUE table:
Job Officer max value Hj;
J 02 20
N Os 35

After Step 15 Ozis put inthe ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer Oy, O3

After Step 16 Flag, = 1

After Step 171 =3

After Step 5: WHILE (3 <= 4)

After Step 6: V3 ={{15}-{15} -0} =0

Step 7 IF statement is False sincei =3

Step 12 IF statement isFalsesince V3 =0

Step 18 Else statement is True

After Step 19 Hpzand Os are deleted from the MAX VALUE tablefor job J,

MAX VALUE table:
Job Officer max value Hj;
J Oz 20

After Step 20 Oszis deleted from the ASSIGNED APPLICANTStable

84

ASSIGNED APPLICANTS table:

Officer O,

After Step 21 Ogzisput inthe USED APPLICANTS table for job J,

USED APPLICANTS table:

Job Officer

N/} O3

After Step 22 dl J; entries are deleted from the USED APPLICANTS table. In this case
thereisno entry for J;

After Step 231 =2

After Step 5: WHILE (2 <= 4)

After Step 6: V, ={{40, 35}-{40}-{35}} =0

Step 7 IF statement is False sincei = 2

Step 12 IF statement is False sinceV, =0

Step 18 Else statement is True

After Step 19 Hy and O, are deleted from the MAX VALUE table for job J;. The MAX
VALUE tableis empty

After Step 20 O, is deleted from the ASSIGNED APPLICANTS table. The ASSIGNED
APPLICANTS tableis empty

After Step 21 Oisput inthe USED APPLICANTS table for job J,

USED APPLICANTStable:

Job Officer
J]_ O2
N O3

After Step 22 all J, entries are deleted from the USED APPLICANTS table.

85

USED APPLICANTStable:

Job Officer

J]_ O2

After Step 23i =1

After Step 5: WHILE (1 <= 4)

After Step 6: V1 ={{10, 20}- 0- {20}} = 10

Step 7 IF statement is False sinceV, ? 0

Step 12 IF statement is TruesinceV; ? 0

After Step 13: MAX(Hix) = H11= 10 for Oy

After Step 14 10, O, are put in the MAX VALUE table for job J;

MAX VALUE table:
Job Officer max value Hj;
J O 10

After Step 15 Oz isput inthe ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer ol

After Step 16 Flag; = 1

After Step 171 =2

After Step 5: WHILE (2 <= 4)

After Step 6: V, ={{40, 35}- 0- 0} ={40, 35}

Step 7 IF statement is False sincei = 2

Step 12 IF statement is Truesince V, ? 0

After Step 13: MAX(Hak) = He = 40 for Oy

After Step 14 40, Oy are put in the MAX VALUE table for job J,

86

MAX VALUE table:

Job Officer max value Hj;
J O 10
V) Oz 40
After Step 15 O,isput in the ASSIGNED APPLICANTS table
ASSIGNED APPLICANTS table:
Officer 01, Oz

After Step 16 Flag, = 1
After Step 171 =3

After Step 5: WHILE (3 <= 4)
After Step 6: V3 ={{15}-{15} -0} =0
Step 7 IF statement is False sincei =3

Step 12 IF statement isFalse since V3 =0

Step 18 Else statement is True

After Step 19 Hy, and O, are deleted from the MAX VALUE table for job J,

MAX VALUE table:
Job Officer max value Hj;
J O 10

After Step 20 O, is deleted from the ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer

O

After Step 21 Oisput inthe USED APPLICANTS table for job J,

87

USED APPLICANTStable:

Job Officer
J]_ O2
N} Oz

After Step 22 dl J; entries are deleted from the USED APPLICANTS table. In this case
thereisno entry for J;

After Step 231 =2

After Step 5: WHILE (2 <= 4)

After Step 6: V, ={{40, 35} - 0-{40}} =35

Step 7 IF statement is False since i = 2

Step 12 IF statement is TruesinceV, ? 0

After Step 13: MAX(Hz) = Haz = 35for O

After Step 14 35, Oz are put in the MAX VALUE table for job J,

MAX VALUE table:
Job Officer max value Hj;
J O1 10
N O3 35

After Step 15 Ozis put in the ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer Oy, O3

After Step 16 Flag, = 1

After Step 171 =3

After Step 5: WHILE (3 <= 4)

After Step 6: V3 ={{15} -0-0} =15
Step 7 IF statement is False sincei =3

88

Step 12 IF statement is Truesince V3 ? 0
After Step 13: MAX(H3k) =Hs=15 for 02
After Step 14 15, O, are put in the MAX VALUE table for job J;

MAX VALUE table:
Job Officer max value Hj

J 0] 10
N7 Os 35
N O, 15

After Step 15 Oz isput in the ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer 04, 03, 02

After Step 16 Flags = 1

After Step 171 =4

After Step 5: WHILE (4 <=4)

After Step 6: V4, ={{40} -0-0} =40

Step 7 |IF statement isFalse sincei =4

Step 12 IF statement isTruesince V4?0

After Step 13: MAX(Hak) = Has= 40 for Os

After Step 14 40, Os are put in the MAX VALUE table for job Js

MAX VALUE table:
Job Officer max value Hj;
J O, 10
N7} O3 35
N O, 15
N Os 40

89

After Step 15 Osis put in the ASSIGNED APPLICANTStable

ASSIGNED APPLICANTS table:

Officer Oy, O3, Oz, Os
After Step 16 Flagy =1
The PRIORITY table becomes:
Job Detailer’s Priority Priority Flag
N} 10 1 1
N7 10 2 1
N 9 3 1
J 7 4 1
After Step 171 =5
After Step 5: WHILE (5<=4) isFase
...And thisisthe end of the algorithm.
Theresultsare:
H table:
J1 J2 Js Js
O 10
O 20 40 15
Os 35
Oy
Os 40

90

PRIORITY table:

Job Detailer’s Priority Priority Flag
J 10 1 1
N} 10 2 1
I 9 3 1
Js 7 4 1

USED APPLICANTStable:

Job Officer
Jl O2
N} Oz

ASSIGNED APPLICANTS table:

Officer Oy, Oz, Oy, Os
DELETED JOBStable:
Jobs I, Js
MAX VALUE table:
Job Officer max value Hj;
J O, 10
N/} O3 35
N O, 15
J Os 40

The agorithm and all the supportive code are presented in the Appendices. The

code iswritten in Transact-SQL and is stored in stored procedures.

91

Before continuing to the description of the utility function, there is a problem that
could occur and should be addressed. Consider the following case of 3 jobs to be
distributed to 3 officers:

NJ1 J2 J3
0O, 10 10 10
O, 10 10 9
O3 10 9 9

The problem is that all the officers have the same maximum HValue (10 for this
instance) for J; job and 2 of them have the same maximum HValue (10 again) for J, job.

If the algorithm chooses O; officer for J; job, then the final distribution will be the

following.
Job Officer max value Hj;
J O1 10
N O, 10
N O3 9

Apparently, the algorithm made a wrong decision when it picked up O, officer for
Jy job. It should pick up Oz officer for J; job first, then O, officer for J, job and finally O,
officer for J; job. Any other combination does not give the desired outcome. The final
distribution will be the following.

Job Officer max value Hj;
J O3 10
N O, 10
I O1 10

So, there should be a way to address that problem. The following example will
help towards that direction.

92

J1 Jo NES Ja
O, 10 10 7 10
O 10 10 9 8
O3 10 9 8 7
Oy 10 8 10 10

The following tables are constructed in order to help the algorithm to make the

correct decision.

a. Same Max Value

This table stores the Officers that have the same max HValue. For the
above example it will store the O;, O,, O3 and O, officers since they al have the same
max HVa ue 10.

b. Min Value Applicants

Looking carefully at the above example, the O3 officer row for jobs J, J
and J,, does not contain any max HValue like the rest rows have. For example O, officer
row has 1 max HValue (10) under job J,, O, officer row has 2 max HValues (10) under
jobs J and J,, and finally O, officer row has 2 max HVaues (10) under jobs J; and Js.
Thistable stores the O; officer and the HValue 9, which is the HVaue of the same officer
Os for the job with the next lower priority (job J).

C. Multiple Max Values

Again, looking at the above example job J, has 2 max HVaues (10) under
it, for officers O, and O,. Also, job J, has 2 max HValues (10) under it, for officers O,
and O4. This table stores these jobs that have multiple max HValues under them, with
their corresponding officers. For thisinstance it stores the J,, O; pair, the J,, O, pair, the
Js, O1 pair and the J,, Oy pair.

d. One Max Value

Again, looking at the above example job J; has 1 max HVaue (10) under
it, for the officer O4. This table stores these jobs that have only one max HValue under

them, with their corresponding officers. For thisinstance it stores only the J;, O,4 pair.

The agorithm below, a sub-algorithm of the main one, is solving this
problem taking into account the tables just described.
93

Assume that there are multiple max HVaues on the J job. The algorithm

returns one of these officers (with the same max HValue) for the J; job.

Algorithm:
Step 1: Fill SAME MAX VALUE table
Step 2: For All officers? SAME MAX VALUE

BEGIN
Step 3: Find O; that has no max HValue for al jobs J with priorities P, <
P
Step 4: For this O; select H; i+1, where J..1 is the job with the next lower
priority of job J;
Step 5: Input H; i+1and O; in MIN VALUE APPLICANTS table

END
Step 6: IF (MIN VALUE APPLICANTS ?0)

BEGIN
Step 7: Select O, with min (Hy, i+1) where O, and Hpjv1 ? MIN VALUE
APPLICANTS
Step 8: Return Op,

END
Step 9: ELSE

BEGIN
Step 10: For All jobs Jx with priorities Pc < P

BEGIN
Step 11. Find J, jobs that have one max HVaue for al the rest
officers
Step 12 Find correspondent officer Og
Step 13: Find Jy jobs that have multiple max HValues for all the rest
officers
Step 14 Find correspondent officers O;
Step 15: Input J,, Os pair in ONE MAX VALUE table
Step 16: Input Jy, O; pairsin MULTIPLE MAX VALUES table
END

94

Step 17:

Step 18:

Step 19:

MAX VALUES

Step 20:

Step 21:

Step 22:

Step 23:

IF (MULTIPLE MAX VALUES?0)
BEGIN
IF rest jobs J with priorities P, < P, are more than 2
BEGIN
Select Os with min (Hs i+1), where Os ? MULTIPLE

IF (min (Hs i+1) < max (H;,i+1) for al O))
BEGIN
Return Os
END
ELSE
BEGIN
Select officer Os ? MULTIPLE MAX

VALUESwith Hg i+1 = max (H;, i+1) that has the least number of max HValues beyond J+1

AND the job that has one of these max HValues, has the lowest priority.

Step 24:

Step 25:

Step 26:
MAX VALUES
Step 27:

Step 28:

Step 29:

MAX VALUES
Step 30:

Return Os
END
END
ELSE IF rest jobs J with priorities Py < P, are 2
BEGIN
Select Os with min (Hs i+2), where Os ? MULTIPLE

Return Os
END
ELSE IF rest jobs J with prioritiesPy < P, are 1
BEGIN
Select Os with min (Hs i+1), where Os ? MULTIPLE

Return Og
END
END

95

Step 31: ELSE IF (MULTIPLE MAX VALUES = 0) AND (ONE MAX
VALUE ?0)
BEGIN
Select Os ? ONE MAX VALUE, where the correspondent
J has priority Pc < P,.; and Py is minimum

Step 32: Return Os

END
Step 33: ELSE

BEGIN
Step 34: Choose O randomly
Step 35: Return Os

END

END

The following examples demonstrate the use of the algorithm.

Example 1:
J1 Jo J3 Ja
01 10 10 7 9
O, 10 8 9 10
O3 10 7 8 10
O4 10 6 10 8

After Step 1 the SAME MAX VALUE table becomes

SAME MAX VALUE table:

Officer O1, Oy, O3, Oy

96

Step 6 statement is False since beyond J; job, O; officer row has 1 max HVaue (10)
under job J,, O, officer row has 1 max HValue (10) under job Js;, Os officer row has 1
max HValue (10) under job J, too, and finally O, officer row has 1 max HValue (10)
under job Js.

After the loop from Step 10 to Step 16, we have:

MULTIPLE MAX VALUES table:

Job Officer
J4 O2
J4 O3
ONE MAX VALUE table:
Job Officer
N} O
N Oy

Step 17 istrue (MULTIPLE MAX VALUES ? 0)

Step 18 is true since the jobs J with priorities Pc < P, are more than 2 (these are J,, J,
Js).

After Step 19 the min (Hs i+1) is Hzx = 7 of O3, since for officers O,, O3 ? MULTIPLE
MAX VALUES, Hz, =7 <8 =Hy,.

After Step 21 the algorithm is ended and officer Osis returned.

Example 2:
J1 NP! J3 Ja
0O; 10 10 7 10
(o)) 10 8 9 7
O3 10 7 8 8
Oy 10 6 10 10

97

After Step 1 the SAME MAX VALUE table becomes

SAME MAX VALUE table:

Officer O1, Oz, 03,04

After the loop from Step 2 to Step 5, we have:

MIN VALUE APPLICANTS table:

Officer HValue
0O, 8
O; 7

Step 6 statement is True
After Step 7 officer Oz isselected since Hz, =7 <8=Hy,
After Step 8 the algorithm is ended and officer Ozis returned.

Example 3:
J1 NP! J3 Ja
O, 10 10 7 7
0O, 10 8 10 8
O3 10 7 9 10
Oy 10 10 8 9

After Step 1 the SAME MAX VALUE table becomes
SAME MAX VALUE table:

Officer 01, Oy, O3, O4

Step 6 statement is False since beyond J; job, O; officer row has 1 max HVaue (10)
under job J,, O, officer row has 1 max HValue (10) under job J;, O; officer row has 1
max HVaue (10) under job J4, and finally O, officer row has 1 max HValue (10) under
job .

98

After the loop from Step 10 to Step 16, we have:

MULTIPLE MAX VALUES table:

Job Officer
N O1
N/} O4
ONE MAX VALUE table:
Job Officer
N O
A O3

Step 17 istrue (MULTIPLE MAX VALUES ?0)

Step 18 is true since the jobs J with priorities Pc < P, are more than 2 (these are J,, J,
Jg).

After Step 19 the min (Hs i+1) = 10, since for officers O;, O4 ? MULTIPLE MAX
VALUES, Hiz = Hsy = 10.

Step 20 isfalse since min (Hs,i+1) = 10 = max (H;,i+1)

Step 22 istrue

After Step 23 officers O, and O4 have no max HValue beyond job J, for each individual
row.

After Step 24 the algorithm is ended and officer O, is returned.

In the next section the Utility Function is described in full detail.
C. UTILITY FUNCTION

The Utility Function tries to capture the concept and philosophy of the algorithm
and express it in a mathematical model. The Utility Function helps the detailer to
evaluate any changes he/she makes on the solution set and compare the change with the

result of the algorithm.

The Utility Function should be a summation of factors that will express both the

priority of the J; job and the Hj; value that is selected for that job.
99

n
Utility Function = & Factor, Q)
i=1
and
Factor;; = Function (P;, Hj) (2

Factor;; is a function of the priority P, of the J job, Hj; is the value of the selected
pair of J job and O; Officer, and n is the total number of the selected jobs that form the
solution. Intuitively this Factor;; should be the multiplication of the H;; value with the P,
priority. The priority P, is like a coefficient (weight) that multiplied with the H;; value
gives the degree of importance the H;; value is for the entire solution.

Factorj = P, X Hj; 3

The main idea is that the summation of the factors of two adjacent jobs of the
algorithm’s solution should always be greater than the summation of the factors of the
same adjacent jobs of the changed solution. ‘Adjacent jobs are jobs that their priority

has 1 value difference.

In order to explain that better, consider the case of a2 x 2 matrix of the H table.

Jz 'Jl
O] Ho1 Hi1
O, Ho Hi2

Job J, has apriority P,, which is greater than the priority P; of job J;.
P>P=>P=P,-1 (4)

Suppose that al the H;; values are not NULL and that Ha; value is greater than Hy,
value and Hi; value is greater than Hy, value. The algorithm will pick the Hy; value first
because it belongs to the job with higher priority P,, and then it will choose the remaining
Hi, value. Below, the H;; valuesin bold are those that are selected by the algorithm.

100

Jz 'Jl
O] Ho21 Hi1
O, H2o Hio
H21> Ho, Hi1 > Hypo (5)

There is only one change that the detailer could make, and that is select the Hy,
value first and then select the remaining Hy; value (the values in italics in the table
above). The Utility Function should give a bigger result value for the algorithm solution,
than for the change the detailer makes. The Utility Function result for the two cases is

shown below.

Algorithm Solution:

Utility Function = Factor,; + Factori, = Function (P, H21) + Function (P, Hiz) (6)

Detailer Change:

Utility Function = Factor,, + Factor;; = Function (P, Hy,) + Function (P, Hin) (7)

It should be that:
Utility Function Algorithm Solution > Utility Function Detailer Change => 8)
Function (P,, Hz1) + Function (P1, H12) > Function (P, Hy,) + Function (P, Hi1) (9)

Apparently, thisis very hard to succeed since the value of each factor isrelativeto
the P, and H;; values. There should be away to benefit the factor with the higher priority.
The factor of the higher priority should be bigger by t times the factor of the next lower
priority in order for type (8) to betrue.

For the case above, the Utility Function should be the following.
Utility Function = t x Factory; + Factor; (10)

Type (9) is changed into the following form.
t x Function (P,, Hz) + Function (Py, Hy,) >t x Function (P,, Hz) + Function (P, Hiy) (93)

Type (10) gives the Utility Function for 2 jobs. The same concept is generalized
for type (1) that gives the Utility Function for njobs. Thisis described below.

For thefirst 2 jobs:
t x Function (P, Hy) + Function (Py, Hy) >t x Function (P, Hz) + Function (P1, Hy))
101

For the subsequent 2 jobs:
t* x Function (Ps, Hg) + t x Function (P,, Hy) > t°x Function (P, Hg) + t x Function (P2, Hy)

For the subsequent 2 jobs:
t* x Function (P4, Hy) + t° x Function (Ps, Hg) > t* x Function (P,, Hg) + t° x Function (Ps, Hs)

The same procedure is done until the last 2 jobs:

t™ x Function (Py, Hy) + t™2 x Function (Py.1, Hngy) > t™x Function (P,, Hyy) + t™2 x Function (Py.1, Hiay)

Type (1a) gives the new form of the Utility Function.

n
Utility Function = & t""'x Factor; (1a)
i=1
=> Utility Function = t™* x Factor,; + t" x Factor(,1 +...+ t X Factor, + Factory, (1b)

Taking type (3) into consideration we have that:
Utility Function = t™ x P, X Hyi + t"2 X Py X Hgpayi +...+ t X P2 X Hy + Py X Hy, (1c)

Let’s go back to the case of the 2 jobs described above.

Jz 'Jl
O] Ho1 Hi1
O, Ho Hi2

Combining type (8) with type (1c) we have the following:
Utility Function Algorithm Solution > Utility Function Detailer Change =>
tXPoxHy+ P xHp>txPo X Ho + P X Hyp (11)

The worst case scenario should be one of the following possibilities:

H,; value is the maximum value for the J, job, Hi; value is the maximum
value for the J; job, Hx, value is the next maximum value for the J, job and
Hi2 value is the minimum value for the J; job.

H2, value is the minimum value for the J; job, Hi; value is the maximum
value for the J; job, Hy; value is the next minimum value for the J, job and
Hi2 value is the minimum value for the J; job.

Now it may be seen why it is important to have maximum and minimum values
for the H;; variable. Since the maximum and minimum value for the Hj; valuesis 10 and 1

respectively, the H tables for both possibilities are like the following.
102

For the first possibility we have:

Jz Jl
01 10 10
O, Hao 1

Combining type (11) with type (4) we have the following.
tXPoXHau+PiXHp>tX P X Hyp+ PrxHyp =>
IXPoXx10+ P X1>tXxPox Hyp + P x10=> (11b)
t>P1x9/ P, x (10—-Hy) =>
t> [P/ P] x[9/(10—Hy)] =>
t>[(P2—1) /Py x[9/(10-Hz)]

Since (P,—1)/ P,=1-1/ P,, itissufficient for t to be:
t=9/(10—Hy) (12)

For the second possibility we have:

Jz 'Jl
O, Ho1 10
O 1 1

Combining type (11) with type (4) we have the following.
IXPoXHy +PixHp>txPoxHy + Py xHyp =
IXPoXHyy +Pix1>txPox1+Px10=>
t>Px9/Px (Hxn—1) =>
t>[P/ P x[9/(Hu—-1)] =>
t>[(P2—1) /P x[9/ (Hz—1)]

Since (P,—1)/ P,=1-1/ P,, itissufficient for t to be:
t=9/(Hx-1) (12a)

So, in both possibilities t is a function of the maximum value and the next most

maximum value, or afunction of the minimum value and the next most minimum value.

103

In order to have a unique t value, the maximum and the next most maximum
value of all the H;; variables are computed, and are used for this project. In the extreme
case that the maximum value and the next most maximum value are the same, then there
are several best solutions.

t =9/ (max (Hj) —next max (H;)) (12b)

It is obvious that as next max (H;;) approaches the max (H;), the t value increases
infinitely. Things become worse, sincet is to the power of (i — 1) and then multiplied by
P and H;; as type (1c) shows. This means that the result of the Utility Function would be
too big for a computer to handle. One solution would be to compute the logarithm of the
factor t™ x P x Hi;. But the logarithm of each factor does not provide any solution. Take
type (12b), but with the use of logarithms instead.
logao(t X P2 X 10) + logio(P1 X 1) > logio(t X P2 X Hz2) + logio(Py X 10) =>
10g10(t) + 10010(P2) +10010(10) + 10010(P1) > 10g10(t) + 10g10(P2) + [0G10(H22) + [0G10(P1) +
|0g10(10) =>
log10(H22) < O

The last isimpossible since:

Ha,> 1 => logig(Hz22) > logio(1) = O.

In order to avoid this problem, the logarithm of the summation of every 2

subsequent factorsis used.

For the first 2 jobs we have that t x P, X Hyj + P1 X Hyj > t X P> X Hy + Py X Hy;.
Since both summations are numbers greater or equal to 1, logarithms can be put around
them. So we have that |Oglo(t X P> X sz + P X H]_j) > |Og]_o(t X P> x sz + P71 X Hlj), which

istrue.

It istrue for the subsequent 2 jobs:
t2XP3X Ha +tX P2 X Hy > t2x PsX Hz +t X Po X Hy =>

|Og]_o(t2 X P3X Hg +tX P>x sz) > |Oglo(t2X Ps X Hz +tx Py X sz)

It istrue for next the subsequent 2 jobs:
t3X P4 X H4j +t2X Ps x H3j >t3X P4 x H4j +t2X Ps x H3j:>

|Og]_0(t3 X PaX Hg + t? x Ps x ng) > |Og]_o(t3 X Pa X Hy + 2 x Ps x ng)

104

It istrue for the last 2 jobs too:
tn_l X Pn X HnJ + tn_z X Pn-l X H(n.]_)l > tn_lX Pn X Hnj + tn_z X Pn-]_ X H(n.l)l =>

logao(t™ X Py X Hyj + t"2 X Pra X Hnay) > 10gao(t™ X Po X Hyj + 172 X Py X Henayj)

All these result to the final form of the Utility Function, whichiis:
n

Utility Function = & log,,(t™ x P xH; +t?x P x H
=2

(-1)j)

wheret =9/ (max (H;) — next max (Hj)).

The priorities P, are stored in the COUNTER table, while the H;; values are stored
in the H table. The result of the Utility Function is stored in the ESTIMATE
FUNCTION RESULT table. The changes the detailer makes from the MAX VALUE
table (the table that stores the algorithm’s solution), are stored in the MANIPULATE
SOLUTION. Any job and officer the detailer changes from the MANIPULATE
SOLUTION table, is stored in the DELETED JOBS MANIPULATE and UNASSIGNED
APPLICANTS MANIPULATE table respectively.

Actually, the ESTIMATE FUNCTION RESULT table stores the difference of the
Utility Function results from the MAX VALUE and MANIPULATE SOLUTION table.
So, if for example the result of the Utility Function for the algorithm’s solution is 40 and
the result of the Utility Function for the detailer’s change is 30, the value that is stored in
the ESTIMATE FUNCTION RESULT tableis 10.

When the detailer is ready to make a decision, the MAX VALUE table' s data or
the MANIPULATE SOLUTION table' s data are stored in the ASSIGNMENT table.

The Transact-SQL code of the Utility Function and all the supportive sub-
procedures are presented in the Appendices.
D. TEST RESULTS

In order to test the algorithm and the Utility Function, tests have been planned and
executed. These tests are based on the following issues.

Estimation of the time length that the computer spends running the
algorithm in order to find a distribution.

105

Increases on the result that is stored in the ESTIMATE FUNCTION
RESULT table, when changes are made on the algorithm’ s solution.

Changes on the distribution of the algorithm, when different coefficient
weights for the decision variables are given.

A description of the testsis provided below, based on the issues above.

1 TimeLength Estimation

The following test considers 22 jobs and 24 officers. The algorithm takes 9
seconds to run and give a distribution. Below are the results.

‘23 Munper - [lsts in Table "JOB_PLACE in ‘Wanpawer’ an {LOCALY

B Fe Whndow Hap = x|

B =R Wi e RS

| |eco (=
[~ |0 HEH
B =] F1
S] gl
[|coma F2
| |coma]
[|ooc F2
| |ooc r3
| |2 53
:r_-l::l 54

[Soal g3
| |2 54
[[ravo F2
| |revo]
| |ops0 53
| |oe=n 54
[|r0 53
[e 54
| |= peH
HE =H
| |weso 53

WPsD 54
I

Figure 25. Job-Platform Pairs to be Fulfilled-Manpower Database.

106

I I [
N syTidon
[~ [won Hymakoe
EEEH Panagiates
[|eona Pk
[acoe Vasieios
003 Atenscos
[|woos Mikolasa
| |moor Arisres
[oo Epamanandaa
o3 Ciménes
[aom a
[{aon1 B
A012 E
[|eonz T
| |0 H
[|eoas r
|40 [
[a0ar [
[[a0m]
[o B
[|econ 2
[w01 N
||t [
I L= Ragna
| # |
Hiia

sl By HLLL» <MLL oM
Cargin Fligtam L oL WS
i Fikitas L o2 HAY
Earidenn Kpetantige L =11]
Atharascooues Dindrics 3 o2 il
varelss Korstantngs 3 o5 WS
Figias - 4 o2 Doc
Delsos Jomnnes 4 ol PN
Triwhis Chvdrice 4 fa PN
Filagas Vpsdaos 4 o3 CoC
a a ? o (a1
B] 5 o3 HAY
E E B o3 oM
T T 7 ca oFS
H H & oa WS
r r 5 g (]
1 a 9 o oM
[[k! atL BC
¥ i 4 oz BC
E] k| fac | oM
{2 z] o4 Hay
W M 4 [HAY
Detsler Distder T o2 s
Patenta : 2 far) wes

0yl

;g:nwﬂﬁﬂqiﬂmithﬁlﬁhﬂNﬁ’r

iLiiaad
kB
es s =]
<MLL =
L
L TTES
L I AR
=ML
L THR
TR
AAAAAAAS
“TRLL
AL
THLL >
AL
T
dLL>
L
<ML
L
<MLL =
AL
Ceteliar
[y]

LHLLL>

Figure 26.

Officers To Be Assigned to the Job-Platform Pairs Above-Manpower

Database.

107

[Bats in Table ‘H in Sanpowes”

Whndow Heip

B EDECP I TR

[Tlghld [ohanfid [Murtode [Higue
NS 408 = <HULL®
B sl HEH ALy
[|ao Ao02 HEH HLLLx
[|poo 5003 HEH <MALZ
|8 A0 HEH HAL®
noo 2005 il 0
[|zoo BOE = L
Boo =007 L1l <MALE
I |eoo 0 LB =TT
EE 003 HEH MAL>
e K010 rES AL
HE 011 = <MALS
|| BOD A1z HEH <HAL>
[|mco 2013 HEH <MALF
| |BCD A4 HEH <HAL>
[|aco 2015 HEH <NUAL®
B[A% HEH MALE
[|ac 2017 HEH <HULL»
[[P HEH MAL>
[|so] HEH <HULL®
|] 00 L=l <MALE
[|z Lo ES i
[|nco Distaler e <MALE
e o1 S AL
[|mco £ HEH <MLL >
I |==co A001 rES LS
| |mm 002 =] <MALS
=] LRI NEH SHUL>
[|mco] HEH <MAL>
|__|E5C0 &5 KEH m
| |msco 005 HEH <NUAL3
|| B3CO &7 HEH =<MULL>
- |=sco 003 HEH HLL>
| |E&CD L] HEH <ML
] 5010 HEH HLL®
[|mico 2011 [l <MALE
[|=sco 02 HEH HAL»
| |mico 2013 e <MALZ
I~ |=sco L5t S HUAL®
[|mco 015 N LOBELONS LB 1E
[|==co 03 HES LS
[~ |msco 017 EH <MAL>
[|zeco A03E HES LS
[|mo L] HEH 1.0B3L083 L1ES
| |EC0 L] HEH 1003006 U]Wﬁ
| |msco 021 HEH 1085 L083 L1ES

el

Figure 27.

H Table (Only the First 44 Out of 528 Records Are Shown)-Manpower

108

Database.

| Manposes - [Dats in Table WAX_VALUE in ‘Mangower' on "{LOCALY]

T Ae wndow Hoip

B EEEC R R e

BE
!

[Apoicarild
AE

7
[
]

Azl
FL Adis
L anis
A
anig
AlE
L]
AanLd
AllLE
Al
Al
A2
ALl
A3
Dtmder
A8
A
ans
at
ana]
A3

PREESEE A R

EUgFLaLnInLREn

BT TTT T TT T IITT I

[ras ke
T
1OE 063 108G 1
i

2. ST IRNIT

L T504159 73+

ECESEEESESE

TREBISIN 14

d B

FaSRI0ETI%ES

sE=2ME

Q.52=0503E0 1955

Figure 28.

The Solution of the Algorithm-MAX VALUE Table of Manpower

Database.

This test takes the case of four officers to be distributed on four jobs. The
algorithm runsinstantly. Below are the results.

109

in, Manpowes

[Data in Table "J0BE_PLACE in ‘Manpower’ on {LOCAL)]

[=~ e

Eea
L] Fi
MO F1
EXD Fi
AT r1

Figure 29. Job-Platform Pairs to Be Fulfilled-Manpower Database.

110

i Manpower - [Dats im Table APPLICANT in ‘Sanpeswer’ on ‘(LOCALY|

{ o bpm llinil

=lsix]
= T
L 1 L 1 L oL Hay 1 kb IRRREE] Lifsvahoa. com 1
2 2 2 X L oL] 2 bR o
3 3 3 3 L oL Ay 3 rchrile] Sy Com a
4 4 9 4 L oL Hay 4 S AFyahon. com a

8

Figure 30. Officers To Be Assigned to the Job-Platform Pairs Above-Manpower

Database.

111

2] [Aogicantid [FsceCode IGIET |

= 1 Fi & T0HTTELIH

[] 2 F1 2,19040293 5074527

| | Fi ERTED bR]

[| 4 ri1 1

[|coran 1 Fi BRI T

[|coma z ri B EAIS4EIRI TN

[|coran z Fi i

[| o Ll ri 2. MALITIBEEIE
i 1 Fi & D434TRIRNEEDET

| |z 2 F1 m

[|=n z F1 D OBSNEEEIITINIE

[|z 3 F1 295552171043

|| Wl 1 F1 m

[o 2 F1 2. 25I521LIERE
A 3 F1 A WRETTHEET

| | q F1 B. 321105

i

Figure 31.

H Table-Manpower Database.

112

Wil Manpower - [[ata in Table BAX_VALUE in ‘Manpower’ on ‘(LOCALY]
T Fe wndw Help —|emim!
B EEE S %Y = %

am

|Ploceorie lippizantd IEETRET: |
0 Fi 4 0
fai 1] 1 3 0
EiD i 3)
RANT 1 1 K

Figure 32. The Solution of the Algorithm-MAX VALUE Table of Manpower
Database.

Apparently, for large loads of jobs the computationa time will increase
significantly. Specifically, suppose that the set of jobs is n. From the design of the
algorithm the worst case computational time is O(n?). The reason is that the algorithm
may backtrack until it finds a path in order to fulfill all the jobs. The worst case scenario
will be that the algorithm backtracks for every officer, beginning from the highest priority
job until the lowest priority job and then backtracks to highest priority job again. This
means that the algorithm goes back and forth for al n officers n times, which concludes

to the O(n?) computational time.

113

The computational time for the average case scenario is expected to be O(n), since
the algorithm won’t backtrack alot. Usually, it tracks back a couple of times for a couple
of jobs. So it will begin from the highest priority job and end to the lowest priority job
for atotal computational time of O(n).

2. Increases on the Estimate Function Result When Changes Are Made
on the Algorithm’s Solution

In order to show the changes, the following scenario of available jobs and officers
IS put into the Manpower database.

APPLICANT table: The same with figure 24.

JOB PLACE table: The same with figure 23.

JOB table:
il Manpowes - [Data in Table "J08' in ‘Manpower” an "{LOCALY] |
T Ae wndow Hoip _|m]
P EEEC P T RE . _
[_Tishid [iaitiare [Experercefizamed Erianiy
A Exres Commander 1 a
| BsCo e Subrommander 1 7
[|co Commanding Crfficer 1 a
| |comg Corsmunicatons Officer 1.3 E
[ooc Dot 2 T
| |nco Electrorcs Difficer 1 7
[|=io Evaruliva Officer 1
e THawige tor Officer 13 T
[~ | oesa Coparatians Officar 1 7
o e Prapulsion Orfficer 1 7
-~ |eac SoLadrin Conanor 1]
| |wPs0 ‘Wezpons Offiper 1 7
4 |
Figure 33. JOB Table-Manpower Database.

114

EXPERIENCE table:

| Mamporser - [Dals in Table EXPERIEHCE in 'Manpower” on {LOCALY]

B Ae wedos Hap _|m|x)
BREEECAIRT LA RE.

[Tlchid [iduentd [Epenens

NE 1 [

| |Co . 1]

[~ {co E] i

= 2 1

[| coraa 1 i

[|coa = n

|| corag 3 1.5

|__|Corag 4 1]

HED 1 i

[|0 2 1

[~ = F [

| |ExD 4 a

|| by 1 2

[mano F o

|| ey 3]

| | 3 [

|

Figure 34. EXPERIENCE Table-Manpower Database.

115

JOB LANGUAGE table:

il Mapposer - [Dats in Table " J08_LANGUAGE in "Manpower on “{LOCALY]

'I__]Hn_um ey _;|E|£1

B EEECE) R

i

320
12
10
=0
im
1
20
1
10
%0
10
1

§53Eesgggnee
TR EITE

BLITTTITTTTT I

Figure 35. JOB LANGUAGE Table-Manpower Database.

116

APPLICANT LANGUAGE table:

| Manposes - [Dats in Table APPLICANT _LANGUAGE in ‘Manpoes’ on ‘LOCAL]']

Lo o =lElE

B EEEC R R e

| |apgheprild |LanguooeCode llongsgelegrer |
p =T 170 |
EIp =] |
= &R 17 |
[z ™ »0 i
[Tz =] |
EE =R 0
[= Ell = [
mE = »0 |
=z =1 0
|4 = =0 [
|4 =] 110 |
1 ==] |
r |

Figure 36. APPLICANT LANGUAGE Table-Manpower Database.

117

JOB CREDENTIALS table:

1. Mangpmwes [Oata in Table"J0B_CREDENTIALS o ‘Mampower' on ‘[LOCELY]

Tl Pl Wiedow Halp _ &=
e N == Fer e R

|Cregenbaiyld |Crecenisizorace |

Dol]

[]

D3 3

s B

[F 7

[o

o3 7

[[

[E

e 7

o E

o4 7

0 L

(i) 7

03 &

o4 7

Figure 37. JOB CREDENTIALS Table-Manpower Database.

118

APPLICANT CREDENTIALS table:

o Manpowes - [Dats in Table APPLICANT _CREDEMTIALS' i 'Margower” on "{LOCALY]

Lo . =lElE

B EEELC R R e

E

=

=
ER TR L R R TR B T PR L
R N e L]

FELOITTTTITITTTTT I

Figure 38. APPLICANT CREDENTIALS Table-Manpower Database.

119

JOB QUALIFICATION table:

+n/ Manposes - [Bals jn Table 308 OUALIFICATION in ‘Menpowe oo [LOCAL)]

Ll i i B . | le| xi
B EOEC A aY L nE

o HAVEA
o MAVER
ExXO HAVEA
R0 HEVTA

Figure 39. JOB QUALIFICATION Table-Manpower Database.

120

QUALIFICATION APPLICANT table:

it Mampporses - [Dals in Toble CRAES ICATION _APPLICANT & ‘Manpower' on |LOCALY']

Figure 40. QUALIFICATION APPLICANT Table-Manpower Database.

121

APPLICANT PREFERENCE table:

»n| Manposes - [Dats in Table APPLICANT _PREFERENCE in ‘Mempower” oo ‘{LOCALY]

Lo _leix

B EERCFA ey RmE.
|| dppicprkll Labld Tertde [Ereferererigpior]
L oo Fi F]
EIp COMO F1 1
[=7a] Fi k|
v] ri]
[|2 oo Fi 1
[|z coMD ri]
|12 (=] Fi o
|z HAVD ri 3
13 [FL 3
|3 oMo FL o
[1z B FL 2
|3 HAVD FL 1
| 14 oo F1 2]
[|4 ooMD FL 1
14 END F1 2
|14 HEVD F1 E]
E3

Figure 41. APPLICANT PREFERENCE Table-Manpower Database.

122

COMMAND PREFERENCE table:

in; Manpower - [Data in Table COMMAND_PREFERENCE' in ‘Menpowes” on "{LOCALY'] a)
Tl Pl Wiedow Halp _ &=

L BT = T S L e o P

|| Appkcentid Ligild [Ptaceloge IionnandCode | Preferencelommad
(b |1 o Fi FRH [
EZE COME F1 FRH 1
[52]a =) Fi FRH 2
[WD ri ran 3
R o Fi FRH 3
=E oMo ri ren 0
[=il 1 e 3
(522 MWD ri ran 1
ERf o 1 Fam 1
[=a oMo Fl FRH 3
a2 ol 1 Fam 0
FZE M F1 FRH 2
| |4 k1] F1 FRH 3
[|+ oM F1 FAH 2
| |4 B0 F1 FRH 1
[]+ WD F1 FRH o
% |

Figure 42. COMMAND PREFERENCE Table-Manpower Database.

After the algorithm is ran, the H table becomes as shown in the figure below.

123

1 Manpowes - [Data in Table 'H' i Manpowes" on "[LDCALY]
B Fe Whndow Hap
BEEEOS) &N R ES

| Al [HaceCode |Hipise

1 Fi 3.7 UHTE L3
1 F1 & 9B 2T
1 Fi 2114009850741
4 r b1

1 Fi 1. 9HTHETET
H r 2,505 119259773
3 F1 10

4 r 3,296 15718305355
1 F1 2.0434 70 HSEHRAET
2 Fl 1o

1 £1 3 DHENERENITRILE
4 Fl 3,95652178 13041
1 F1 b1

1 £l 2,2351521 L6705
E F1 9, 5T T
4 £l 2.IE71IBERIEE

Figure 43.

The MAX Value table results are shown in the figure below.

H Table-Manpower Database.

124

el

Ow- O HEAG Lo oo @ @ 3% B-LU DB

_@Easmwﬁwm,\:suhmm Sl >
ks () Teshhs fccmss (8] Customvee ks B Preethtesd aly Redrlave (] wWndoes] Andoves ecka

ficcept Smlution? Make Ehar

Figure 44. Solution (Screen 1)-Manpower Database.

125

7 Urditie enl - MicomolL Inbes net Explores

Q- 0 HEAG P frrooe Qo @ -5 8- D3
s 0 b focabstMarprmer s ok ton scp Y B
Lk g Todhba e 8] Customee ks] Pree rotmed @B ReadFlaver B wndows (B windows Medis

AL

ficeept Soluktion? Make Changes?

Figure 45. Solution (Screen 2)-Manpower Database.

The detailer then makes the following change. He/she assigns the Commanding
Officer’sjob of the ship Frigate 1 to the officer 3, and the Executive Officer’s job of the
ship Frigate 1 to the officer 4.

The following screenshots show the new results on the solution and the Estimate
Function.

126

Tod el

Qw-O B3¢

J_-}qu:h ﬁgm o @|ﬁ.% =] 'I:Ja'i
255] ot lcaboet e Manosieschton o
lrks | Toshiba tiocess & Qustomie Unks] Fresromed oy ReaFlayer (& wincvs (] vindovs eds

I
¥
SHELSRLE1RALETE
- ’

- = |]
Figure 46. Change on the Solution and Estimate Function (Screen 1)-Manpower

Database.

127

=il alt Intermet Explorsy

Qe - O Lﬂlﬂ@}}hﬁﬁm*me|ﬂ'$ﬁvdaa
kb= {8 ot flocabhostHerpons Motz < Bl
ks | Toshia tiooess @] Customize ks (B Free Fotmed s ReaPlayer &) Windows (5] Windovs Meds

R [T

< F

Figure 47. Change on the Solution and Estimate Function (Screen 2)-Manpower
Database.

Apparently, the detailer selected officers with worse HValues than the algorithm
selected. Thisresulted in an increase of the Estimate Function by 0.0485 units.

3. Changes on the Algorithm’s Distribution, When Different Coefficient
Weightsfor the Decision Variables Are Given

For the case just described above, the solution of the algorithm presented in
Figures 37 and 38 was made with coefficient weights equal to 1 for al the criteria as
shown in the figure below.

128

M ent - Microsalt Internel Explorsy

Ox- O H G P frove @ne @ 2-15 B- P B
ks] oo Maremes et s -
ks | Toshia tiooess @] Customize ks (B Free Fotmed s ReaPlayer &) Windows (5] Windovs Meds

M

“‘"‘ s | 8 Local riranes

-

Figure 48. Coefficient Weights Per Criterion-Manpower Database.

If the detailer changes the criteria weights, both the H table and the solution
change. Assume that the detailer would like to give more weight to the officers
preference and the commands preference than to their Credentials, Experience and
Language criteria. He/she decides then to put weight 5 to the officers’ and commands
preference criteriaand leave the rest criteria as they are.

129

A Untitled Decume

1 Edit

el

Oui- O HEAG Port frrome @ @ 35 B-UD B

cdtvess | @) it fossbostenpawe e, o Sl >
ks () Toshhs fccmss 8] Customvee ks B Preethotesd alp Redrlaver (] wndoes] Andoves ecka

[fep—
=

oo
Figure 49. Coefficient Weights Per Criterion After the Weights Change-Manpower
Database.

Now that the weights are changed, a different H table and a different solution will
be produced. The two figures below show that change on the H table.

130

i Mampoer - [Oats in Table B in Sanpowes’ on ' LOCAL)']

1 Rl i B A)
B EEECF RT L EE

T ooy [Mecciode THidue

l o 1 Fl S ERERISES T
| |Co 2 F1 ILTHLIMHNE
=]] 3 Fi1 S ZLTH LA
I =] A ri n

[corn 1 Fi uw

[|coma 7 rL 0

[| coran kL Fi u

|__|coMa 4 rl 0000 A LA T
|- |ExO 1 Fi EALEZAAE 1533482
| |EXD 2 Fl 9553840151645 15
HE Z FL uw

| |exD £ Fl 9,558 151045 15
|| Ml 1 F1 m

|| WD 2 Fl 9.33331333331232
|| Wad 3 F1 10

|| Ao q Fl el T
"

Figure 50.

H Table Before the Weights Change and the Algorithm Runs-Manpower

131

Database.

T, Manpowes - [[sta in Table 'H i Manpowes ' on "{LDCALJ']
B Fe Whndow Hap
i = S

| Al [HaceCode |Hf g

1 Fi in

1 Fi p R el kb
3 Fi 3. 2053533534113
4 Fl 9 TIIHLLEAT
1 Fi i

1 F1 1

3 Fi 2.553551 126016
4 Fl 9. ITHE IO
1 F1 .64 15000162
1 Fl 95778311321
3 F1 b 1]

4 Fl 9.5747 111
1 F1 0

1 Fl 3475715533581
E F1 n

4 Fl 3.81%2135303

Figure 51. H Table After the Weights Change and the Algorithm Runs-Manpower

In the two figures below, the new solution of the algorithm is shown.

Database.

132

He

| P Gt @i @3- B-UD B

L [Toshia tecess @] Customie Unks (8] Mree roimel @ ReaPleyer] Wincws 8] Vo eds

om0 B

Accept Solution?

e th —
——ia —_—

Figure 52. Solution (Screen 1)-Manpower Database.

133

Lk ([Toshhs Boess 8] Cusioniee ks B Premrotresd B Redlaver] windovs 43 windows Frecks

ficc Solukinn? Hake Change=¥

Figure 53. Solution (Screen 2)-Manpower Database.

Again, below are the 2 H tables and highlighted is the agorithm’s choice of
HValues for both cases.

H table before:

CO EXO COMO NAVO
1 9.608 8.615 10 10
2 9.217 9.653 10 9.333
3 9.217 10 10 10
4 10 9.653 9.666 9.666

134

H table after:

CO EXO COMO NAVO
1 10 8.641 10 10
2 9.558 9.575 10 9.475
3 9.205 10 9.663 10
4 9.735 9.575 9.579 9.912

Until now, both the Manpower database and the multi-criteria decision model are

described. What remains is the description of the user interface that helps the users, the

officers, the commands and the detailer to access the database and manipulate data. The

next chapter describes the Manpower web site’ s form and structure.

135

THISPAGE INTENTIONALLY LEFT BLANK

136

V. WEBSITE

The previous sections described the database and the multi-criteria decision tool
for the Greek Navy’s Manpower model. This chapter discusses the website, which helps
the officers and the commands to specify their preferences and the detailer to administer
the database and make decisions by using the decision support environment.

A. 3-TIER ARCHITECTURE

Before discussing the web site structure and design, it is useful to describe the 3-
tier architecture model used for the implementation of this project. The figure below
describes the basic form of a 3-tier architecture. The 3-tier architecture logically
separates the functions of an application into a user interface component, a server

business logic component, and a database component.

Many application server products and middleware products provide support for
building and deploying applications using the 3-tier architecture. In most of these cases a
primary role of the middle tier business logic components is to manipulate data stored in
and accessed from the 3rd tier.

Client Computer

DB % .

Server W

Figure 54. 3-Tier Architecture.

137

For this thesis, the middle-tier component is a web server running Windows 11S
5.0. The third-tier component is the Windows SQL Server 2000, which is the database
server. This is the place where the data and the stored procedures of the multi-criteria
decision tool reside, as described in the previous chapters. The first-tier component is the
browser for the Manpower database users. The figure below describes the 3-tier
architecture for our prototype.

Client

Web
Server running
1S 5.0

€00 @
— =

200 4 m
DB = =
Server running
SQL Server 2000

Figure 55. 3-Tier Architecture-Manpower Database.

3-tier architecture meets the requirements of large-scale Internet or intranet
client/server applications because they are scalable, robust and flexible. They are easier

to manage and deploy on the network, since most of the code runs on the servers.

3-tier applications minimize network interchanges by creating abstract levels of
service. Instead of interacting with the database directly, the client calls business logic
which resides on the server. The business logic then accesses the database on the client’s
behalf (middleware functionality).

For the thesis model specifically, almost all the logic of the architecture is
concentrated on the database server side. This means that the network load is low since

the only thing the web server does is to send commands to the database server on the

138

client's behaf. These commands activate stored procedures on the database server’'s
side, which do the entire job. Only the results of these procedures are sent to the client.
The web server functions as a go-between between the client and the database server.
B. WEBSITE STRUCTURE

The website structure is based on the tasks that three types of users (officer,
command and detailer) want to perform. The web design tool that is used for that
purpose is the Macromedia Dreamweaver MX. The website administration is managed

through the Microsoft 11S 5.0 server.

In order for the application to communicate with the database, an interface called
Open Database Connectivity Driver (ODBC) must be installed first. ASP applications
are fluent ODBC speakers thanks to a built-in OLE DB/ODBC interpreter.

The figure below shows the ODBC connectivity for the Manpower database. The
name of the connection is ‘LocaServer’ since the SQL Server 2000 resides in the same

computer.

139

% | Admimistrative Tools

File snd Frolder Taslcs

#.ermle e fim
e ths e
Cycoey Fis fie

P ubinh this s to $w Weh
el hie e

W el o e

oorectba 501
Wi e o Yo wanl 10 L b refir 1o T data souns

Mame: [Loca Sormr

Haw do you want b dessrine o dabs sourpe™
s [Te—

S¥hich SOL Server da vou mant ba conres (o7
Server: |kocsl =

Figure 56. ODBC connectivity-Manpower Website.

The Manpower site is the place where all web pages are stored. The figure below
shows the configurations of the Manpower website.

140

) Macromedia Dresareeaver MK

mmmrt-»rmrmfwﬁmwmw.m T [T -
. 14. e YT man

|ﬂ- B !Ilmzu Sita: Definition . [.ll'uo-:':::uq
|0 S| %R

Loeallnki
Fercie i :
Testing Sierver Sile Wans | Manpover
kg T R . ;
DPesipnMotas LozalAoct Frlder: Ehﬂuﬂ.mﬁmq.

| 5he WA L
.nthm [F]RafrasniLocal Fie List sobamatenty

Diefoul ireages Folder

HTTF dakckes: k7

Thiz addieas ensbles the Link Checte o
deba ckHT TP ks thal refer lo poas v
dle

o L Uhegem 5 shapmerd
T in.“'ﬂ b e ‘i‘:.\,.

Cacha [#]Erabie Cade

v o, Tremke s g o gl s
Thee azede marktan: Be and et

nimmeton i ke se. This ipesdsup e
Aiezst pensl irk mansgement, and Sie Wap
lealues

[——

Dreamusoear
Moz Hew
LELic
Tuberiah

Updads Paasi
Chck Upete 1 conmect b
wycdorwsdiicans o g T kobesd

Lpcists

Figure 57. Manpower Website Configuration Wizard.

In order for the website to connect to the database a Data Source Name (DSN)
should be created. A DSN is a one-word identifier that points to the database and
contains all the information needed to connect to it. A DSN can be used if the connection
Is made through an ODBC driver. Below is the DSN for the Manpower website. This
DSN string contains not only the ODBC connection named ‘L ocal Server’, but also the
user name and password of the administrator who creates the connection. After the
connection is created successfully, then the web site administrator/creator has all the
Manpower database components (tables, stored procedures etc.) available as shown at the
right hand side of the figure.

141

). Macromeslia. Dreaaraeaver MK - [Untitsed Docoment [Margower/Index)]

?‘ e ot haem e Xt o ard =1 e =
mer-t-'rw-nfwﬁma-mmrmamr-- T [_
% OG0 EEaesESs0R|9 0 AR R A
B L er— R R - Fucn
(O |adg | ¥El| - e
L Vima A
SEEITE— . T B ¥ —
R 7 |

: BEALEE - AmARaR A il b R

T A o ST

© Welcame L Ehe Ereek Hauy Manpawer

T
DCresrresver Shoud Comrect:) Uising D8N On Texing Server
{E) Lising Local D50

o AFFLICANT_CF

=

[

B sesrruranm e
ﬂ o APFLCANT_FF
Bl choARSiEhED_SFF
B btk
B seCoEROET
[sccomeen
[cbelObidi D PR
H o COURTER
]
i
il
=]
]
i
i
=]
o)
i}

4 E B R AR

(L1 AR .
I. - SelF‘Et'f'-ﬂ?H":H_ Bk .:' e

e CRETENTIALS
oo DELETED JOES
cho DELETED_J0Er3
b o o e

AeEETrHATE_FLUR

Omly For Commanors o e

ot

Al i i ¥

chnadfs 1o iahley EI0 e 46 -~ EAN | BO15ece

- -3

Iﬁhuuﬁ- b (Feed B | Heghi oz | Coirad ke [cr 3| 5 i
= Drfscerat B [T | Cotpwr | | #[H Sk

& Reynlis

Figure 58. DSN Connection-Manpower Website.

Dreamweaver alows the administrator to create a recordset from which to extract
dynamic content. A recordset is the result of a database query. It extracts the specific
information the user requests and allows the user to display that information within a
specified page.

Since amost al the functionality resides on the database server side, the
administrator can use any stored procedures in order to define the kind of recordset the

administrator wants for the webpage.

142

Er.'-. romedia Dreamweaver KX - [Ustitled Docamenl {ManpewerViesApplicantC redentials) m
o
O == E _\,G, iy B 3 n“c-;,;g’“|m“ﬁ- i |
en Hshmact
o 2k [GE | B | ™er united Document FL A~ - R T oo
— - sm e
[0 [coraman] Loue Tewr| Tubles Frames| Forms | Tenolses| Chessorets| Wedu | Heal | Soi 1 427 Aoghaswin] S50 | # wocesa.
w11 [1 e i e P S " ol mangslan
RO EEEEe@E R =005 5D
Lav s
Lo Tk . —— [ETEEn
o B
f 8w
r i Mame: | ShowCraorLak i rappacantd a3 L .
; | | |-
Connection: | Manpamer VirEﬁri_l | Eancdl | A AT =
S Temll n I FE—T contid 7 =]‘1‘*—' Bindings | Sevwe Eiehy Corpanet|
o Tl lezeer g S Crecieriiale{gCin Applerd 3 Aok cantd ¥ Tent
nm“l“ﬂ HAY jJ:i Diszarerd Type SR vESap: L0
e | I E————
Helo O ¥, Flseeiss B sCyed sl
Lugaur Tatie| Worinhies: 4 :.J [[Fy Recastnt|Eaneppaeanl
Home Hame Defauit vale Run-time Yaiue
Appicantla 5 br Bl can i stripphcantld
_ iselet AToh . .
[em |
Eﬂﬁﬂ # bsengs ShosCommandsFreferercesdnPlacs w| Addto 5oL i b Hles
v = ShomTreden takGrade er = Answers
L @ leergm Shonredentie (reccmue_] = Answers
| Select An Offif S Loersing Macramesia
ge Shesraden takloOnAappican d g e —
o ksengs ShowCreden bakldOnlohld - ihet'r Hew
" B ke Shesdreden e nmersdsnkialenn P
¥
N ¥ T
€
Wlgabirte Fape|
| v ppamcreeniae Cliok Lipdeie ko caneal 4n
FEE AR L TR I mexraTed s enn ond gel e kst
Fomkbore M| [oemaron S e O) Bresas]
Lk - B3y Tae [T é
BT
Figure 59. Recordset Based on the ksergis.ShowCredential sildOnApplicantld Stored

Procedure-Manpower Website.

Dreamweaver allows the administrator to create interactive forms in order to
allow the user to input his’/her information in the webpage and store them in the database.
For that purpose Dreamweaver has Form components collected in a bar (Form bar). The
administrator can choose any component by performing asimple click. The most popular
components are the following.

Form inserts a form in the document. Dreamweaver inserts opening and
closing form tags in the HTML source code. Any additional form objects,
such as text fields, buttons, and so on must be inserted between the form
tags for the data to be processed correctly by all browsers.

Text Field inserts a text field in a form. Text fields accept any type of
alphanumeric entries. The entered text can be displayed as a single line,
as multiple lines, or as bullets or asterisks (for password protection).

Field inserts a field in the document in which user data can be stored.
Hidden fields let the administrator store information entered by a user,
143

such as a name, e-mail address, or purchase preference, and then use that
data when the user next visits the site.

Check Box inserts a check box in a form. Check boxes allow multiple
responses in a single group of options. A user can select as many options

as apply.
Radio Button inserts a radio button in a form. Radio buttons represent

exclusive choices. Selecting a button within a group deselects all othersin
the group. For example a user can select Yes or No.

Radio Group inserts a collection of radio buttons which share the same
name.

List/Menus allows the administrator to create user choices in alist. The
List option displays the option values in a scrolling list and allows users to
select multiple options in the list. The Menu option displays the option
valuesin a pop-up menu and allows users to select only a single choice.

Button inserts a text button within a form. Buttons perform tasks when
clicked, such as submitting or resetting forms. The administrator can add
a custom name or label to a button, or use one of the predefined “ Submit”
or “Reset” labels.

The figure below shows a webpage of the Manpower website. This webpage
contains a Form, a List/Menu, two Hiddenfields and two buttons (one called Update and
one called Reset).

144

Maoromedia Dreanrereaver MX - [Ungithed Document (Monpowerfdpplicant-Language Update Sbep 1]
@ Fl= Edt Vew Mot Modfy Text Commards Ste Window Help

[=E] ez

(T Applsnkes () EdcEN|

LXT=tI" 13
muangs sy

Learaing Mawr emdin

Oreamusseer FE
Bhat's e

Frudme

Tuteriai:

Upsiat s Pumsl
Lk Updhi 1 1 carae] 1o
wcTOrssdl O N g T N1

) Formblens Ao Appicas-Lasg
5 P

Figure 60. Webpage with a Form-Manpower Website.

One feature of Dreamweaver is the ability to build master pages. A master page
is a page that lists records. For that purpose, Dreamweaver provides the webpage
designer with a special bar named ‘Application’. The most popular components of the
‘Application’ bar are the following.

Repeated Region displays more than one record at a time. The repeated
region is normally applied to the table row containing the dynamic
content.

Dynamic Table creates the table row and the repeated region
automatically.

Recordset Navigation Bar helps the user to navigate through al the
records.

The following figures display the ‘ViewCredentialnfo.asp’ page in both the

Dreamweaver and I nternet environment.

145

o

= ""r _

|D|':3:IEE Xme|ao
|@,§;|E§ﬂ|nﬁuumm:

H.I. Emnﬂ.

S —

ll:l:.l.,:ll.: .ll———. : -I'_lﬂ].: II.I-U o

Figure 61.

E:-.-.man: (CrEdcSnks
X HoCIsame
mangs hea

Lmois Table Wl (3 Feed B2 | Hegh [
Dll-l.l\:\iml'l

NEI AR o 1R I e

Upcat s Fassl
Lok Upclate 1a carapcd 40
WrCTOrsadl o ond e T kil

Master Page-The Repeated Region and the Navigation Bar Are Displayed.

146

Favcalles T

GOm0 880G P jimem @ 035 8- DB
ekt e [] bt oot Wsrponm e Cre e taliy o
L [Toshia tecess @] Customie Unks (8] Mree roimel @ ReaPleyer] Wincws 8] Vo eds

Figure 62. Master Page (1* Screen)-How the Repeated Region and the Navigation
Bar Are Displayed on the Internet.

147

it Imernet Daplores

= Fiar L] =i '.|.

QO WRBG Puw Frroie @ @ -5 B-L DB
s [i ocahvoterpomms o sdinb otz o *B=
Irks) Tashha Scxess] Custoree ks 48] Preerioinsd i ey] windows B wardonsiede

Q-

4] cone

Figure 63. Master Page (2™ Screen)-How the Repeated Region and the Navigation
Bar are Displayed on the Internet.

'Eudm-ut

C. MENU NAVIGATIONAL TREE

The three categories of users determine the shape and structure of the Manpower
website. These categories of users are the officer, the command and the detailer. The
officer has to declare his preferences for the next assignment. The command has to
declare its preferences for the officers who wants to occupy one of their jobs. The
detailer has control of the website. The detailer has to view all the records of the
Manpower database, update them or delete them. The detailer also has to solve the

assignment problem and change the solution according to the Navy’s desires.

The following lines present a description of the sequence of actions each one of
the users has to perform in order to accomplish his/her role in the Manpower website.
Each step has a corresponding number of stored procedures that are executed. These are

also presented in this section.
148

1. Officer

UpdateApplicantData

FirstName, LastName,

Sign In
Login
Control
View Update Select New View Delete Change User
Current Account 2 Job 3 Preferences® || Preferences® Name -
Assignment * Password ’
A
Select
Platform /
Base &
Preferences*
Stored Procedures for Officer
Name Variables Description
ShowCurrentAssignment Applicantld Ret_urns the officer’s current
assignment
ShowA pplicantAddressPhoneData | Applicantld R eturns 'ghe officer’s address and phone
information
Applicantld,

Updates the officer’ s First Name, Last

MiddleName, Name, Middle Name, Email Address
Email Address
Applicantld, Updates the City or Town, Street,

UpdateAddressData CityOrTown, Street, Apartment and ZI P code the officer
Apartment, ZIP livesin
ﬁgﬂ:a%ar?ct)lniN umber Updates the officer's Home Phone
UpdatePhoneData ' Number, Cell Phone Number and Other
CellPhoneNumber, Phone Number
OtherPhoneNumber
ShowJobld Returns all the jobs
CheckA pplicantSuitable Applicantld]Ic:;(:turns the jobs the officer is suitable
ShowPlaceCodeOnJobld Jobld Returns the Platform/Base data per job
Applicantld, Checksiif the officer has selected the
CheckPreference PreferenceApplicant, same Preference number or
PlaceCode, Jobld Platform/Base
CheckApplicantPreferenceExists | Applicantld Checksif the officer has at least one
Preference
ShowA pplicantPreferences Applicantld Returns all the officer’ s Preferences

149

Stored Proceduresfor Officer

Name Variables Description
ShowA pplicantPreferences Applicantld Returns all the officer’ s Preferences
6 : Applicantld, —
DeleteApplicantPreference PreferenceApplicant Deletes an officer’ s Preference
CheckUserName UserName Checksiif the User Name is unique
7 UpdateUserNameP ord Applicantld, Updates the officer’s User Name and
UserName, Password Password
2. Command
Sign In
Login
Control
- . . ‘
Select View Command’s View Entire Delete Change User
Officer Preferences Per Preferences”® Preferences® Name -
Platform/Base * Password ’
Select

Base/Platform !

l\,

Select
Preference?

View Valid
Officers®

150

Stored Proceduresfor Command

Name Variables Description
ShowPlaceCodeOnCommandCode CommandCode Returns the Ij:lgtr;(;r]r;égase code per
ShowJobl dOnPlaceCode PlaceCode Returns the jobs per Platform/Base
ShowA pplicantL astNameFirstName Returns the Officer’s First Name and
Last Name
C(;mn;?cn:n(i‘,l%de, Checksif the command has selected
CheckPreferenceCommand PP ' the same Preference number or the
PreferenceCommand, same officer and Platform/Base twice
PlaceCode, Jobld
ShowJobl dOnPlaceCode PlaceCode Returns the jobs per Platform/Base
CheckSuitableA pplicantsOnJob Jobid Retums the Offf(')fzrjségat aredligible
ShowPlacel mage CommandCode Returns the Platform/Base jpeg files
per command
ShowCommandPreferencesOnPlaceCo CommandCode, Returns the command'’ s preferences
de PlaceCode per Platform/Base
ShowCommandPreferences CommandCode Returns the command'’ s preferences
ShowCommandsPreferencesForDel ete CommandCode Returns the command'’ s preferences
PlaceCode, Jobld,
DeleteCommandPreference PreferenceCommand, Deletes acommand’s preference
Applicantld
CheckUserNameCommand UserName Checks if the User Name is unique
CommandCode, Updates the command’ s User Name

UpdateUserNamePasswordCommand

UserName, Password

and Password

3. Detailer

SignIn

Control

Insert
Records

View
Records

Update
Records

Solve
M ode€l

Delete
Records

151

a. View Records

View
Records

/\

Experience
Per
Job/Officer 16

Assignments %

Credentials ®

Rank *°

Select Job * Language
Experience Ranks? Language || Specialties® || Qualifications®
Required 2 and
Minimum
Grades*
A 4
Credentials Bases/Platforms
and that havethis
Minimum Job 8
Grades’

152

Officers

All Specialty %

Command’s
Preference
and Data

Platform %

Base/ Criteria

Weights %’

v

Quialifications %

Select Officer °

Command’s
Data®

v

Command’s
Preferences

v

Select

Base/Platform 2

4

v

Show
Preferences %

e

Officer’s Officer’s Quialifications Rank and L anguages Preferences
Per sonal Credentials 12 Specialties and 15
I nforgrolation and (flrades 1 Grades
Stored Proceduresfor View Records

Name Variables Description

1 ShowdJobld Returns all jobs

2 ShowExperienceRequired Jobld, JobName | Returns the required experience per
job

3 | ShowRankNameTimeSeaServiceOnJobld Jobld Returns the rank and time of sea

service per job
4 | ShowLanguageNamel anguageDegreeOn Jobld Returns the language and its
Jobld minimum grades per job

5 ShowSpecialtyNameOnJobld Jobld Returns the name of the specialty per
job

6 ShowQualificationNameOnJobld Jobld Return the qualification’s name per
job

7 | ShowCredentialsNameCredentia sGrade Jobld Returns the credential and its

OnJobld minimum grades per job
8 | ShowPlaceNamePlacelmageCommandNa Jobld Returns the platforms’ name, jpeg file
meOnJobld and command per job
9 | ShowApplicantldLastNameFirstNameW Returns the officer’slast name and
ORank first name
10 ShowA pplicantAddressPhoneData Applicantld Returns the officer’ s address and
phone data

153

Stored Proceduresfor View Records

Name Variables Description
11 ShowCredentialsldOnApplicantld Applicantld Returns the credentials and the
corresponding grades per officer
ShowA pplicantldL astNameFirstNameOn Applicantld Returns the officer’ sfirst and last
Applicantld name
12 | ShowApplicantldL astNameFirstNameOn Applicantld Returns the officer’ sfirst and last
Applicantld name
ShowQualificationCodeOnA pplicantld Applicantld Returns the qualifications per officer
13 | ShowApplicantldL astNameFirstNameOn Applicantld Returns the officer’sfirst and last
Applicantld name
ShowRankCodeSpecialtyCodeSeaService Applicantld Returns the officer’ srank, specialty
OnApplicantld and sea service
14 | ShowApplicantldLastNameFirstNameOn Applicantld Returns the officer’sfirst and last
Applicantld name
ShowL anguageCodeOnA pplicantld Applicantld Returns the officer’s languages and
the corresponding grades
15 | ShowApplicantldL astNameFirstNameOn Applicantld Returns the officer’sfirst and last
Applicantld name
ShowA pplicantPreferences Applicantld Returns the officer’s preferences
16 ShowExperiencePerJobOfficer Returns the officer’s experience per
job
17 ShowAllAssignmentinfo Returns all the assignments
18 ShowCredentialsld Returns all the credentials
19 ShowRankData Returns all the ranks
20 Showl anguageCode Returns all the languages
21 ShowSpecialtyCode Returns all the specialties
22 ShowQualificationCode Returns all the qualifications
23 ShowCommandsData Returns all the commands
24 ShowPlacelmage CommandCode Returns the jpeg files of all the
platforms /bases per command
25 | ShowCommandsPreferencesOnPlaceCod | CommandCode, | Returnsthe command’s preferences
e PlaceCode per platform /base
26 ShowPlaceData Returns all the platforms /bases
27 ShowCoefficients Returns all the coefficients with their
weights

154

b.

I nsert Records

Insert
Records

/\.

Job

Job/Officer

Experience Per

Credentials ®

'

Select Job °

|

Select
Officer %

!

Insert

Experience
Job, Officer #

Language '’

Insert Job !
Ranks 2 L anguage Specialties Quialifications”®
and
Minimum
Grades®
\ 4
Credentials Bases/Platforms
and that havethis
Minimum Job ’
Grades®

155

Rank 8

Insert
Records
(Cont’d)

L N

Officers

Specialty

Report
/Detach
Date

Base/
Platform **

Criteria
Weights 2

v

Qualifications ™

Select

Job %

v

Select Officer ©

Insert Dates =

e

Officer’s Qualifications ™ Rank and L anguages
Credentials Specialties® and
and Grades 2 Grades ™
Stored Proceduresfor Insert Records
Name Variables Description
ShowJobld Returns all jobs
CheckJobld Jobld Checksif the Jobld is unique
CheckJobName JobName Checksif the JobName is unique
ShowRankCode Returns all the ranks
CheckJobldRankCode Jobld, RankCode Checksiif the Jobld, RankCode pair exists
ShowL anguageCode Returns all the languages
Jobld, Checksiif the Jobld, L anguageCode pair
CheckJobl dL anguageCode L anguageCode exists
ShowSpecialtyCode Returns all the specialties
: Jobld, Checksif the Jobld, SpeciatyCode pair
CheckJobl dSpecialtyCode SpecialtyCode exists
ShowQudlificationCode Returns al the qualifications
e Jobld, Checksif the Jobld, QualificationCode pair
CheckJobldQuialificationCode QualificationCode oS
ShowCredentialsld Returns all the credentials

156

Stored Proceduresfor Insert Records

Name Variables Description
: Jobld, : . o
CheckJobldCredentialsld Credentialsld Checksif the Jobld, Credentialsld pair exists
7 ShowPlaceCode Returns all the Platforms/Bases
CheckJobl dPlaceCode Jobld, PlaceCode Checksif the Jobld, PlaceCode pair exists
8 ShowA pplicantldL astNameFir Returns the officer’ s last name and first
stNameWORank name
ShowRankCode Returns all the ranks
ShowSpecialtyCode Returns all the specialties
ShowA pplicantldL astNameFir .
stNameRankNameOnA pplicant Applicantld Returns the |ast nam?,f_f irst name and rank
9 Id per officer
Applicantld,
UpdateA pplicantl dSpecialtyRa SpecialtyCode, Updates the specialty, rank and required sea
nk RankCode, time for the rank per officer
SeaTimeForRank
ShowL anguageCode Returns al the languages
ShowA pplicantldLastNameFir :
siNameRankNameOnA pplicant Applicantid Returnsthe last name, _f|rst name and rank
10 Id per officer
CheckApplicantldL anguageCo Applicantld, Checksif the Applicantld, LanguageCode
de LanguageCode pair exists
ShowQualificationCode Returns al the qualifications
ShowA pplicantldL astNameFir .
stNameRankNameOnA pplicant Applicantid Returns the last name, _f| rst name and rank
11 Id per officer
CheckApplicantldQualification Applicantld, Checksif the Applicantld,
Code QualificationCode QualificationCode pair exists
ShowCredentialsld Returns all the credentials
ShowA pplicantldL astNameFir .
stNameRankNameOnA pplicant Applicantid Returnsthe last name, _flrst name and rank
12 Id per officer
. . Applicantld, Checksif the Applicantld, Credentialsld
CheckApplicantldCredentialsld Credentialsid pair exists
13 CheckCredentialsld Credentialsld Checksiif the Credentialsld is unique
CheckCredentialsName CredentialsName Checksiif the CredentialsSName is unique
14 ShowCommandCode Returns al Command Codes
15 CheckQuialificationCode QualificationCode Checksif the QualificationCode is unique
CheckQuialificationName QualificationName | Checksif the QualificationName is unique
16 CheckSpecialtyCode SpecialtyCode Checksiif the SpecialtyCode is unique
CheckSpeciatyName SpeciatyName Checks if the SpecialtyName is unique
17 CheckL anguageCode LanguageCode Checksiif the LanguageCode is unique
CheckL anguageName LanguageName Checksiif the LanguageName is unique
18 CheckRankCode RankCode Checks if the RankCode is unique
CheckRankName RankName Checksif the RankName is unique
19 ShowJobld Returns all jobs
20 | CheckSuitablenpplicantsOnJo Jobid Checksif an officer is eligible for ajob
CheckExperienceExists Jobld, Applicantld Checksif an expﬁlsgntce%has been already
21 . Jobld, Applicantld, Inserts the experience the officer has for a
InsertExperience - -
Experience job
22 | ShowJobldPlaceCodeApplican Returns all the assignments

157

Stored Proceduresfor Insert Records

Name Variables Description
tIdFromASSIGNMENT
ShowdJobl dPlaceCodeA pplican
tIdOnA pplicantldFromASSIG Applicantld Returns an officer’ s assignment
NMENT
23 CheckDateExists Applicantld Checksif the report or detach date exists
Applicantld,
InsertDate ReportDate, Inserts the Report and Detach Dates
DetachDate
CheckCoefficientExists WeightName Checksiif the coefficient exists
24 InsertCoefficient Wel_ghtName, Inserts the coefficient and its value
WeightValue

158

Quialifications®

C. Update Records
Update
Records
Job Experience Per
Job/Officer
Select Job Y’
1 Select
Update *°
\

Update Jobld,

JobName,
Experience ?

Ranks?® Language Specialties®
and
Minimum
Grades*
A 4
Credentials Bases/Platforms
and that have this
Minimum Job &
Grades’

159

Update
Records
(Cont’d)
Officers Report Criteria
/Detach Weights
Date
Select Job # Select
Weight %
Insert Dates Update **

Select Officer °
Rank and L anguages Credentials
Specialty 1° and and Grades
Grades
Select Select
Language * Credential **
Enter New Enter New
Grade *? Grade®
Update ™ Update *°

160

Stored Procedur esfor Update Records

Name Variables Description
1 ShowdJobld Returns al jobs
ShowdJobld Returns al jobs
ShowExperienceRequired Jobld, JobName Returns the job’ s experience required
CheckJobld JobldNew Checksiif the new Jobld is unique
2 CheckJobName JobNameNew Checks if the new JobName is unique
UpdateJobl dJobNameExp Jobld, JobldNew, Updates the Jobld, the JobName and the
erienceRequired JobNameNew, experience required
ExperienceRequired
ShowRankCaode Returns all the ranks
3 | ChecklobldRankCode Jobld, RankCode Checks f the Jobld, RenkCode par
ShowlL anguageCode Returns all the languages
4 CheckJobl dL anguageCode Jobld, LanguageCode Checksif the Jobgi(,i ;gnguageCode par
ShowSpeciatyCode Returns al the specialties
> | CheckaobldSpecialtyCode | Jobid, SpecialtyCode | eI the Jobld, SpecialtyCode palr
ShowQualificationCode Returns all the qualifications
6 CheckJobldQualificationC Jobld, QualificationCode Checksif the Jopl d, Qual ificationCode
ode pair exists
ShowCredentialsld Returns all the credentials
7 | CheckdobldCredentialsid | Jobld, Credentialsid | Checksif the btgj'stirede”t'a's' d pair
ShowPlaceCode Returns all the Platforms/Bases
8 | CheckJobldPlaceCode Jobld, PlaceCode ChecksTf the Joblc, RaceCorle pair
9 ShowA pplicantldLastNam Returns the officer’ slast name and first
eFirstNameWORank name
ShowRankCode Returns all ranks
ShowSpecialtyCode Returns all speciaties
ShowA pplicantRank Speci Applicant!d Returns the rank, specialty and seatime
atySeaTimeForRank PP for rank per officer
ShowA pplicantldLastNam N :
10 eFirstNameRankNameon Applicantid Returns the officer’ slast name, first
. name and rank
Applicantld
UpdateApplicantldSpecialt Appllsgzréti Ia(lljt RcaggeCode, Updates the officer’ s rank, specialty,
yRank SeaTimeli/orRaﬁk seatime for his/her rank
ShowL angyageCodeOnAp Applicantld Returns the officer’s languages and
plicantld grades
11 | ShowApplicantldLastNam . .
eFirstNameRankNameon Applicantld Returns the officer’ s last name, first
. name and rank
Applicantld
Applicantld, Returns the officer’s language and
Showl anguageDegree LanguageCode grade
12 | ShowApplicantldLastNam . .
eFirstNameRankNameon Applicantld Returns the officer’ s last name, first
. name and rank
Applicantld
Applicantld,
13 Updatel anguageDegree LanguageCode, Updates the officer’ s language grades
LanguageDegree

161

Stored Procedur esfor Update Records

Name Variables Description
ShowCred_entlaIsIdOnAppI Applicantld Returnsthe creo_lentlal grades per
icantld officer
14 | ShowApplicantldLastNam N :
eFirstNameRankNameon Applicantld Returns the officer’ slast name, first
. name and rank
Applicantld
ShowCredentialsGrade Applicantld, Credentialsld Returns the officer’s credential grade
ShowA pplicantldLastNam . .
15 oFirstNameRankNameon Applicantid Returns the officer’ s last name, first
. name and rank
Applicantld
. Applicantld, Credentialsid, _— .
16 UpdateCredentialsGrade CredentialsGrade Updates the officer’s credential grade
17 ShowJobldJobNameFrom Returns al jobs with their required
EXPERIENCE experience
ShowA pplicantDataOnJob . e .
18 FromEX PERIENCE Jobld Returns the officers for a specific job
19 ShowExperienceOnJobldJ Jobld, Applicantld Returnsthe offlcgr_s experience fora
obName specific job
. Jobld, Applicantld, . . .
UpdateExperience Experience Updates the experience per job, officer
ShowJobl dPlaceCodeA ppl
20 | icantldFromASSIGNMEN Returns al the assignments
TForUpdate
ShowJobl dPlaceCodeA ppl
icantldOnA pplicantldFro _— .
21 mASSIGNMENTForUpda Returns an officer’s assignment
te
Applicantld, ReportDate, Inserts the report and detach date for a
InsertDate DetachDate specific officer
2 ShowCoefficients Returns al the coefficients and their
values
. WeightName, S
UpdateCoefficient WeightValue Updates the coefficients’ values

162

Data

d. Delete Records

Delete
Records

N

Command *°

Credentials

Language *°

Rank %

Select Job 2
Rank 3 L anguage Specialty ° Qualification ©
and
Minimum
Grade*
A 4
Credential Bases/Platforms
and that havethis
Minimum Job 8
Grade’

163

Delete
Records
(Cont’d)

/\\.

Officer °

Platfor m?

Criteria
Weights %

Qualifications*’

Officers Specialty 8
Data
Select Officer 1°

oo

Language and
Grade™

Credential and
Grade*?

Quialification **

Stored Proceduresfor Delete Records

Name Variables Description

ShowdJobld Returns al jobs

DeleteJobs Jobld Deletes ajob

ShowdJobld Returns al jobs
ShowRankCodeOnJobld Jobld Returns all the ranks for a specific job
Del eteRank(riI(() deOnJobRa Jobld, RankCode Deletes a specific rank
ShowLangl:)aI\%eCOdeOnJo Jobld Returns all the languages for a specific job
Deletel anguageCodeOnJo Jobld, .

bLanguage L anguageCode Deletes a specific language
ShowSpeci alltg/COdeOnJob Jobld Returns all the specialties for a specific job
Del eteSpecialtyCodeOnJo Jobld, s .

bSpecialty SpecialtyCode Deletes a specific specialty
ShowQual 'l%?‘éonco‘jeo” Jobld Returns all the qualifications for a specific job

164

Stored Proceduresfor Delete Records

Name Variables Description
DeleteQualificationCodeO Jobld, - e
nJobSpecialty QualificationCode Deletes a specific qualification
ShowCreden(t; alsldOnJobl Jobld Returns all the credentials for a specific job
7 -
DeleteCredentialsldOnJob Jobld, - .
Credentials Credentialsid Deletes aspecific credentia
ShowPlaceCodeOnJobld Jobld Returns all the platforms/bases for a specific job

8 | Delete aceCC:gdeOnJobPl al Jobi d, PlaceCode Deletes a specific base/platform
ShowApp!lcantI dLastNam Returns all officers' last, first name and rank

9 eFirstName

DeleteApplicants Applicantld Deletes an officer
ShowA pplicantldLastNam S .

10 eFirstNameWORank Returns al officers’ last and first name
ShowA pplicantldLastNam e
eFirstNameRankNameon Applicantid Returns an officer’ s first name, last name and

. rank
Applicantld
11 | ShowL angl_JageCodeOnAp Applicantid Returns the languages and grades of a specific
plicantld officer
DeleteApplicantldOnAppli Applicantld, .
cantlanguage L anguageCode Deletes an officer’ s language and grade
ShowA pplicantldLastNam e
eFirstNameRankNameon Applicantid Returns an officer’ s first name, last name and
. rank
Applicantld
12 ShowCred_entl alsldOnAppl Applicantid Returns the credential s_and grades of a specific
icantld officer
DeleteA pplicantldOnAppli Applicantld, - .
cantCredentials Credentialsid Deletes an officer’s credential and grade
ShowA pplicantldLastNam L
eFirstNameRankNameon Applicantid Returns an officer’ s first name, last name and
. rank
Applicantld
13 | ShowQualificationCodeOn . Returns the qualifications and grades of a
: Applicantld S)
Applicantld specific officer
DeleteA pplicantldOnQuali Applicantld, L .
ficcationApplicant QualificationCode Deletes an officer’s qualification and grade
14 ShowCredentialsld Returns all the credentials
DeleteCredentias Credentialsld Deletes a credential
15 ShowPlaceCode Returns all the platforms /bases
DeletePlaces PlaceCode Deletes a platform /base
16 ShowCommandCode Returns all the commands
DeleteCommands CommandCode Deletes a command
17 ShowQualificationCode Returns all the qualifications
DeleteQualifications QualificationCode Deletes a qualification
18 ShowSpeciatyCode Returns al the specialties
DeleteSpecialties SpecialtyCode Deletes a specialty
19 ShowlL anguageCode Returns all the languages
Deletel_anguages LanguageCode Deletes alanguage
20 ShowRankCode Returns al the ranks
DeleteRanks RankCode Deletes arank
21 ShowCoefficients Returns al the coefficients
DeleteCoefficient WeightName Deletes a coefficient

165

Solve Mode

Manipulate
Solution ?

Solve M ode€
y N
Solution *
I
Y
Assignment °

Stored Proceduresfor Solve Model

Name Variables
1 dec_CheckHValueExists Counter
dec_CheckHValueNotNull Jobld, PlaceCode,
— Applicantld
dec_ComputeMaxValue Counter

dec_ComputeMeanVaue

dec COUNTER Fill

dec_CountPriorityRecords

dec Credentials Jobld, Applicantld
. Applicantld,
dec_Credential sl Credentialsld
dec_Credentials2 Jobld, Credentialsld
dec_Experience Jobld, Applicantld
dec H_Fill

dec H_Function

Jobld, Applicantld,
PlaceCode

dec H Normalize

dec Language Jobld, Applicantld
Applicantld,
dec_Languagel L anguageCode
dec_Language? Jobld, LanguageCode
dec Main

dec MAX_VALUE Fill

166

Stored Proceduresfor Solve Model

Name Variables
. Jobld, Applicantld,
dec_PreferenceApplicantReturn PlaceCode
dec_PreferenceCommandReturn Jobld, Applicantld,
- PlaceCode
dec PRIORITY_Fill
e . Applicantld,
dec_QualificationExistsl QualificationCode
Jobld,

dec_QualificationExists2

QualificationCode

dec_Quadlifications

Jobld, Applicantld

dec_Rank

Jobld, Applicantld

dec_RankExistsl

Applicantld, RankCode

dec_RankExists2

Jobld, RankCode

dec_ SetMAXVaueNull Counter
dec_ShowDeletedJobs
dec_ShowJobNameOnJobld Jobld

dec_ShowSolution

dec_ShowUnassignedA pplicants

dec_Specialty

Jobld, Applicantld

dec_SpeciatyExistsl

Applicantld,
SpeciatyCode

dec_SpeciatyExists2

Jobld, SpecialtyCode

dec UNASSIGNED_APPLICANTS Fill

dec Delete Job Manipulate

Jobld, PlaceCode

dec DELETED_JOBS MANIPULATE_ DeleteRecord

Jobld, PlaceCode

dec DELETED_JOBS MANIPULATE_Fill

dec_DeleteEmptyJobs

dec_DeleteJob

dec DeleteJobUsedValues

Counter

dec EstimateFunction

dec_FindMaxValue

Jobld, PlaceCode,
MAXVaue

dec MANIPULATE_SOLUTION_Fill

dec MANIPULATE_SOLUTION_InsertRecord

Jobld, PlaceCode,
Applicantld

dec MAX_VALUE_ALL_JOBS Fill

dec_ShowDeletedJobsM anipul ate

dec_ShowEstimateFunctionResult

dec_ShowJobNameOnJobld

Jobld

dec_ShowManipulateSolution

dec_ShowNotNullHVaue

dec_ShowPlaceNameOnPlaceCode

PlaceCode

dec_ShowUnassignedA pplicantsM anipul ate

dec_ UNASSIGNED_APPLICANTS MANIPULATE_DeleteRecord

Applicantld

dec_ UNASSIGNED_APPLICANTS MANIPULATE_Fill

AcceptSolutionFromMA X Table

AcceptSol utionFromM ani pul ateSolutionTable

167

D. USE CASES
This section describes examples of use cases. Each of these use cases is a

sequence of actions the three categories of users have to perform. The following lines
present a sequence of screens that each user goes through while the user performs his/her
basic roles.

1 Officer

The basic functionalities the officer has to do are to delete a preference he has
aready selected and add a new preference.

a. Delete a Preference
(1) TheOfficer Logs In.

e Heh

O - O WEG P frroe @%e @252 8- UD B

[Felect A Job

Please

Select An Officer Sdgn wp
|

Ewmmm-m

Figure 64. The Officer Selectsthe ‘ Already Have a Password? Sign In’-Manpower
Website.

gucdm_ﬂ:

168

N Unikitled Document - Microsoft Inberret | splorer

Fle Edt Gen Faoriks Took Hep >
Q- O BEG Lo frrvie @ne @25 B- P2
st |] it acahos Marperes Logn ~ B

Urks | Toshia ficoess @] Customize Unks (B] ree otmed fp BeaPlayer &) Wincows (] Wondovs Medks

fOnly Fer Comnamders -

aom e e

Figure 65. The Officer Types the User Name and Password-Manpower Website.

169

(20 The Officer Deletes a Preference

A Untitled Document - Bic rosaft Internet | splore:

BB e o T b
Qui -0 M AG Pom oo @ @ -5 B-LUPB

5] b oo L
Lt 3 Toshbs fees] Cusiomire ks @] rreeriotrsd) Py] Windows] indows Tiecka

gl:lme !udrmt

Figure 66. The Officer Selects ‘ Delete A Preference’ -Manpower Website.

170

B Untitled Document - Microsoft Interpet | splorer

Fle Edt Wew Faodlen Took Hep []

Om - O REG Lo drroom @ne @25 8- 3

Urks [Toshibs doosss @] Customze Unks (] Mresriotmel ol Bealsyer B Windows (] wincovs Meds

) E— P

Figure 67. The Officer Selects Preference Number 2 to Delete-Manpower Website.

171

A Untitled Document - Bic rosaft Internet | splore:

e Bk e P i 10) . . | &
Quui- O B @G Lo Frive @ @ 3-8 8- @B
sdcress] it ocshortMarpanym, Deetmtpbcanrefmence, mp Rl > e

Lt 3 Toshbs fees] Cusiomire ks @] rreeriotrsd) Py] Windows] indows Tiecka

gm !udrmt

Figure 68. Preference Number 2 is Selected-Manpower Website.

172

Om -0 HEAG Pos oo @ee @25 8 P 3B
Bl L i S —— ¥ Ao
ks | Toshia tiooess @] Customize ks (B Free Fotmed s ReaPlayer &) Windows (5] Windovs Meds

dnly Fer Commanders

Figure 69. Preference Number 2 is Deleted and the Officer Goes Back to the Control
Page-Manpower Website.

b. Add a Preference
D The Officer Logs in the Same Manner As Described

Above.
(20 TheOfficer Adds a Preference

173

e Edid wew Fovontes Toos Help

Oni- © MRBG Powoprome @ @ (-5 B DB
ks] st e e sl pplantoats sep ¥ Be
| b (3 Toshboe docess & Customizetnks (] Free rotmad d Resklyer (&) vandons B wincoms Medi

'3'“' ﬂlrmmt
- —

Figure 70. The Officer Selectsthe ‘ Select A New Assignment’ Option-Manpower
Website.

174

Fie Edd ¥mm Favonies Toos Help

Q- © B B P Foronin @i @ 3-2 B-L DB

Blacronica Offcer

Ewacifrve Officar

4] pore | -qlmnmmr.
=

Figure 71. The Officer Selects the Communications Officer-Manpower Website.

175

7 Untitled Document - Microsoft Internet Egilores

Fie Edd ¥mm Favonies Toos Help

Qne - © B B0 Lo foromin @ @ -2 8 DB

&5
e

1= lh'hnel:
Figure 72. The Officer Selects the Frigate 1 and Preference 2-Manpower Website.

176

A Uingitled Documenl - Microsofl bnte et Expdores

Qe - QM A e Poeh Jpfovi @mese @3- B | DB
s) g fochostrpn e imertre erencefeer o B
Lk |3 Todhibe ficcess 8] Customze ks 3] Pree roimal @ ResFlayer 8] vandors (B windoms Medi

oz

L pal rrarer
=

Figure 73. The Officer Has Applied His/Her Preference-Manpower Website.

2. Command
The basic functionalities the command has to do are to delete a preference it has
aready selected and add a new preference.
a. Delete a Preference
(1) Log In. The command logs in the same way the officer
does but the command selects the ‘“Would You Like To Select An Officer For Your
Command? Please Click here!” option instead.
2 Delete a Preference.

177

A Untitled Document - Bic rosaft Internet | splore:

Fle Bt Yen Foontes Tods fib _ | &
Qw-Q HEAG Poo oo e @ 3-5 B-L P
s] st omaor e = e

Lt 3 Toshbs fees] Cusiomire ks @] rreeriotrsd) Py] Windows] indows Tiecka

& S | vl rtranet
- =

Figure 74. The Command Selects ‘Delete A Preference’ -Manpower Website.

178

Y Untitled Document - Wic rosaft Internet Expslore

Qui- O WA G Poors frrmeme @uee @ 21 8- P B
scress) it ozshortM sy, et dhreterance ¥ B
Lt 3 Toshbs fees] Cusiomire ks @] rreeriotrsd) Py] Windows] indows Tiecka

Platform fBase Dfficar's D LastMame

| | £ :

gm !udrmt
Figure 75. The Command Selects the job Commanding Officer for Frigate 1 with

Preference Number 3-Manpower Website.

179

A Untitled Decume

1 Edit

Ow-Q HEAG Py @ @ 25 8 LUPB
sdcress] e focsbertMarpems ookt 25 B

ks () Toshhs fccmss 8] Customvee ks B Preethotesd alp Redrlaver (] wndoes] Andoves ecka

£ I al *
gm 8 oo rnfranat

Figure 76. The Preference Number 3 is Deleted-Manpower Website.

b. Add a Preference
(1) The Command Logs In As Described Above.
(20 The Command Adds a Preference.

180

He

| P e @ @[2% B @B
e] e Mg eeCrandsts ¥ B
L [Toshia tecess @] Customie Unks (8] Mree roimel @ ReaPleyer] Wincws 8] Vo eds

om0 B¢

)

o |
Figure 77. The Command Selects the * Select An Officer’ Option-Manpower Website.

181

X Untitled Document - Microsoft b

O -0 HEG Pov frroe @ne @ 2-% 8-L@ 3
ebvess (] P neshost Msrpmym e R e e S 0C0mTand, 2 Rl 3

Lk |2 Toshiba dcees] Cutomer Lnks] Preerotesd)y Reekloye 8] Wvdoms] indores Mecks

4] Dore [Sl Local ntranet
=

Figure 78. The Command Selects Frigate 1-Manpower Website.

182

TH Untitled Document - Microsoft Inbermet | splorer

Fle Edt Yew Fuwib'l'mh_lﬂp__ - ._
Qm - O BEG Lo formie @we @ 2-5 8- P 3
Wuﬂlﬁwﬁmw;ﬁmmmm a =

ks [Toshibg doomss @] Customize ks (B Fres Homed o SeaFlsger (] incvs (] Vindoves Meda
E - 1 F . S

Figure 79. The Command Selects the Commanding Officer Job and Officer 4 with
Preference Number 3-Manpower Website.

183

oo |
Figure 80. The Commanding Officer Job and Officer 4 with Preference Number 3 Is
Selected-Manpower Website.

!;Lndhl:nmﬂ:

3. Detailer
The main job for the detailer is to solve the multi-criteria model and make any
changesif the detailer wishesto.
a. Solve the Model
(D] The Detailer Hasto Log In First.

184

He

| s e @ @[2% B - @ B
ke] bt ot Warponver e Fim ¥ B
L [Toshia tecess @] Customie Unks (8] Mree roimel @ ReaPleyer] Wincws 8] Vo eds

0= -O-Ba¢

[Felect A Job

only Fosr Conmanders

& obchos e toon.am
Figure 81. The Detailer Selects the * Already Have a Password? Sign In’-Manpower
Website.

185

¥ Untitled Document - Wic rosaft Inter

Fe B Wew Fovoies Tods b) N | &
Que- @ B @G Lo frrome G @ -5 8- DB
sdcvess] o focsboetMarcame Aogn a5 Sl >

Lt 3 Toshbs fees] Cusiomire ks @] rreeriotrsd) Py] Windows] indows Tiecka

(A
T
| Submit [R |

bnly Far Commanders "

gud riTanet

oo
Figure 82. The Detailer Types the User Name and Password-Manpower Website.

186

) Untitled Document - Khic rosaft Inter

Q- O WEG Pwo oo @ue @ 225 5-LUPB
sderess] it ozsbet s e - >
ks () Toshhs fccmss 8] Customvee ks B Preethotesd alp Redrlaver (] wndoes] Andoves ecka

gud riTanet

oo

Figure 83. The Detailer Types the Second Password the Detailer Has-Manpower
Website.

187

(20 TheDetailer Solvesthe Model.

) Untitled Document - Khic rosaft Inter

Fe G W frwier Teds bk . N | &
Qo - Q[@] G P qpfomie Prete @ (3-05 B - P B

B L —— B

ks () Toshhs fccmss 8] Customvee ks B Preethotesd alp Redrlaver (] wndoes] Andoves ecka

gud riTanet

oo

Figure 84. The Detailer Selects the * Solve The Model’ Option-Manpower Website.

188

A Untitled Document - Bic rosaft Internet | splore:

Fle Bt Yew Footes Tods fel []

Qui- QO HEAG P e e @ 3% B-L DB

ficc Solution?

Salect An Officer

gm !udrmt

Figure 85. The Algorithm Solution (Screen 1)-Manpower Website.

189

el

| P Gy @ne @3- % B-LUD B

Lrks | Toshia tccmss @8] Cumtomze Unks] rree rotmed @ ReaFisver] Wincvs (] windors etk

e et

O=-0 @

ccept Solution® Hakr Changes?

Figure 86. The Algorithm Solution (Screen 2)-Manpower Website.

e

190

(©)] The Detailer Makes Changes. In Figure 37, the detailer
selects the ‘Make Changes option. The page that follows allows the detailer to wipe out
a job and an officer from the solution set, by selecting the MAX Vaue link that

corresponds to that job.

Doc Lj uplors =
fom Teorie Todk i L
GH o L]l:ﬂih}-’ﬁwfemdrwﬁlﬂ = 8- 93
ko [] o cabhor srpres e e

Liks | Teoshiba ficoess aommh .ﬂrrummd dp EeaFlayer] Windovs (B windoves Medks

Al

|
|

Figure 87. The Page the Detailer Can Change the Solution (Screen 1)-Manpower
Website

191

) Untitled Document - Kic rosaft Internet Explore

Oui- O HEAG Port frrome @ @ 35 B-UD B

e] g focabest Merpowe ol
Lk ([Toshhs Boess 8] Cusioniee ks B Premrotresd B Redlaver] windovs 43 windows Frecks

.
£ v =] £
gm gu-drmt

Figure 88. The Page on Which the Detailer Can Change the Solution (Screen 2). On

That Page the Detailer Selectsthe MAX Vaue 10 Link That Corresponds to Job
Commanding Officer and Officer 1-Manpower Website.

As soon as the detailer selects a specific job, the job and the
corresponding officer appear under the Deleted Jobs and Unassigned Officers lists
accordingly. At the same time the Estimate Function Result appears which shows how

worse the detailers change is compared with the algorithms solution.

192

N Untitled Document - Bicrosaft Inter =T
P D e e . i _ | &
Qoun -0 EEG Foow fofomie @ @ 3-5 B-L DB
_@@:ﬂ@ﬁﬁuﬂﬁmm | Elca

Lt 3 Toshs feces] Cusiomire ks @] rreeriotresd) Py] Windows] indows Tiecka

. ERTHRRTIE

| S ——— | £
gm !udrmt
Figure 89. The Job Commanding Officer and Officer 1 is Deleted from the Solution
(Screen 1)-Manpower Website.

193

7 Untitled Document - Mic rosaft Internist | splores
Fle bt Yew Fovonbes Teds Heb

Oui- O HEAG Port frrome @ @ 35 B-UD B

Lk ([Toshhs Boess 8] Cusioniee ks B Premrotresd B Redlaver] windovs 43 windows Frecks

-
El | i
g gu-drmt
Figure 90. The Job Commanding Officer and Officer 1 is Deleted from the Solution

(Screen 2)-Manpower Website.

By performing the same sequence of actions the detailer deletes the
job Communications Officer and officer 2. The job Communications Officer and officer
2 appear under the Deleted Jobs and Unassigned Officers lists accordingly. The Estimate

Function Result changes again.

194

B Untitled Decument

Fe Edit Wew Fawocrles Took Hep

Om - O REG Lo drroom @ne @25 8- 3

Urks | Toshia ficoess @] Customize Unks (B] ree otmed fp BeaPlayer &) Wincows (] Wondovs Medks

B CTLF05EAA10

Figure 91. The Job Communications Officer and Officer 2 is Deleted from the

Solution (Screen 1)-Manpower Website.

195

X Untitled Document - Microsoft Intermet Explores
Fle Edt Vew Favorier Took Hch:l

Qees - E} L]tﬂ@}’ﬁmfimﬂ"ﬂﬁméﬂ 93

[ﬂTnd‘ll:um i‘]ommh .ﬂrrmmmd dp EeaFlayer] Windovs (B windoves Medks

£d

Figure 92. The Job Communications Officer and Officer 2 Is Deleted from the
Solution (Screen 2)-Manpower Website.

The detailer then assigns the job Commanding Officer to officer 2
and the job Communications Officer to officer 1. The detailer selects first the job and
then the officer that the detailer would like to be assigned to that specific job.

196

B Unditled Document - M

He Edt Wew Favorbes .TIEI* H:b .) . *
Qu - W @ Po i @we @ 23-5 B-| @3
ke] e oot erprver et on, e P E

Lr"ﬁ.ﬂmﬂm B omoneelicks 8] fres totesl @p BeePlayer (&) Windows & intoes Fecks

& GPLFI9526R1D

.
£ 5 —ie T
g [Wl Local niranet

Figure 93. The Detailer Selects the CO Link Under the Deleted Jobs-Manpower
Website.

197

Took Hel

e o Favorien (e E}|ﬂ-% B- 94
[Adbes MWwﬁi;mWMmmmm L 7 5 g = 0 206 20 % P2 S A 2 2 2, S o B
Urks | Toshia ficoess @] Customize Unks (B] ree otmed fp BeaPlayer &) Wincows (] Wondovs Medks

Qw-O B3¢

[assectinriass |
1 PR 05 2881

e —

< i | 2
Figure 94. The CO Link is Selected Under ‘ Selected Job’ (Screen 1)-Manpower
Website.

198

rosoft Inbernet Explores 3 :/
=]

Q-0 DR psmﬁmema|ﬂ-ﬁﬂvaﬂ.ﬁ.
_?Emwm&mﬁmﬂmmmm L 7 5 g = 0 206 20 % P2 S A 2 2 2, S o B
L] Toshiba tecess @] Customie Unks (8] Mree roimel 4 ReaPleyer] Wincws 8] Wincoves e

i
- e 5
Figure 95. The CO Link Is Selected Under * Selected Job’. Notice the Available

Officers Under ‘Add An Officer’ (screen 2)-Manpower Website.

199

Q-0 HEG P e @we @ 2-5 8- P 3
s] oo g M e et oot L s ST = A 20 A AR, O L >
ks | Toshia tiooess @] Customize ks (B Free Fotmed s ReaPlayer &) Windows (5] Windovs Meds

l
- e, | 2
Figure 96. The Detailer Selects Officer 2 Under the * Add An Officer’ (Screen 2)-
Manpower Website.

By performing al these changes, the Estimate Function Result
changes accordingly, so that the detailer can estimate the ‘value' of his’her changes.

200

Q- © HEG P frome @ne @ 2-% 8- P 3

Urks | Toshia ficoess @] Customize Unks (B] ree otmed fp BeaPlayer &) Wincows (] Wondovs Medks

o—

5 SFAT AL EseaT 8

Officer 2 Is Selected. The Job Commanding Officer and Officer 2 Appear

Figure 97.
in the Solution Domain (Screen 1)-Manpower Website.

201

GH E} Dtﬂﬁ}’ﬂmﬁmﬂ'%ﬁ@%ﬂ 93

ko [] o cabhor srpres e >
Liks | Toshiba ficcess 8] Customize Links .ﬂrrmmwd dp EeaFlayer] Windovs (B windoves Medks

£ e e e
fELE & Locs rranet

Figure 98. Officer 2 is Selected. The Job Commanding Officer and Officer 2 Appear
in the Solution Domain (Screen 2)-Manpower Website.

Following the same sequence of actions, the job Communications
Officer and officer 1 are selected. They both appear in the solution domain.

202

He

e o Favorien (e E}|ﬂ-% B- 94
ekt e [] bt ot Warpone e ateSckitnn 2z o B
Uks | Tshiba ficoess gnmmh E]rresromel @y meaFieye B vndows (B] Windoves Medks

om0 B

—

0. F1 021292645127 4

dulu

Select An Dfficar

T TS

-—a = = — g_l
Figure 99. Job Communications Officer and Officer 1 Are Selected (Screen 1)-
Manpower Website.

203

A Untitled Decume

el

Q- O B @G P iy @i @ (-5 B P B
it ot e (L
ks (3 Teshhs fccmss 8] Cusovee ks B Preethtesd ay Redrlave (] wndoes] Andoves ecka

T

£l ————— . ——————) &
g gu-drmt
Figure 100. Job Communications Officer and Officer 1 Are Selected (Screen 2)-
Manpower Website.

As soon as the detailer has made up his mind, he/she can accept the
solution by selecting the ‘Accept Solution’ link. The detailer can aso return to the
computed solution by selecting the *Go To Computed Solution’ link and then accept the
solution.

204

He

e o Favorien (e E}|ﬂ-% B- 94
ekt e [] bt ot Warpone e ateSckitnn 2z o B
Uks | Tshiba ficoess gnmmh E]rresromel @y meaFieye B vndows (B] Windoves Medks

om0 B

—

0. F1 021292645127 4

dulu

Select An Dfficar

T TS

[

'FB

Figure 101. The Detailer Accepts the Solution. The ‘ Accept Solution’ Link is
Selected-Manpower Website.

205

) Untitled Decum

Qui-Q HEAG P e @ @ 2% B-U DB
sdaess) mipifocohonterpone FonrotoCeicke e B - E
Lk ([Toshhs Boess 8] Cusioniee ks B Premrotresd B Redlaver] windovs 43 windows Frecks

4] Dore

8 oo rnfranat
=

Figure 102. The Solution Is Accepted. The Detailer Goes Back to the Detailer Control
Page-Manpower Website.
E. SYSTEM ARCHITECTURE
In this section a description about Microsoft SQL Server, Microsoft 11S 5.0
architecture is provided alongside with some features of the Windows XP Professional
NTFS operating system, under the perspective of the Manpower Database and Website
needs.
1 Microsoft SQL Server 2000-M anagement
Microsoft SQL Server 2000 provides many desirable features for the Manpower
Database:
a. Database Management
The figure below shows the SQL Server Enterprise Manager. It provides
an easy-to-use interface that enables the manager to perform any desired tasks by using
menus and dialog boxes rather than complex command line instructions.

206

| Mamperwer - [Conaole Rootuicrosalt SOL ServersiSOL Server Group! (LOCAL) [Windmss KT \Dalabases Manpases]

T Ae Acton Wow Faworid Took Window Help
= Bm - MA@k MR- mE
[l Coresole Aock
- ngwﬁ:sq.srrus General Tahbe Info | Wizards
- S0 Server Group
- fl A0CAL) Sihrddasa NT) Manpower B
=[] Dwbabeses
|5 Manparesr Gl
-3 Dhagrems .
B Ttk 2 Database
" v Faramr: RAACOHEUT 1Ak
Stored Procedures : : s 7
e Date created: 5/2/2003 121157 FP
R Siea Z63HE
d;::-ﬂ! Space svailable: 2HE
H Lismr Diefred Data Types Dalabace ol A
¥ Lisar Dednad Funcions Mumber of psers;
F (3 meter
+ |3 moael
=+ | msdh
+ [Hortedrd =) Maintenance
5 [§ pubs =
+ |9 tenpds Last datalass backep Mo
-1 Data Tranefamedon Servioes ast differential backum:
++ I Maraerent . 5 o
+ (] Rapi Last transaction log backup Mone
+ (1 searty Mairtensnce plons
|2 Support Sereces
+ [0 Mela Data Services
¥ Trbemet Infamiston SEnvices
15 resl Drectory Maragevert & S Sever | wy Space allocated
} Deaftac
Transacton log spaca: 05502 m“

L

Tatal

B Used

. Free

Figure 103.

b.

Stored Procedures

Microsoft SQL Server 2000 Enterprise Manager-Manpower Database.

Stored Procedures are predefined queries whose values are variables that

are not defined until run time. Stored procedures can be nested up to 32 levels deep. In

the Figure below, we see an example of the UpdatePhoneData stored procedure used in

the Manpower database. This procedure receives the Applicantld, HomePhoneNumber,

CellPhoneNumber and OtherPhoneNumber values from the web server, performs the
UPDATE query based on these values and updates the PHONE table. The sigh @

characterizes a parameter as avariable and is put in front of that parameter.

207

Stored Procadire Propecties - UpdatePhoneData

Maer \Updats Frorm[ain Peamizzors

Oemer bsengs
Cree dete: LINMEZEFN
Ted

[CREATE PROCEDURE ksargis UpdatePhonalats | @ Applicantd char) 10), & HomePhonabumbar chan 30), @CalFhonahlumbar char 30, &0thahonehumbar &
han 30

e
DATE PHOKE
ET HomaPhonalumbsar = @'HamsPhonalumbar, CallPhonakumbar = @CalP hone lumben, OtharP honehlumben = E0tharPhone humban

;:'CII-IEFEE Applcanid - @Applicantd

0:|rm|m Hele

Figure 104. Use of Stored Procedure-Manpower Database.

Moreover, Stored Procedures use a special script language, Transact-SQL,
which helps the manager to create code in order to perform administrative tasks.

208

Stored Procedure Properties - dec. Credentials

Cimmer gy

Crade dais B TI03 & 2608 PM

Tad

CREATE PROCEDURE kemgs dec_Codentials @3Uoh kd chee |10, @ 8pphcaniid char 10

-

I ECsdoriizkald cran 1€
CET] ARE @SUM Tlaat

SET@5UM =0

_r\em-..r.u CURS0OR FOR
9 i, Cresciersi sinl

1."} J'B ='ED HTIALS

FIHERE Jotld

C—“ u'wemd smr
FE {EXT FRON Cracerrisis e
4 5 m @'mm

Kr:mm'r:de 'l:.d'ﬁ:ll.‘t 'rde'tm é'tlld P‘J‘:mﬁ:
EAUN - E5LM i CredentiabGrade 1 - @Cmdentnistraded « 10

T H NEXT FROMW Crdentisk Cursoe
|T25#:o~.1 Flmdentakid

.I' C"‘. ﬂl.‘é'-’l g
........ CadaniiabaCu T

TS
Check Symi=

g o] o | |

Figure 105. Transact-SQL Code Example-Manpower Database.

C. Database Diagrams

SQL 2000 Server provides an easy to use interface for viewing the
structure of the database and creating relationships among tables. Relationships can be
created by dragging and dropping primary keys from one table to the foreign key
reference in another table. For complex databases with hundreds of tables, multiple
diagrams with differing configurations can be created.

d. Multiple Ways to Construct Queries

SQL 2000 Server provides also Query Builder Wizards, Query Design
Grid similar to Access, and an “English Query” engine for defining queries through
English phrases rather than SQL syntax. It provides SQL Query Analyzer, which is a
powerful tool that helps the manager check queries or even stored procedures.

209

WY COMPU TER Manpower MY COMPUTER My risdos Sergis - Untitied1®] m

Qr@EHE s mEEHN| o B b 8D | 3B R

exsc Imergis.des masin A

Epplicancidl i
moC2

(1 rowi=) affscted)

(1 row (=) affecced)

(1 rowi=) affected)

(1 row(s) affeaced)

o

¥

4

ol Gods El Memmgms
Uy barich completed. NYCOMWPLITER (8.0) rrrcmnﬂmtmdms\:gs':srrhwn W0%10 [Orows Ln 31052, Col L
Conrechore: 1

Figure 106. Use of SQL Query Analyzer-Manpower Database.

2. Manpower Database and Website-Security | ssues

a. Security Modes-Manpower Database

SQL Server 2000 has two security modes. The first one is Windows
Authentication Mode and the second one is Mixed Mode. In the first mode, a user needs
to login on the Windows domain only. He is authenticated automatically as a valid SQL
Server 2000 user. In the Mixed mode the user has to be authenticated to both the
Windows domain and the SQL Server 2000. The Mixed mode is more secure and allows
the users to work from different OS (Mac, Novell etc.), while the Windows
Authentication mode does not require the user to have multiple passwords. In the
Manpower database the mixed mode is selected for the reasons mentioned above.

210

Ty, Manpowes - [Consgle RootiMicresoft SO ServersiSH Server Groug\(LOTALY {Winkdows NI}l

By e Acton Uew Famits Todi Windiw Haip

=+ D@ - EFEHE @ M@ WG

Servar Salings | Database Satinge | Raplicaton | Active Dwecioy |
Goed | Memay | Procceser Beruilty

E @ B @ @

501 Serwe Propertias (Configume) - {LOCAL)

Conracion |

®

STL Sarvar provvida s aulfent icason hased an Windows
acomnts and aramed 500 Serverlogin 1D and pasennd.

PAathaniicaion:

¥ 5GL Sarverand Windows

™ Vindows anky
St el

* Norm

" BuccEs

T Fadym
|

'+ 1] Dt Transiormason Serrss
+ [Manzgerent
7 1] Repication
% |23 Saounity
2 Support Servees
4 [Meta Data Services
¥ Irvtzrre] Teformation Servioss
+ IT5 ¥riual Direchary Manapament far SCL Serper

B

Siarup sevice acooont
e and ron AL Sorvarin the dalming ascnunt

¥ Syrwm scoount
™ Thes sccaunt

oK

Cncd | Hep |

mprmnnéﬁrnummr&s.uemn

_isix|
Support Mi=is Dby
Services Series

Figure 107.

b. Logins-Manpower Database
A SQL Server 2000 login, gives the server users accessto SQL Server asa
whole but not to the resources, like the Manpower database, inside. A Standard Login is

SQL Server 2000 Authentication Mode-Manpower Database.

necessary for the mixed security mode, since Mac or Novell clients need to be

authenticated independently of the windows domain. A Standard Login is created for the

detailer for the Manpower database.

211

T1; Manpowes - [Consehe Root\Micrencft SOL Servers\SIH Server Groug) (L OCALY (Windows NT]\Securityl ogins] =]
By e Acton Uew Famits Todi Windiw Haip = x|
e BE > *AR @ % MN-8 MG

[Cormcie ot [| Tvpe Server Aosss | Dmfoult Deisbome | DefmitLenguage |
= Bl Maosft=Q servers BTN st atars WNOMEG... Pamst Mt Ergah
= -ﬂi{l.ieu'm_ﬁr\?w | E— Stardard Parmat Marpower engieh
= ‘i_!' TLOCAL) Dot NTY Kyriakos Sergs Stargiard Pumit Menpories Engsh
- —' Bafoeded sl stardant Parmit TRaster Ergfsh

I, User Defrmd [iwt= Types
User Defined Fctiors

s 1] Mansgenent ' 5aL Servar Auhertication

5 (35 Becuity Paszinrd e]
= Dalaita

Sarved Rpket 2 Specfythe defaul lancuage and J alnhzse for this kogin

AEmois Sarpars 5 Diakase e li:
[MetaDiata Servoes Language: [Dtk =]

i Intermet Information Services

+ I05 ¥iriual Direchary Marepement: for SO Garser

K | Caeed | b |

Figure 108. Standard Login-Creation of Detailer Login for the Manpower Database.

C. Manpower Website NTFS Permissions

The Manpower Website files are organized in a manner based on the
Manpower Website users, the officer, the command and the detailer. For that purpose
three groups are created, the officer group, the command group and the detailer group.
Every officer belongs to the officer group, every command belongs to the command

group and the detailer to the detailer group.

The officer directory contains all the above groups. The command
directory contains the command and detailer group and finally the detailer directory
contains only the detailer group. The permissions are Full Control for every group in

every directory.

212

.':.._.Eunpuler Mansgement

B A At Uew window e =i=ix|
e DEXEFE
E Compuber Maregansent Local] are | Emsorpsen
=1 [y Svsten Tods I aornarane ASTEEETIteN e Complete and L .
o H Event Kewer " 24 fsdhup Operstors Bach_p Ciper eiors: can oweT e S200 .,
i Lg;:‘e:i :a-d“ = A cuests Guemsts e the same acress s me..
= ,_m““ OEE R etk Conguranon ... Menbers i The rounican have eom .
'jG’ L Posess |lsers possess m sk soesir
ik Pﬁfﬁrﬁ'maﬂmm Rerapde Deshiog Lssrs Menoer 2ot orey g s g e
Deﬁnel-h'ﬁc;ﬂ f - (Ll [etailer Properties
- i sorace Conna T
= Rmrmcusble Siorege Dretader Goraal
[k Defragmenie ! Helplericesiroup Graup
Dish Mansgerert 144 Orffir g Cetaiier
+ |5 caraoes and Appicatons e
Cwacaphon ||
Menibers
Em
0K Cencel
L3 | ¥

Figure 1009. The Detailer ‘ksergis as a Member of the Detailer Group-Manpower
Website NTFS Permissions.

d. Manpower Website I 1S Permissions
The Manpower Website IIS permissions can be controlled from the

Security tab of either the Manpower Website directory or the files belonging to it. The
account used for anonymous access can be set to IUSR_MY COMPUTER or any account

of the officer, command or detailer group.

213

Ty, Manpowes - [Consgle Rootilnbernet Information Sersices'MYCOMPUTER {lecal compuiber |\l Sites]

B A Aton Uow Fawmims Window Hip = x|
e BEFHEFE S om
=] Corsoke Aoed
+ Mirosnft L Garvers
= [ntermet Information Serwoes et Web
=1 S PRCOMPLITER. (il ComoLtEn) e
= I Wb Sitas S
15 o Dt Wen St Manpower Prupertiss.
! :Em Dimctory | Documents | Dieciory Secusty | HTTF Headers | Custom Brom
ki ::! L _H fnanyTecus acoesa and sriremicaban cariml|
E mages
= Engbls srorymows aoces pndedt ihe
- -_I:Iargmr % eutherticatior methaida forthis s,
oeciom S
- L0 Templatas
1 _naas IF arkdrmss and domsin o
- _vti_mf . Authentication Methods
4 (9 sate a ol
D et [#] oo acmen
L] :l _'.-1:!J:n‘ Ko e nams, D ond sogueed |o coaes fhis menome
"::: —::—-::'I Bcoount uesd for srompmous scosss:
HEa e S,
o At Secue conmunicstond] | LaErneme: |WISR_NYCOMPLTER | [(ouwsa__|
i & ;I!D?lmﬂm Fhmq; Pasmwerl: (ssssssssns |
- ‘i Diafair SMTP Wl Server e T 1 ehaw 115 io paniml passaond
-4 IS Wikl Directory Management for SOL Server
Suthertiorisd acoess
Forthe dobraing suthenticsbor methods, vser rame and prssrard
A reoured when
- EnryTous aooess Eceshlisd, o
- sy 1 redscied usng HTFS pooess corind ks
[ger s = EhE RS
] Basic: wuth entication frassmcedis st in clear bad)

Difait elomar:
Fsh: [Seed.,
[#] inbagratied hrdose 3 drarBcation

Lot _J [caed | [bee |

Figure 110. Anonymous Access-Manpower Website |1S Permissions.

e SQL Server Logs-Manpower Database
SQL Server 2000 provides to the database manager the ability to view

current or past logs in order to check any existing delinguencies.

214

T3 Manpmwer - [Comsole RootiMicrosoft SOL ServersiSTH Server Groug(LOCALY {Windoves HT]\Msnagement iS00 Server Logsi\Current - DEAGE003 153, - | [/X
By Fe Aton Uew Famits Todi Windiw Haip = x|
e BmE s FEAR @ 4 BB R
] Consoke Rast | | pate Bl]
= B Maosft s Serers 2] 2003 050 14042203, L1 Al MOl SOLSever 1000 - 5000 704 {Inal 5BS) ..
E ‘65"2'-5"""'_':‘“'-“ -] zo3-0m00 195203 12 server Loggrg 5oL Server mesages i S T Frogram Mleciromit SOL Sereer .,
= @,ﬂm’w““’m’ [5 20030508 4:42:03.12 serar Seneer Prooes ID s 1472,
' —-I' Dl;"::;w (=] 003505 14:a2:03, 12 saner g eserved,
L — JB:‘J]M 1430112 sanger Copight (C) 1989-2000 Neroso it Corpaorsbion
o 1] 20030508 4:42:02. 13 serer 50U Server s staring at priarity class ‘nommef (4 CRU dete cieod .
A Viens __]mmw;az;um menyr S0 Server ponfipured o thresd mode processng,
Eoned Pracedunes JIIJ]-BS:-OE-H:{MIJ].?I sangar Ulsing chmaic ook sllacation. [500] Lock Bleds, [3007] Lock Cwner Blocks,
Users [F] 20030508 14:42:04.22 sid] Shrbingup detabese ‘masier’
%Rlﬁi L] 2003-03-06 1442006, 44 merver Lisng BHETURLDLL verwon 80, 139,
(2] Rkes 5] 20030505 1414210545] Siippng startup of ceen datobase i 7
] Detauite 030506 14:42404, 45 i SHppng crantup of daon daEam
[, User Defree] Dpds Types: 0 12:4 %04, 45 =pad] Shpprg sharhun of desn debsbese i §
&' iiser Defined Furctions [El 30030505 14:42:05.45 s Shipprg startp of desn database id 4
3 [rsster || 2003050 144200545 il SEreRr nans & MHCOMOUTER'
3 [mooel 2] zomn-ne0m 144208, 4 sl Strigup dabsbese modd,
el 5] 20030505 14:42:05.53 s Ceming tenpch detshess.
i [Herttrng () 20030205 1455205, server 0L Server i resdh For enboomectiore
- s [El2001-00-00 14:42:00.05 server SOLserver bstenng on 127,00 L 3403,
B ek [l 20030206 14:42:05. 59 server SOL server bslening onTCP, Shared Mesory, Hored Pies,
& d :""’ T""’I:'"“" Sepee: (] 2003-05-06 14:42: 1161 mili Shrbngun debabase e,
T _mw o 5] 20030505 144z L 24 sl Reowery aimpiete,
Bachn :IIIJ!-B&JJG. 1501150 81 apidil Lking potar.df vorgion 2000, B0, 3 4o e iuba aecland ed slamd proedur *
) Curnent Aoty - BEYI03 % 36126 PR Jx-:n]-u&oe-ﬁ:u:;s:.u mdil Sterbngup debabese ‘medh’,
Ciatatiase Wiawienanc: Plan ___]xm-nma-:s:n:maﬂ il SErngup database Marpaver.
5 Bt O e Lo 030505 15:03:03, 14 sl SGrtngLp databass Terheind
| zo01-pe0n 1303024 @il Strbrgup detabess ubs

Curent - 0BRGN L5031 {Z2LE
g Archivm 21 -08/06/2003 13:50 [200¢
Archive 72 -0AMEAN003 1153 (279
[archive 22 -08/06/m003 02:33 {182
Archtve 29 -08/06/2003 03:35 {23
drchive 25-08/0500G 2X:14 2559
Archive: 75 -0BMEE003 10:51 (236

+ L Meta Dt Services |

Figure 111.

SQL Server Logs-Manpower Database.

3. Microsoft SQL Server 2000-Backup and Maintenance I ssues

a. Maintenance Plan

The database manager can arrange maintenance plans to either perform a

simple backup, or set up log shipping to a standby server. Below is the first screen shot

of performing a maintenance plan.

215

1 Manpawes - [Comsole R icremoit SO ServersiSOH. Server Grougs|(LOCAL) {Winsoes N1 Managemest otabase Maintenancs Plans] i/t
By e Acton Uew Famits Todi Windiw Haip = x|

.4= -+ F._'I_EI_.‘ AR 4 nB-@ @3

3 Console Rapt [| Dstabmes | Servers Artiors
-ﬂ?;l_&rm&mp Thers are no bens ba shom in this vew,

= Gm [LOCAL) (windoms AT

Welcome to the Database
Mainlenance Plan Wizard

T wazrd helps you oreabe 2 marisnance phan that e S0L
Server Agerd con rumion g megularbass . Wit fhis sdzasd you
m

I, User Defrmd [iwt= Types
User Defined Fctiors

» Fn deizhess nisgely checks.
* Lipdaie daanam Aaess
& Fefom deishese ke

Shptrana actian g8 10 arothar sarver (Ebapss Eoition).
=] Cstw Tramsiormabon Serrss
= (5 Nanagemwnt

1 B0 5oL Server Agent

#L17 Current dchaty

| maxs Camel

+-a [15 bl Dwvactory ieans pemert for 200 Sarver

Figure 112. Database M aintenance Plan-Manpower Database.

b. Backing Up

The manager has several choices to back up data. The manager can
perform a Full backup to back up the entire database, a Transaction log backup to back
up the transaction log records, a Differential backup to back up only the data that have
changed since the last full backup and finally a Filegroup backup to back up different
pieces of the database, based on the various files that make up the database. Since the
Manpower database backup mode is Full (instead of Simple), the manager can perform
every kind of these four backup choices.

216

'ﬁmmmmmm-m-mp

e BEXFB @ 4+ M-OmE

sexarpower]

1 Corsoks Raet
=Bl Mrosoftsn)L Sarvers Gensral Wirards
= ﬂiﬂ.ﬁﬂw&um
= G LOCAL) (Mindons NT) ; "
= (] Catabeses S0L Served Backup. - Manpis
3 [meponer
[y rems Garmral Im'l
Tabieg
o Ve I} Pt [Mrpocmner A MPUTER Kynakos Sergiz
Eroned Frapemunes Hama: |H~!Wlwbﬂ\=b.l:' 2L157 PM
Ugare T
Rolas Deencriplion: | E
|=] Rubss Bademn 3
] vedauits % Dafabar - complats
[User Defrec! Deta Tyes ™ Dtabaa - dfferenticl !
: User Defined Redtions ™ Trarsaction ng
1) maghe " Fieand flegoup:
4 |g mogal i J
4 [red
Eachigta: s = ik
i [norttmin .
7 [s _ we |
4 bempch e
1+ Ciats Transtormabon Sarires
= (2 Management e
&1 B 500 Serwer Agent B
03 Current Aty - RE/I003 12:52:01 P ¥ fopend i med
Catabase Manienance Mans T e smrg reds
o e TR R R A
N I Echedub: [[
- Serurity
4 (2] SuppertSered ok | Coed | e |
7 [MetaData Services
+ Intemet Infarmatian Services £
+-a (15 ¥riusl Dwectory ans pement: for S0 Sarer Transaction log space:

Tatal B Usad

Figure 113.

Backup-Manpower Database.

217

THISPAGE INTENTIONALLY LEFT BLANK

218

VI. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this thesis was to identify and analyze the requirements and
develop a prototype web site for Manpower Database and Website. This research
combined with the author’ s experience as a Greek Naval Officer provided the foundation
for the detailed presentation of functional requirements and system architecture for the
Manpower Database and Website. Once the requirements and architecture were defined,
an operational database and web site prototype were developed. Having fulfilled the goal
of the thesis, the purpose of this chapter is to present some conclusions,
recommendations, and suggestions for further work regarding our analysis and the
development and deployment of the Manpower Database and Website.

Currently, the Department of Personnel is following a rather old fashioned
procedure to select an officer for a specific job. It is using proprietary systems like
desktop computers, which have W2K Professional as their operating systems. Based on
the needs of the Navy the DoP examines the jobs and their requirements, including the
qualifications and credentials of the officers. It then assigns ajob to an officer trying to
find the best match between them. In this thesis a detailed system and user functional
requirements are defined, along with a multi-dimensional decision algorithm for

matching jobs with officers.

The final Manpower Website must be able to handle multi-step transactions. The
system architecture presented in this thesis should be scalable to an enterprise-wide
solution. Also, in order to develop a working prototype, specific software technologies
had to be selected. The assumption of a Windows NT/2000/XP network environment,
the selection of the [1S-5 Web Server and SQL Server 2000 database and the selection of
the Macromedia Dreamweaver MX as design tool S forced certain design decisions in the
construction of the prototype. Lastly, the programming used to develop the prototype
was based on the efforts of a single, relatively inexperienced individual. Due to the

magnitude and impact of this program, ateam of experienced web programmers should

219

develop the Manpower Database and Website. This statement, however, should not
cause the reader to discount the potential worth of the prototype, since it provides a
substantial start in this direction.
B. RECOMMENDATIONS

In the course of the research for this thesis, some important aspects of the
Manpower Database and Website development have been discovered. These “lessons
learned” should be carefully considered as of the Manpower Database and Website
moves from concept to reality.

1. Technology Selection

A decision must be made regarding the specific software products to be used in
the Manpower Database and Website. Our prototype used Microsoft products, and
Macromedia Dreamweaver M X, which provide the benefits of integrated user accounts
and system interoperability. Other systems may be more appropriate, however. For
example Oracle products can be used or even open source software like MySQL and
Linux. Whatever software products are selected, it is important to ensure that they are
interoperable.

2. Definition of User Requirements

The User Requirements should be carefully defined in order to create the correct
database schema and website functionality. Any late changes on the requirements can
cause big problems, because it will be hard to undo all the work and redo it accordingly
to the new requirements.
C. FURTHER WORK

This thesis has been developed in a single computer where a web server and
database server have been installed. But this should not be the case for the
implementation of the Manpower Database and Website. The following items describe
some ideas for further work.

1 Component Distribution

It is preferable that the web server and the database server are not located in the
same place for maintenance and security reasons. Investigation should be conducted to

resolve these issues.

220

2. Security Analysis

This thesis addressed security issues in a rather general way, and incorporated
standard web security methods such as Secure Socket Layer and access control through
Windows permissions. However, due to the scope of the entire Manpower Database and
Website development program, a thorough security analysis is recommended. Security
personnel could conduct such an anaysis, simulate attacks on the Manpower Database
and Website prototype and recommend and/or construct programmatic security measures
to incorporate into the Manpower Database and Website design.

3. Systems Ar chitecture

A thorough analysis of the most appropriate system architecture for the entire
Manpower Database and Website system is needed. A cost benefit analysis should be
conducted to include server load, response time, code maintenance and upgrade,
equipment and software costs, facility and manning requirements, web site and database
administration procedures, database synchronization, and customer service.

4. Coefficient Weights and HValue Definition

The multi-criteria decison model uses severa criteria such as credentials,
language proficiency and officers preference to determine the HVaue as a number that
expresses the suitability of an officer for a job. Also, the weights of each criterion
determine the importance of each criterion and cause different HValues as they change.
A thorough analysis of the computation and definition of the weights of each criterion
should be performed according to the needs of the Greek Navy.

In summary, the prototype was developed virtually cost-free and can serve as a
template for the development of a fully operational Manpower Database and Website; it
can easily be scaled to the total solution. It is hoped that this thesis work will provide
detailed insight for efforts in that direction so that the Manpower Database and Website
may progress beyond conceptual planning to become areality in the Greek Navy.

221

THISPAGE INTENTIONALLY LEFT BLANK

222

APPENDIX A. TABLES

Table: ADDRESS
Name Data Type Size Key
CityOrTown Char 50 Yes
Street Char 50 Yes
Number Char 10 Yes
Apartment Char 10 Yes
ZIP Char 10 Yes
Applicantld Char 10 Yes
Table: APPLICANT
Name Data Type Size Key
Applicantld Char 10 Yes
FirstName Char 30
LastName Char 30
MiddleName Char 30
SeaTimeForRank Float 8
RankCode Char 10
SpeciatyCode Char 10
UserName Char 50
Password Char 50
Email Address Char 50
DetailerCheck Bit 1
DetailerPassword Char 50
Table: APPLICANT CREDENTIALS
Name Data Type Size Key
Applicantld Char 10 Yes
Credentialsld Char 10 Yes
CredentialsGrade Int 4
Tablee APPLICANT LANGUAGE
Name Data Type Size Key
Applicantld Char 10 Yes
LanguageCode Char 10 Yes
LanguageDegree Float 8

223

Table: APPLICANT PREFERENCE

Name Data Type Size Key

Applicantld Char 10 Yes

Jobld Char 10 Yes

PlaceCode Char 10 Yes
PreferenceApplicant Int 4

Table: ASSIGNED APPLICANTS
Name Data Type Size Key
Applicantld Char 10 Yes
Tablee ASSIGNMENT

Name Data Type Size Key

Applicantld Char 10 Yes
Jobld Char 10
PlaceCode Char 10
ReportDate Datetime 8
DetachDate Datetime 8

Table: COEFFICIENT

Name Data Type Size Key

Coefficientld Char 30 Yes
CoefficientValue Int 4

Tablee COMMAND

Name Data Type Size Key

CommandCode Char 10 Yes
CommandName Char 50
UserName Char 50
Password Char 50

Tablee COMMAND PREFERENCE

Name Data Type Size Key

Applicantld Char 10 Yes

Jobld Char 10 Yes

PlaceCode Char 10 Yes
CommandCode Char 10
PreferenceCommand Int 4

224

Table: COUNTER

Name Data Type Size Key

Jobld Char 10 Yes

PlaceCode Char 10 Yes
Counter Int 4
Tablee CREDENTIALS

Name Data Type Size Key

Credentialsld Char 10 Yes
CredentialsName Char 30
Table: DELETED JOBS

Name Data Type Size Key

Jobld Char 10 Yes

PlaceCode Char 10 Yes

Table: DELETED JOBSMANIPULATE

Name Data Type Size Key

Jobld Char 10 Yes

PlaceCode Char 10 Yes

Table: ESTIMATE FUNCTION RESULT
Name Data Type Size Key
Result Float 8 Yes
Table: EXPERIENCE

Name Data Type Size Key

Applicantld Char 10 Yes

Jobld Char 10 Yes
Experience Float 8

Table: H

Name Data Type Size Key

Applicantld Char 10 Yes

Jobld Char 10 Yes

PlaceCode Char 10 Yes
HVaue Float 8

225

Table JOB

Name Data Type Size Key

Jobld Char 10 Yes
JobName Char 30
ExperienceRequired Float 8
Priority Int 4

Table: JOB CREDENTIALS

Name Data Type Size Key

Jobld Char 10 Yes

Credentialsld Char 10 Yes
Credential sGrade Int 4
Table JOB LANGUAGE

Name Data Type Size Key

Jobld Char 10 Yes

LanguageCode Char 10 Yes
LanguageDegree Float 8

Table: JOB PLACE

Name Data Type Size Key

Jobld Char 10 Yes

PlaceCode Char 10 Yes

Table: JOB QUALIFICATION

Name Data Type Size Key

Jobld Char 10 Yes

QualificationCode Char 10 Yes

Tablee JOB RANK

Name Data Type Size Key

Jobld Char 10 Yes

RankCode Char 10 Yes
Table: JOB SPECIALTY

Name Data Type Size Key

Jobld Char 10 Yes

SpeciatyCode Char 10 Yes

226

Tablee LANGUAGE

Name Data Type Size Key
L anguageCode Char 10 Yes
LanguageName Char 50
Tablee MANIPULATE SOLUTION
Name Data Type Size Key
Applicantld Char 10
Jobld Char 10 Yes
PlaceCode Char 10 Yes
MAXValue Float 8
Table MAX VALUE
Name Data Type Size Key
Applicantld Char 10
Jobld Char 10 Yes
PlaceCode Char 10 Yes
MAXVaue Hoat 8
Tablee MAX VALUE ALL JOBS
Name Data Type Size Key
Jobld Char 10 Yes
PlaceCode Char 10 Yes
MAXVaue Hoat 8
Tablee MEAN VALUE
Name Data Type Size Key
Jobld Char 10 Yes
PlaceCode Char 10 Yes
MeanVaue Float 8
Tablee MEAN VALUE APPLICANTS
Name Data Type Size Key
Applicantld Char 10 Yes
MINVaue Hoat 8

Table MULTIPLE MAX VALUES

Name Data Type Size Key
Applicantld Char 10 Yes
Jobld Char 10 Yes
PlaceCode Char 10 Yes
Counter Int 4
Table: ONE MAX VALUE
Name Data Type Size Key
Applicantld Char 10
Jobld Char 10 Yes
PlaceCode Char 10 Yes
Counter Int 4
Table: PHONE
Name Data Type Size Key
Applicantld Char 10 Yes
HomePhoneNumber Char 30 Yes
CellPhoneNumber Char 30 Yes
OtherPhoneNumber Char 30 Yes
Table: PLACE
Name Data Type Size Key
PlaceCode Char 10 Yes
PlaceName Char 50
Placelmage Char 10
CommandCode Char 10
Table: PRIORITY
Name Data Type Size Key
Jobld Char 10 Yes
PlaceCode Char 10 Yes
Priority Int 4
Counter Int 4
Flag Bit 1
Table: QUALIFICATION
Name Data Type Size Key
QualificationCode Char 10 Yes
QualificationName Char 50

228

Table: QUALIFICATION APPLICANT

Name Data Type Size Key

QualificationCode Char 10 Yes

Applicantld Char 10 Yes

Tablee RANK

Name Data Type Size Key

RankCode Char 10 Yes
RankName Char 30
TimeSeaService Float 8

Table SAME MAX VALUE
Name Data Type Size Key
Applicantld Char 10 Yes
Table: SPECIALTY

Name Data Type Size Key

SpeciatyCode Char 10 Yes
SpecialtyName Char 50

Tablee UNASSIGNED APPLICANTS
Name Data Type Size Key
Applicantld Char 10 Yes
Tablee UNASSIGNED APPLICANTS MANIPULATE
Name Data Type Size Key
Applicantld Char 10 Yes
Table: USED APPLICANTS

Name Data Type Size Key

Applicantld Char 10 Yes

Jobld Char 10 Yes

PlaceCode Char 10 Yes

229

THISPAGE INTENTIONALLY LEFT BLANK

230

APPENDIX B. STORED PROCEDURES

Name: AcceptSolutionFromM anipulateSolutionTable

CREATE PROCEDURE ksergis.AcceptSolutionFromManipulateSolutionTable AS
DELETE FROM ASSIGNMENT

INSERT INTO ASSIGNMENT

SELECT Jobld, PlaceCode, Applicantld, NULL, NULL
FROM MANIPULATE_SOLUTION

GO

Name: AcceptSolutionFromM AXTable

CREATE PROCEDURE ksergis.AcceptSolutionFromMA X Table AS
DELETE FROM ASSIGNMENT

INSERT INTO ASSIGNMENT

SELECT Jobld, PlaceCode, Applicantld, NULL, NULL
FROM MAX_VALUE

GO

Name: CheckApplicantldCredentialsld

CREATE PROCEDURE ksergis.CheckApplicantidCredentialsld (@Applicantid
char(10), @Credentialsid char(10))
AS
IF EXISTS(SELECT 'True¢ FROM APPLICANT_CREDENTIALS WHERE
Applicantld = @Applicantld AND Credentialsid = @Credential sl d)
BEGIN
--This meansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--This meansiit does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!’
END
GO

Name: CheckApplicantldL anguageCode

CREATE PROCEDURE ksergis.CheckApplicantldLanguageCode (@Applicantid

231

char(10), @LanguageCode char(10))
AS
IF EXISTS(SELECT 'True' FROM APPLICANT_LANGUAGE WHERE Applicantld =
@Applicantld AND LanguageCode = @L anguageCode)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckApplicantldOnApplicantCredentials

CREATE PROCEDURE ksergis.CheckA pplicantldOnA pplicantCredentials
(@Applicantld char(10))
AS

IF EXISTS(SELECT 'True FROM APPLICANT_CREDENTIALS WHERE

Applicantld = @A pplicantld)

BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"

END

GO

Name: CheckApplicantldOnApplicantL anguage

CREATE PROCEDURE ksergis.CheckA pplicantldOnA pplicantL anguage
(@Applicantld char(10))
AS
IF EXISTS(SELECT 'True FROM APPLICANT _LANGUAGE WHERE Applicantld =
@A pplicantld)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN

232

--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckApplicantldOnQualificationsApplicant

CREATE PROCEDURE ksergis.CheckA pplicantldOnQualificationsA pplicant
(@Applicantld char(10))
AS
IF EXISTS(SELECT 'True FROM QUALIFICATION_APPLICANT WHERE
Applicantld = @A pplicantld)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeansit does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!’
END
GO

Name: CheckApplicantldQualificationCode

CREATE PROCEDURE ksergis.CheckApplicantldQualificationCode (@A pplicantid
char(10), @QualificationCode char(10))
AS
IF EXISTS(SELECT 'True FROM QUALIFICATION_APPLICANT WHERE
Applicantld = @Applicantld AND QualificationCode = @QualificationCode)
BEGIN
--This meansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--This meansiit does not exigt, return it to ASP and tell us
SELECT 'Thisrecord does not exist!’
END
GO

Name: Check ApplicantPrefer enceExists

CREATE PROCEDURE ksergis.CheckApplicantPreferenceExists (@Applicantld
char(10))
AS

233

IF EXISTS(SELECT 'True' FROM APPLICANT PREFERENCE WHERE Applicantld

= @Applicantld)

BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'Thisrecord exists!'

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!'

END

GO

Name: CheckApplicantsExist

CREATE PROCEDURE ksergis.CheckA pplicantsExist
AS
IF EXISTS(SELECT "True' FROM APPLICANT)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckApplicantSuitable

CREATE PROCEDURE ksergis.CheckApplicantSuitable (@Applicantld char(10)) AS

DECLARE @Rank int
DECLARE @Specialty int
DECLARE @Qualificationsint
DECLARE @Jobld char(10)
DECLARE @JobName char(30)

CREATE TABLE #SUITABLE_JOBS

Jobld char(10) PRIMARY KEY,
JobName char(30)

)

DECLARE JobCursor CURSOR FOR

234

SELECT Jobld, JobName
FROM JOB

OPEN JobCursor
FETCH NEXT FROM JobCursor
INTO @Jobld, @JobName
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
EXEC @Rank = ksergis.dec_Rank @Jobld, @A pplicantld
EXEC @Specialty = ksergis.dec_Specialty @Jobld, @Applicantld
EXEC @Qudifications = ksergis.dec Qualifications @Jobld,
@Applicantld

IF @Rank = 1 AND @Specialty =1 AND @Qualifications=1
BEGIN
INSERT INTO #SUITABLE_JOBS
VALUES (@Jobld, @JobName)
END
END
FETCH NEXT FROM JobCursor
INTO @Jobld, @JobName
END

CLOSE JobCursor
DEALLOCATE JobCursor

SELECT *
FROM #SUITABLE_JOBS
GO

Name: CheckCoeffitientExists

CREATE PROCEDURE ksergis.CheckCoeffitientExists (@Coefficientld char(30))
AS
IF EXISTS(SELECT 'True FROM COEFFICIENT WHERE Coefficientld =
@Coefficientld)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"

235

END
GO

Name: CheckCommandPreferenceExists

CREATE PROCEDURE ksergis.CheckCommandPreferenceExists (@CommandCode
char(10))
AS
IF EXISTS(SELECT 'True FROM COMMAND_PREFERENCE WHERE
CommandCode = @CommandCode)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckCommandsExist

CREATE PROCEDURE ksergis.CheckCommandsExist
AS
IF EXISTS(SELECT 'True FROM COMMAND)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckCredential SExist

CREATE PROCEDURE ksergis.CheckCredential SExist
AS
IF EXISTS(SELECT 'True' FROM CREDENTIALYS)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END

236

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!'

END

GO

Name: CheckCredentialsid

CREATE PROCEDURE ksergis.CheckCredentiasid (@Credentiasld char(10))
AS
IF EXISTS(SELECT 'True FROM CREDENTIALS WHERE Credentidsld =
@Credentiasld)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckCredentialsName

CREATE PROCEDURE ksergis.CheckCredentialsName (@Credential sName char(50))
AS
IF EXISTS(SELECT 'True FROM CREDENTIALS WHERE CredentidsName =
@CredentialsName)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckDateExist

CREATE PROCEDURE ksergis.CheckDateExist (@A pplicantld char(10))
AS
IF EXISTS(SELECT 'True FROM ASSIGNMENT WHERE Applicantld =

237

@Applicantld AND ((ReportDate ISNOT NULL) OR (DetachDate ISNOT NULL)))

BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!'

END

GO

Name: CheckDetailerPassword

CREATE PROCEDURE ksergis.CheckDetailerPassword (@Applicantld char(10),
@DetailerPassword char(50))
AS
IF EXISTS(SELECT 'Truet FROM APPLICANT WHERE Applicantld = @Applicantld
AND DetailerPassword = @DetailerPassword)
BEGIN
--Thismeansit is correct, return it to ASP and tell us
SELECT 'The Detailer is authenticated'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'The Detailer is not authenticated'
END
GO

Name: CheckExperienceExist

CREATE PROCEDURE ksergis.CheckExperienceExist (@Jobld char(10),
@Applicantld char(10))
AS
IF EXISTS(SELECT 'True FROM EXPERIENCE WHERE Jobld = @Jobld AND
Applicantld = @A pplicantld)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END

238

| GO

Name: CheckJobld

CREATE PROCEDURE ksergis.CheckJobld (@Jobld char(10))
AS
IF EXISTS(SELECT 'True' FROM JOB WHERE Jobld = @Jobl d)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldCredentiasid

CREATE PROCEDURE ksergis.CheckJobldCredentialsild (@Jobld char(10),
@Credentialsld char(10))
AS
IF EXISTS(SELECT 'True’ FROM JOB_CREDENTIALS WHERE Jobld = @Jobld
AND Credentialsld = @Credentialsld)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckJobldJobName

CREATE PROCEDURE ksergis.CheckJobldJobName (@Jobld char(10), @JobName
char(30))
AS
IF EXISTS(SELECT '"True FROM JOB WHERE Jobld = @Jobld OR JobName =
@JobName)
BEGIN

--Thismeansit exists, return it to ASP and tell us

SELECT 'Thisrecord already exists!'

239

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckJobldL anguageCode

CREATE PROCEDURE ksergis.CheckJobldLanguageCode (@Jobld char(10),
@L anguageCode char(10))
AS
IF EXISTS(SELECT 'True FROM JOB_LANGUAGE WHERE Jobld = @Jobld AND
L anguageCode = @L anguageCode)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord aready exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldOnA pplicantPreference

CREATE PROCEDURE ksergis.CheckJobldOnA pplicantPreference (@Jobld char(10))
AS
IF EXISTS(SELECT 'True FROM APPLICANT_PREFERENCE WHERE Jobld =
@Jobld)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldOnCommandPreference

CREATE PROCEDURE ksergis.CheckJobldOnCommandPreference (@Jobld char(10))

240

AS

IF EXISTS(SELECT 'Tru¢ FROM COMMAND_PREFERENCE WHERE Jobld =

@Jobld)

BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckJobldOnJobCredentials

CREATE PROCEDURE ksergis.CheckJobldOnJobCredentials (@Jobld char(10))
AS
IF EXISTS(SELECT 'True' FROM JOB_CREDENTIALS WHERE Jobld = @Jobld)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldOnJobL anguage

CREATE PROCEDURE ksergis.CheckJobldOnJobL anguage (@Jobld char(10))
AS
IF EXISTS(SELECT "True' FROM JOB_LANGUAGE WHERE Jobld = @Jobld)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

241

Name: CheckJobldOnJobPlace

CREATE PROCEDURE ksergis.CheckJobldOnJobPlace (@Jobld char(10))
AS
IF EXISTS(SELECT 'True' FROM JOB_PLACE WHERE Jobld = @Jobl d)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldOnJobQualification

CREATE PROCEDURE ksergis.CheckJobldOnJobQualification (@Jobld char(10))
AS
IF EXISTS(SELECT 'True' FROM JOB_QUALIFICATION WHERE Jobld = @Jobld)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!'
END
GO

Name: CheckJobldOnJobRank

CREATE PROCEDURE ksergis.CheckJobldOnJobRank (@Jobld char(10))
AS
IF EXISTS(SELECT "True' FROM JOB_RANK WHERE Jobld = @Jobld)
BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END

242

| GO

Name: CheckJobldOnJobSpecialty

CREATE PROCEDURE ksergis.CheckJobl dOnJobSpecialty (@Jobld char(10))
AS
IF EXISTS(SELECT 'True' FROM JOB_SPECIALTY WHERE Jobld = @Jobl d)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldPlaceCode

CREATE PROCEDURE ksergis.CheckJobldPlaceCode (@Jobld char(10), @PlaceCode
char(10))
AS
IF EXISTS(SELECT 'True FROM JOB_PLACE WHERE Jobld = @Jobld AND
PlaceCode = @PlaceCode)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckJobldPlaceCodeOnA pplicantPreference

CREATE PROCEDURE ksergis.CheckJobl dPlaceCodeOnA pplicantPreference (@Jobld
char(10), @PlaceCode char(10))
AS
IF EXISTS(SELECT 'True¢e FROM APPLICANT PREFERENCE WHERE Jobld =
@Jobld AND PlaceCode = @PlaceCode)
BEGIN

--Thismeansit exists, return it to ASP and tell us

SELECT 'Thisrecord already exists!'

243

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckJobl dPlaceCodeOnCommandPreference

CREATE PROCEDURE ksergis.CheckJobl dPlaceCodeOnCommandPreference (@Jobld
char(10), @PlaceCode char(10))
AS
IF EXISTS(SELECT 'Tru¢e FROM COMMAND_PREFERENCE WHERE Jobld =
@Jobld AND PlaceCode = @PlaceCode)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldQualificationCode

CREATE PROCEDURE ksergis.CheckJobldQualificationCode (@Jobld char(10),
@QuialificationCode char(10))
AS
IF EXISTS(SELECT 'True' FROM JOB_QUALIFICATION WHERE Jobld = @Jobld
AND QudlificationCode = @QualificationCode)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

| Name: CheckJobldRankCode

244

CREATE PROCEDURE ksergis.CheckJobldRankCode (@Jobld char(10), @RankCode
char(10))
AS
IF EXISTS(SELECT "True¢t FROM JOB_RANK WHERE Jobld = @Jobld AND
RankCode = @RankCode)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobldSpeciatyCode

CREATE PROCEDURE ksergis.CheckJobldSpecialtyCode (@Jobld char(10),
@SpeciadtyCode char(10))
AS
IF EXISTS(SELECT 'True¢t FROM JOB_SPECIALTY WHERE Jobld = @Jobld AND
SpecialtyCode = @SpecialtyCode)
BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckJobName

CREATE PROCEDURE ksergis.CheckJobName (@JobName char(30))
AS
IF EXISTS(SELECT 'True' FROM JOB WHERE JobName = @JobName)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us

245

SELECT 'This record does not exist!'
END
GO

Name: CheckJobsExist

CREATE PROCEDURE ksergis.CheckJobsExist

AS

IF EXISTS(SELECT 'True' FROM JOB)

BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

END

ELSE

BEGIN
--Thismeansit does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckL anguageCode

CREATE PROCEDURE ksergis.CheckL anguageCode (@L anguageCode char(10))
AS
IF EXISTS(SELECT 'Truen FROM LANGUAGE WHERE LanguageCode =
@L anguageCode)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'Thisrecord does not exist!'
END
GO

Name: CheckLanguageName

CREATE PROCEDURE ksergis.CheckL anguageName (@L anguageName char(50))
AS
IF EXISTS(SELECT 'True FROM LANGUAGE WHERE LanguageName =
@L anguageName)
BEGIN
--This meansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

246

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckL anguagesExist

CREATE PROCEDURE ksergis.CheckL anguagesExist
AS
IF EXISTS(SELECT 'True' FROM LANGUAGE)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckPlacesExist

CREATE PROCEDURE ksergis.CheckPlacesExist
AS
IF EXISTS(SELECT 'True' FROM PLACE)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckPreference

CREATE PROCEDURE ksergis.CheckPreference (@Applicantld varchar(10),
@PreferenceApplicant varchar(4), @PlaceCode varchar(10), @Jobld varchar(10))

AS

IF EXISTS(SELECT "True¢ FROM APPLICANT PREFERENCE WHERE Applicantld

247

= @Applicantld AND (PreferenceApplicant = @PreferenceApplicant OR (Jobld =

@Jobld AND PlaceCode = @PlaceCode)))

BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'This preference already exists!'

END

ELSE

BEGIN
--This means it does not exigt, return it to ASP and tell us
SELECT 'This preference does not exist!'

END

GO

Name: CheckPreferenceCommand

CREATE PROCEDURE ksergis.CheckPreferenceCommand (@CommandCode
char(10), @Applicantld char(10), @PreferenceCommand char(4), @PlaceCode char(10),
@Jobld char(10))
AS
IF EXISTS(SELECT 'True FROM COMMAND PREFERENCE WHERE
CommandCode = @CommandCode AND Jobld = @Jobld AND PlaceCode =
@PlaceCode AND (PreferenceCommand = @PreferenceCommand OR Applicantld =
@Applicantld))
BEGIN

--This meansit exists, return it to ASP and tell us

SELECT 'This preference already exists!'
END
ELSE
BEGIN

--This meansiit does not exist, return it to ASP and tell us

SELECT 'This preference does not exist!’
END
GO

Name: CheckQualificationCode

CREATE PROCEDURE ksergis.CheckQuadlificationCode (@QualificationCode
char(10))
AS
IF EXISTS(SELECT 'True’ FROM QUALIFICATION WHERE QuadlificationCode =
@QualificationCode)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord aready exists!'
END
ELSE

248

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckQualificationName

CREATE PROCEDURE ksergis.CheckQualificationName (@QualificationName
char(50))
AS
IF EXISTS(SELECT 'True FROM QUALIFICATION WHERE QualificationName =
@QualificationName)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckQualificationsExist

CREATE PROCEDURE ksergis.CheckQualificationsExist
AS
IF EXISTS(SELECT "True' FROM QUALIFICATION)
BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckRankCode

CREATE PROCEDURE ksergis.CheckRankCode (@RankCode char(10))

AS

IF EXISTS(SELECT "True' FROM RANK WHERE RankCode = @RankCode)
BEGIN

249

--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

END

ELSE

BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckRankName

CREATE PROCEDURE ksergis.CheckRankName (@RankName char(30))
AS
IF EXISTS(SELECT 'Truet FROM RANK WHERE RankName = @RankName)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: CheckRanksExist

CREATE PROCEDURE ksergis.CheckRanksExist
AS
IF EXISTS(SELECT "True' FROM RANK)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckSpecialtiesExist

CREATE PROCEDURE ksergis.CheckSpecialtiesExist
AS

250

IF EXISTS(SELECT 'True' FROM SPECIALTY)

BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'

END

ELSE

BEGIN
--Thismeans it does not exigt, return it to ASP and tell us
SELECT 'This record does not exist!'

END

GO

Name: CheckSpecialtyCode

CREATE PROCEDURE ksergis.CheckSpecialtyCode (@SpecialtyCode char(10))
AS
IF EXISTS(SELECT 'Tru¢ FROM SPECIALTY WHERE SpeciatyCode =
@SpeciatyCode)
BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckSpecialtyName

CREATE PROCEDURE ksergis.CheckSpecialtyName (@SpecialtyName char(50))
AS
IF EXISTS(SELECT 'Truee FROM SPECIALTY WHERE SpecidtyName =
@SpeciatyName)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

251

Name: CheckSuitableA pplicantsOnJob

CREATE PROCEDURE ksergis.CheckSuitableA pplicantsOnJob (@Jobld char(10)) AS

DECLARE @Rank int

DECLARE @Specialty int
DECLARE @Qualificationsint
DECLARE @A pplicantld char(10)
DECLARE @FirstName char(30)
DECLARE @L astName char(30)

CREATE TABLE #SUITABLE_APPLICANTS

Applicantld char(10) PRIMARY KEY,
FirstName char(30),
LastName char(30)

)

DECLARE ApplicantCursor CURSOR FOR
SELECT Applicantld, FirstName, LastName
FROM APPLICANT

OPEN ApplicantCursor
FETCH NEXT FROM ApplicantCursor
INTO @Applicantld, @FirstName, @L astName
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
EXEC @Rank = ksergis.dec_Rank @Jobld, @Applicantld
EXEC @Specialty = ksergis.dec_Specialty @Jobld, @Applicantld
EXEC @Qudlifications = ksergis.dec Quadlifications @Jobld,
@Applicantld

IF @Rank = 1 AND @Specialty =1 AND @Qualifications=1
BEGIN
INSERT INTO #SUITABLE_APPLICANTS
VALUES (@Applicantld, @FirstName, @L astName)
END
END
FETCH NEXT FROM ApplicantCursor
INTO @Applicantld, @FirstName, @L astName
END

CLOSE ApplicantCursor
DEALLOCATE ApplicantCursor

252

SELECT *
FROM #SUITABLE_APPLICANTS
GO

Name: CheckUserName

CREATE PROCEDURE ksergis.CheckUserName (@UserName varchar(50))
AS
IF EXISTS(SELECT 'True' FROM APPLICANT WHERE UserName = @UserName)
BEGIN
--Thismeansiit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!"
END
GO

Name: CheckUserNameCommand

CREATE PROCEDURE ksergis.CheckUserNameCommand (@UserName varchar(50))
AS
IF EXISTS(SELECT 'True FROM COMMAND WHERE UserName = @UserName)
BEGIN
--Thismeansit exists, return it to ASP and tell us
SELECT 'Thisrecord already exists!'
END
ELSE
BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'This record does not exist!'
END
GO

Name: dec CheckHValueExists

CREATE PROCEDURE ksergis.dec_CheckHV aueExists (@Counter int)
AS

DECLARE @Jobld char(10)
DECLARE @Jobld1 char(10)
DECLARE @PlaceCode char(10)
DECLARE @PlaceCodel char(10)

253

DECLARE PriorityCursor CURSOR FOR
SELECT Jobld, PlaceCode, Counter
FROM PRIORITY

WHERE Counter = @Counter

OPEN PriorityCursor
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
SET @Jobldl = @Jobld
SET @PlaceCodel = @PlaceCode
END
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
END

CLOSE PriorityCursor
DEALLOCATE PriorityCursor

IF EXISTS(SELECT HVaue FROM H WHERE Jobld = @Jobldl AND PlaceCode =
@PlaceCodel AND HVaue ISNOT NULL AND
Applicantld NOT IN (SELECT Applicantid
FROM USED_APPLICANTS WHERE Jobld = @Jobldl AND PlaceCode =
@PlaceCodel) AND
Applicantld NOT IN (SELECT Applicantld
FROM ASSIGNED_APPLICANTYS))
RETURN 1
ELSE
RETURN O
GO

Name: dec_ CheckHValueNotNull

CREATE PROCEDURE ksergis.dec CheckHVaueNotNull (@Jobld char(10),
@PlaceCode char(10), @Applicantld char(10)) AS

DECLARE @HVa ue float

SET @HValue = (SELECT HValue FROM H WHERE Jobld = @Jobld AND PlaceCode
= @PlaceCode AND Applicantld = @A pplicantld)

IF @HValue ISNOT NULL

254

BEGIN
--Thismeans it exists, return it to ASP and tell us
SELECT 'HVaue exists!"

END

ELSE

BEGIN
--Thismeans it does not exist, return it to ASP and tell us
SELECT 'HValue does not exist!'

END

GO

Name: dec ComputeMaxVaue

CREATE PROCEDURE ksergis.dec_ComputeM axV alue (@Counter int)
AS

DECLARE @Jobld char(10)

DECLARE @Jobld1 char(10)
DECLARE @PlaceCode char(10)
DECLARE @PlaceCodel char(10)
DECLARE @CountEqualMaxValuesint

DECLARE PriorityCursor CURSOR FOR
SELECT Jobld, PlaceCode, Counter
FROM PRIORITY

WHERE Counter = @Counter

OPEN PriorityCursor
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
WHILE @Q@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<> -2
BEGIN
SET @Jobldl = @Jobld
SET @PlaceCodel = @PlaceCode
END
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
END

CLOSE PriorityCursor
DEALLOCATE PriorityCursor

DECLARE @MAXVaue float
DECLARE @A pplicantld char(10)

255

DECLARE @Applicantldl char(10)

SET @MAXVaue = (SELECT MAX(HVaue) FROM H WHERE Jobld = @Jobldl
AND PlaceCode = @PlaceCodel AND HValue ISNOT NULL AND

Applicantld NOT IN (SELECT
Applicantld FROM USED_APPLICANTS WHERE Jobld = @Jobldl AND PlaceCode
= @PlaceCodel) AND

Applicantld NOT IN (SELECT
Applicantld FROM ASSIGNED_APPLICANTY))

SET @CountEqualMaxValues=(SELECT count(Applicantld)

FROM H

WHERE Jobld = @Jobldl AND PlaceCode =
@PlaceCodel AND HVaue= @MAXVaue AND

Applicantld NOT IN (SELECT Applicantild FROM
USED_APPLICANTS WHERE Jobld = @Jobldl AND PlaceCode = @PlaceCodel)
AND

Applicantld NOT IN (SELECT Applicantld FROM
ASSIGNED_APPLICANTY))

IF @CountEqualMaxValues> 1
EXEC @Applicantldl = ksergis.dec FindMaxVaue @Jobldl, @PlaceCodel,
@MAXVadue
ELSE
BEGIN
DECLARE HCursor CURSOR FOR
SELECT Applicantld
FROM H
WHERE Jobld = @Jobldl AND PlaceCode = @PlaceCodel AND HVaue =
@MAXVaue AND
Applicantld NOT IN (SELECT Applicantld FROM
USED_APPLICANTS WHERE Jobld = @Jobldl AND PlaceCode = @PlaceCodel)
AND
Applicantld NOT IN (SELECT Applicantld FROM
ASSIGNED_APPLICANTYS)

OPEN HCursor
FETCH NEXT FROM HCursor
INTO @Applicantld
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
SET @Applicantldl = @Applicantld
BREAK
FETCH NEXT FROM HCursor
INTO @Applicantld

256

END

CLOSE HCursor
DEALLOCATE HCursor
END

PRINT 'MAXValue
PRINT @MAXVaue
PRINT 'Applicant/d1’
PRINT @Applicantldl

UPDATE MAX_ VALUE
SET Applicantld = @Applicantldl, MAXVaue= @MAXVaue
WHERE Jobld = @Jobld1l AND PlaceCode = @PlaceCodel

INSERT INTO ASSIGNED_APPLICANTS
SELECT Applicantld

FROM APPLICANT

WHERE Applicantld = @Applicantldl

GO

Name: dec ComputeMeanValue

CREATE PROCEDURE ksergis.dec_ComputeMeanVaue
AS

DELETE FROM MEAN_VALUE

INSERT INTO MEAN_VALUE
SELECT Jobld, PlaceCode, NULL
FROM JOB_PLACE

DECLARE @Jobld char(10)
DECLARE @PlaceCode char(10)
DECLARE @MeanValue float

DECLARE MeanVaueCursor CURSOR FOR
SELECT Jobld, PlaceCode, MeanV alue
FROM MEAN VALUE

OPEN MeanVaueCursor
FETCH NEXT FROM MeanV aueCursor
INTO @Jobld, @PlaceCode, @MeanVaue
WHILE @@FETCH_STATUS<>-1
BEGIN

IF @@FETCH_STATUS<> -2

257

BEGIN

DECLARE @A pplicantld char(10)
DECLARE @HVaue float
DECLARE @SUM float
DECLARE @COUNT int

DECLARE HCursor CURSOR FOR

SELECT Jobld, Applicantld, PlaceCode, HVaue

FROM H

WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode

SET @SUM =0
SET @COUNT =0

OPEN HCursor
FETCH NEXT FROM HCursor
INTO @Jobld, @Applicantld, @PlaceCode, @HV alue
WHILE @@FETCH_STATUS <> -1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
IF @HVaue SNOT NULL
BEGIN
SET @SUM = @SUM + @HVaue
SET @COUNT = @COUNT + 1
END
END
FETCH NEXT FROM HCursor
INTO @Jobld, @Applicantld, @PlaceCode, @HV alue
END

CLOSE HCursor
DEALLOCATE HCursor

IF @SUM <> 0
UPDATE MEAN_VALUE
SET MeanValue = @SUM / @COUNT
WHERE Jobld = @Jobld AND PlaceCode= @PlaceCode

END

FETCH NEXT FROM MeanV alueCursor

INTO @Jobld, @PlaceCode, @M eanV aue
END

CLOSE MeanV alueCursor

258

DEALLOCATE MeanV aueCursor
GO

Name: dec COUNTER Fill

CREATE PROCEDURE ksergis.dec COUNTER_Fill
AS

DELETE FROM COUNTER

INSERT INTO COUNTER
SELECT Jobld, PlaceCode, Counter
FROM PRIORITY

GO

Name: dec CountPriorityRecords

CREATE PROCEDURE ksergis.dec_CountPriorityRecords
AS
DECLARE @Count int

SET @Count = (SELECT Count (*) FROM PRIORITY)

RETURN @Count
GO

Name: dec_ Credentials

CREATE PROCEDURE ksergis.dec Credentiadls (@Jobld char(10), @Applicantid
char(10))

AS

DECLARE @CredentialsGradel float

DECLARE @CredentialsGrade2 float

DECLARE @Credentialsid char(10)

DECLARE @SUM1 float

DECLARE @SUM2 float

DECLARE @ANS float

DECLARE @Count int

SET @SUM1=0
SET @SUM2=0
SET @Count=0

DECLARE Credentia sCursor CURSOR FOR
SELECT Jobld, Credentialsid
FROM JOB _CREDENTIALS

259

WHERE Jobld = @Jobld

OPEN CredentialsCursor
FETCH NEXT FROM CredentialsCursor
INTO @Jobld, @Credentiasld
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
EXEC @CredentialsGradel = ksergis.dec Credentialsl @Applicantld,
@Credentialsld
EXEC @CredentialsGrade2 = ksergis.dec Credentials2 @Jobld,
@Credentialsld
SET @SUM1 = @SUM1 +@Credential sGradel
SET @SUM2 = @SUM?2 +@Credentia sGrade2
SET @Count = @Count +1
END
FETCH NEXT FROM CredentialsCursor
INTO @Jobld, @Credentiasld
END

CLOSE CredentialsCursor
DEALLOCATE Credential sCursor

IF @SUM1 < @SUM2
SET @ANS =0
ELSE
BEGIN
IF @Count * 10 = @SUM2
SET @ANS=1
ELSE
SET @ANS = ((@SUM1 - @SUM2) * 9/ ((@Count * 10) - @SUM?2)) +
1
END

RETURN @ANS
GO

Name: dec Credentialsl

CREATE PROCEDURE ksergis.dec Credentialsl (@Applicantld char(10),
@Credentialsld char(10))

AS

DECLARE @CredentialsGrade int

IF EXISTS (SELECT CredentialsGrade FROM APPLICANT_CREDENTIALS WHERE

260

Applicantld = @Applicantld AND Credentialsild = @Credential sl d)

SET @CredentialsGrade = (SELECT CredentialsGrade = FROM
APPLICANT _CREDENTIALS WHERE Applicantld = @Applicantild AND
Credentialsld = @Credentialsld)

ELSE

SET @CredentidsGrade=0
RETURN @CredentialsGrade
GO

Name: dec_ Credentials2

CREATE PROCEDURE ksergis.dec_Credentials2 (@Jobld char(10), @Credentialsld
char(10))

AS

DECLARE @CredentialsGrade int

SET @CredentialsGrade = (SELECT CredentialsGrade FROM JOB_CREDENTIALS
WHERE Jobld = @Jobld AND Credentialsld = @Credentialsld)

RETURN @CredentialsGrade

GO

Name: dec Delete Job Manipulate

CREATE PROCEDURE ksergis.dec Delete Job Manipulate (@Jobld char(10),
@PlaceCode char(10)) AS

DECLARE @A pplicantld char(10)

SET @Applicantld = (SELECT Applicanttld FROM MANIPULATE_SOLUTION
WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode)

DELETE FROM MANIPULATE _SOLUTION
WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode

INSERT INTO UNASSIGNED_APPLICANTS MANIPULATE
VALUES (@Applicantld)

INSERT INTO DELETED_JOBS MANIPULATE
VALUES (@Jobld, @PlaceCode)
GO

Name: dec DELETED JOBS MANIPULATE DéeteRecord

CREATE PROCEDURE ksergis.dec DELETED JOBS MANIPULATE_ DeleteRecord
(@Jobld char(10), @PlaceCode char(10)) AS

DELETE FROM DELETED_JOBS MANIPULATE

WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode

261

| GO

Name: dec_ DELETED JOBS MANIPULATE Fill

CREATE PROCEDURE ksergis.dec DELETED_JOBS MANIPULATE_Fill AS
DELETE FROM DELETED_JOBS MANIPULATE

INSERT INTO DELETED_JOBS MANIPULATE
SELECT *

FROM DELETED_JOBS

GO

Name: dec DeleteEmptyJobs

CREATE PROCEDURE ksergis.dec_DeleteEmptyJobs
AS

DECLARE @Jobld char(10)
DECLARE @A pplicantld char(10)
DECLARE @PlaceCode char(10)
DECLARE @Counter int
DECLARE @HVaue float

DECLARE PriorityCursor CURSOR FOR
SELECT Jobld, PlaceCode, Counter
FROM PRIORITY

OPEN PriorityCursor
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
IF NOT EXISTS (SELECT 'True FROM H WHERE Jobld = @Jobld
AND PlaceCode= @PlaceCode AND HVaue ISNOT NULL)
BEGIN
INSERT INTO DELETED_JOBS
SELECT Jobld, PlaceCode
FROM PRIORITY
WHERE Jobld = @Jobld AND PlaceCode= @PlaceCode

DELETE FROM PRIORITY
WHERE Jobld = @Jobld AND PlaceCode= @PlaceCode

UPDATE PRIORITY

262

SET Counter = Counter - 1
WHERE Counter > @Counter
END
END
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
END

CLOSE PriorityCursor
DEALLOCATE PriorityCursor
GO

Name: dec_ DeleteJob

CREATE PROCEDURE ksergis.dec_DeleteJob
AS
DECLARE @Counter int

SET @Counter = (SELECT MIN(Counter) FROM PRIORITY WHERE Flag ='0)

INSERT INTO DELETED_JOBS
SELECT Jobld, PlaceCode
FROM PRIORITY

WHERE Counter = @Counter

DELETE FROM PRIORITY
WHERE Counter = @Counter

UPDATE PRIORITY

SET Counter = Counter - 1
WHERE Counter > @Counter
GO

Name: dec_ DeleteJobUsedValues

CREATE PROCEDURE ksergis.dec_DeleteJobUsedV aues (@Counter int)
AS

DECLARE @Jobld char(10)
DECLARE @Jobld1 char(10)
DECLARE @PlaceCode char(10)
DECLARE @PlaceCodel char(10)

DECLARE PriorityCursor CURSOR FOR
SELECT Jobld, PlaceCode, Counter
FROM PRIORITY

263

WHERE Counter = @Counter

OPEN PriorityCursor

FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
WHILE @@FETCH_STATUS<>-1

BEGIN

IF @@FETCH_STATUS<>-2
BEGIN

SET @Jobldl = @Jobld

SET @PlaceCodel = @PlaceCode
END
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter

END

CLOSE PriorityCursor
DEALLOCATE PriorityCursor

DELETE FROM USED_APPLICANTS

WHERE Jobld = @Jobld1 AND PlaceCode = @PlaceCodel

GO

Name: dec_ EstimateFunction

CREATE PROCEDURE ksergis.dec_EstimateFunction AS

DECLARE @Priorityl int
DECLARE @Priority2 int
DECLARE @TotaVaueMAXTable float

DECLARE @TotaVaueManipulateTable float

DECLARE @Difference float
DECLARE @n MAXTableint
DECLARE @n_ManipulateTable int
DECLARE @n_CounterTableint
DECLARE @SecondMaxV alue float
DECLARE @MinValue float
DECLARE @MaxVaue float
DECLARE @Factor float
DECLARE @Counterl int
DECLARE @Counter2 int

DECLARE @Jobld char(10)
DECLARE @PlaceCode char(10)
DECLARE @MAXValuel float
DECLARE @MAXVaue2 float

264

DECLARE @Jobld1 char(10)
DECLARE @PlaceCodel char(10)

SET @TotaVaueMAXTable=0
SET @TotaVaueManipulateTable =0

SET @n_MAXTable = (SELECT Count (*) FROM MAX_VALUE)
SET @n_ManipulateTable = (SELECT Count (*) FROM MANIPULATE_SOLUTION)
SET @n_CounterTable = (SELECT Count (*) FROM COUNTER)

SET @MaxVaue = (SELECT max(HVaue) FROM H WHERE HValue ISNOT NULL)
SET @MinValue = (SELECT min(HVaue) FROM H WHERE HValue ISNOT NULL)

IF @MaxVaue= @MinVaue
SET @Difference =0
ELSE
BEGIN
SET @SecondMaxVaue = (SELECT max(HVaue) FROM H WHERE HValue <
@MaxVaue AND HVaue ISNOT NULL)
SET @Factor = 9/((@MaxVaue - @SecondMaxV aue)

DECLARE MaxVaueCursor CURSOR FOR
SELECT Jobld, PlaceCode, MAXValue
FROM MAX_VALUE

OPEN MaxV aueCursor
FETCH NEXT FROM MaxV alueCursor
INTO @Jobld, @PlaceCode, @MAXVauel
WHILE @@FETCH_STATUS<>-1
BEGIN

IF @@FETCH_STATUS<> -2

BEGIN

SET @Priorityl = (SELECT Counter FROM COUNTER WHERE
Jobld = @Jobld AND PlaceCode = @PlaceCode)

SET @Counterl = @Priorityl + 1
WHILE @Counterl <= @n_CounterTable
BEGIN
SET @Jobldl = (SELECT Jobld FROM COUNTER
WHERE Counter = @Counterl)
SET @PlaceCodel = (SELECT PlaceCode FROM
COUNTER WHERE Counter = @Counterl)
IF EXISTS (SELECT 'True FROM MAX_VALUE
WHERE Jobld = @Jobld1 AND PlaceCode = @PlaceCodel)
BEGIN

265

SET @MAXVaue2 = (SELECT MAXVaue
FROM MAX_VALUE WHERE Jobld = @Jobld1 AND PlaceCode = @PlaceCodel)
SET @Priority2 = @Counterl
SET @TotalVaueMAXTable =
@TotalVaueMAXTable + 1og10((POWER(@Factor, (@n_CounterTable - @Priorityl))
* @Priorityl * @MAXValuel) + (POWER(@Factor, (@n_CounterTable - @Priority2))
* @Priority2 * @MAXVaue2))
BREAK
END
SET @Counterl = @Counterl + 1
END
END
FETCH NEXT FROM MaxV aueCursor
INTO @Jobld, @PlaceCode, @MAXValuel
END

CLOSE MaxVaueCursor
DEALLOCATE MaxVaueCursor

DECLARE ManipulateTableCursor CURSOR FOR
SELECT Jobld, PlaceCode, MAXValue
FROM MANIPULATE_SOLUTION

OPEN ManipulateTableCursor
FETCH NEXT FROM ManipulateTableCursor
INTO @Jobld, @PlaceCode, @MAXVauel
WHILE @@FETCH_STATUS<>-1
BEGIN

IF @@FETCH_STATUS<>-2

BEGIN

SET @Priorityl = (SELECT Counter FROM COUNTER WHERE
Jobld = @Jobld AND PlaceCode = @PlaceCode)

SET @Counterl = @Priorityl + 1
WHILE @Counterl <= @n_CounterTable
BEGIN

SET @Jobldl = (SELECT Jobld FROM COUNTER
WHERE Counter = @Counterl)

SET @PlaceCodel = (SELECT PlaceCode FROM
COUNTER WHERE Counter = @Counterl)

IF EXISTS (SELECT True FROM
MANIPULATE_SOLUTION WHERE Jobld = @Jobldl AND PlaceCode =
@PlaceCodel)

BEGIN

SET @MAXVaue2 = (SELECT MAXVaue
FROM MANIPULATE_SOLUTION WHERE Jobld = @Jobldl AND PlaceCode =

266

@PlaceCodel)
SET @Priority2 = @Counterl
SET @TotalVaueManipulateTable =
@TotaVaueManipulateTable + loglO((POWER(@Factor, (@n_CounterTable
@Priorityl)) * @Priorityl * @MAXValuel) + (POWER(@Factor, (@n_CounterTable -
@Priority2)) * @Priority2 * @MAXVaue2))
BREAK
END
SET @Counterl = @Counterl + 1
END
END
FETCH NEXT FROM ManipulateTableCursor
INTO @Jobld, @PlaceCode, @MAXVauel
END

CLOSE ManipulateTableCursor
DEALLOCATE ManipulateTableCursor

SET @Difference = @TotaVaueMAXTable - @TotalValueManipulateTable
print @TotalValueMAXTable
print @TotalValueManipulateTable
END
DELETE FROM ESTIMATE_FUNCTION_RESULT
INSERT INTO ESTIMATE_FUNCTION_RESULT

VALUES (@Difference)
GO

Name: dec Experience

CREATE PROCEDURE ksergis.dec Experience (@Jobld char(10), @Applicantid
char(10))

AS

DECLARE @ExperienceRequired float

DECLARE @ExperienceY ears float

SET @ExperienceYears=0

SET @ExperienceRequired = (SELECT ExperienceRequired FROM JOB WHERE Jobld
= @Jobld)
IF (SELECT distinct(Experience) FROM EXPERIENCE WHERE Applicantld =
@Applicantld AND Jobld = @Jobld) ISNOT NULL

SET @ExperienceY ears = (SELECT distinct(Experience) FROM EXPERIENCE
WHERE Applicantld = @Applicantild AND Jobld = @Jobld)

267

IF @ExperienceY ears < @ExperienceRequired
RETURN 0
ELSE
RETURN ((@ExperienceYears - @ExperienceRequired) * 9 / (15 -
@ExperienceRequired)) + 1
GO

Name: dec FindMaxVaue

CREATE PROCEDURE ksergis.dec FindMaxVaue (@Jobld char(10), @PlaceCode
char(10), @MAXValue float)

AS

print 'inside findmaxvalue

DECLARE @Jobld1 char(10)

DECLARE @PlaceCodel char(10)

DECLARE @Jobld2 char(10)

DECLARE @PlaceCode2 char(10)

DECLARE @Applicantldl char(10)
DECLARE @A pplicantld2 char(10)
DECLARE @A pplicantld char(10)

DECLARE @Counter int

DECLARE @Counterl int

DECLARE @Counter2 int

DECLARE @MinCount int

DECLARE @Temp int

DECLARE @Templint

DECLARE @Temp2 int

DECLARE @C int

DECLARE @C1int

DECLARE @C2 int

DECLARE @MultipleMaxValues int
DECLARE @Spot int

DECLARE @Length int

DECLARE @MAX float

DECLARE @MIN float

DECLARE @MAX1 float

DECLARE @MAX2 float

DECLARE @MINL1 float

DECLARE @HValuel float

DECLARE @Eurikaint

DECLARE @Flag int

DECLARE @MIN_VALUE_APPLICANTS Lengthint
DECLARE @MULTIPLE_ MAX_VALUES Lengthint
DECLARE @ONE_MAX_VALUE_Length int

268

DELETE FROM SAME_MAX_VALUE
DELETE FROM MIN_VALUE_APPLICANTS
DELETE FROM MULTIPLE_MAX_VALUES
DELETE FROM ONE_MAX_VALUE

SET @Counter = (SELECT Counter FROM PRIORITY WHERE Jobld = @Jobld AND
PlaceCode = @PlaceCode)

DECLARE HCursor CURSOR FOR
SELECT Applicantld
FROM H
WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode AND HVaue = @MAXVaue
AND

Applicantld NOT IN (SELECT Applicantid FROM USED_APPLICANTS
WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode) AND

Applicantld NOT IN (SELECT Applicantld FROM
ASSIGNED_APPLICANTYS)

OPEN HCursor

FETCH NEXT FROM HCursor

INTO @Applicantld

WHILE @@FETCH_STATUS<>-1

BEGIN
IF @@FETCH_STATUS<>-2
INSERT INTO SAME_MAX_VALUE
VALUES (@Applicantid)
FETCH NEXT FROM HCursor
INTO @Applicantld

END

CLOSE HCursor
DEALLOCATE HCursor

EXEC @Length = ksergis.dec_CountPriorityRecords

SET @Eurika=0
SET @Spot = 0

DECLARE SameMaxVaueCursor CURSOR FOR
SELECT Applicantld
FROM SAME_MAX VALUE

OPEN SameMaxV alueCursor

FETCH NEXT FROM SameMaxV alueCursor
INTO @Applicantld

WHILE @@FETCH_STATUS<>-1

269

BEGIN
IF @@FETCH_STATUS<> -2
BEGIN
SET @Flag=0
SET @Counterl = @Counter + 1
WHILE @Counterl <= @Length
BEGIN
SET @Jobldl = (SELECT Jobld FROM PRIORITY WHERE
Counter = @Counterl)
SET @PlaceCodel = (SELECT PlaceCode FROM PRIORITY
WHERE Counter = @Counterl)
SET @MAX1 = (SELECT max(HVaue) FROM H WHERE Jobld
= @Jobld1 AND PlaceCode = @PlaceCodel AND HVaue ISNOT NULL AND
Applicantld NOT IN (SELECT Applicantld FROM
USED_APPLICANTS WHERE Jobld = @Jobldl AND PlaceCode = @PlaceCodel)
AND
Applicantld NOT IN (SELECT Applicantld FROM
ASSIGNED_APPLICANTYS))
SET @HValuel = (SELECT HVaue FROM H WHERE Jobld =
@Jobldl AND PlaceCode = @PlaceCodel AND Applicantld = @A pplicantld)
IF @HVauel = @MAX1

SET @Flag=1
SET @Counterl = @Counterl + 1
END
IF@Flag=0
BEGIN

SET @Jobld2 = (SELECT Jobld FROM PRIORITY WHERE
Counter = @Counter + 1)
SET @PlaceCode2 = (SELECT PlaceCode FROM PRIORITY
WHERE Counter = @Counter + 1)
SET @MIN1 = (SELECT HVaue FROM H WHERE Jobld =
@Jobld2 AND PlaceCode = @PlaceCode2 AND Applicantld = @A pplicantld)
INSERT INTO MIN_VALUE_APPLICANTS
VALUES (@Applicantld, @MIN1)
END
END
FETCH NEXT FROM SameMaxV aueCursor
INTO @Applicantld
END

CLOSE SameM axV alueCursor
DEALLOCATE SameM axV alueCursor

SET @MIN_VALUE_APPLICANTS Length = (SELECT count(*) FROM
MIN_VALUE_APPLICANTS)

270

IF @MIN_VALUE_APPLICANTS Length>0
BEGIN

SET @Eurika=1

SET @MIN1
MIN_VALUE_APPLICANTS)

SET @Applicantldl = (SELECT distinct(Applicantld) FROM
MIN_VALUE _APPLICANTS WHERE MINVaue= @MIN1)
END
ELSE
BEGIN

SET @Counterl = @Counter + 1

WHILE @Counterl <= @Length

BEGIN

SET @Jobld2 = (SELECT Jobld FROM PRIORITY WHERE Counter =

(SELECT min(MINValue) FROM

@Counterl)
SET @PlaceCode2 = (SELECT PlaceCode FROM PRIORITY WHERE
Counter = @Counterl)
print @Jobld2
print @PlaceCode2
SET @MAX1 = (SELECT max(HValue) FROM H WHERE Jobld =
@Jobld2 AND PlaceCode = @PlaceCode2 AND Applicantld IN (SELECT Applicantld
FROM SAME_MAX_VALUE))
SET @MultipleMaxVaues = (SELECT count(HVaue) FROM H
WHERE Jobld = @Jobld2 AND PlaceCode = @PlaceCode2 AND HVaue = @MAX1
AND Applicantld IN (SELECT Applicantid FROM SAME_MAX_VALUE))
PRINT ‘@MultipleMaxValues ="
PRINT @MultipleMaxValues
IF @MultipleMaxValues=1
BEGIN
SET @Applicantld2 = (SELECT Applicantld FROM H WHERE
HValue = @MAX1 AND Jobld = @Jobld2 AND PlaceCode = @PlaceCode2 AND
Applicantld IN (SELECT Applicantld FROM SAME_MAX_VALUE))
INSERT INTO ONE_MAX_VALUE
VALUES (@Jobld2, @PlaceCode2, @A pplicantld2, @Counterl)
END
ELSE
BEGIN
DECLARE SameMaxVaueCursorl CURSOR FOR
SELECT Applicantld
FROM SAME_MAX_VALUE

OPEN SameMaxVaueCursorl

FETCH NEXT FROM SameMaxV aueCursorl
INTO @Applicantld

WHILE @@FETCH_STATUS<> -1

271

BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
SET @HVauel = (SELECT HVaue FROM H
WHERE Jobld = @Jobld2 AND PlaceCode = @PlaceCode2 AND Applicantld =
@A pplicantld)
IF @HVauel = @QMAX1
BEGIN
INSERT INTO
MULTIPLE_ MAX_VALUES
VALUES (@Jobld2, @PlaceCode2,
@Applicantld, @Counterl)
END
END
FETCH NEXT FROM SameMaxV aueCursorl
INTO @Applicantld
END

CLOSE SameMaxV alueCursorl
DEALLOCATE SameMaxVaueCursorl
END
SET @Counterl = @Counterl + 1
END

IF @Length > @Counter + 2
BEGIN
--SET @MULTIPLE_MAX_VALUES Length = (SELECT
max(Counter) FROM MULTIPLE_MAX_VALUES WHERE Counter > @Counter + 1)
--IF @MULTIPLE_MAX_VALUES Length > @Counter + 1
--BEGIN

SET @Jobldl = (SELECT Jobld FROM PRIORITY WHERE
Counter = @Counter + 1)

SET @PlaceCodel = (SELECT PlaceCode FROM PRIORITY
WHERE Counter = @Counter + 1)

SET @MIN1 = (SELECT min(HVaue) FROM H WHERE Jobld
= @Jobldl AND PlaceCode = @PlaceCodel AND Applicantld IN (SELECT
Applicantld FROM MULTIPLE_MAX_VALUEY))

SET @MAX2 = (SELECT max(HVaue) FROM H WHERE Jobld
= @Jobld1 AND PlaceCode = @PlaceCodel AND HVaue ISNOT NULL AND

Applicantld NOT IN (SELECT Applicantld FROM
USED_APPLICANTS WHERE Jobld = @Jobld1l AND PlaceCode = @PlaceCodel)
AND

Applicantld NOT IN (SELECT Applicantld FROM
ASSIGNED_APPLICANTY))

IF @MIN1 < @MAX2

272

BEGIN
SET @Eurika=1
SET @Applicantldl = (SELECT Applicantild FROM H
WHERE Jobld = @Jobld1 AND PlaceCode = @PlaceCodel AND HValue = @MIN1)
END
ELSE
BEGIN
SET @MinCount = @Length
SET @C=0
DECLARE MultipleMaxV alueCursor CURSOR FOR
SELECT Applicantld
FROM MULTIPLE_ MAX_VALUES
WHERE Counter = @Counter + 1

OPEN MultipleMaxV aueCursor
FETCH NEXT FROM MultipleMaxV aueCursor
INTO @Applicantld
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
SET @Templ = (SELECT
count(Applicantid) FROM MULTIPLE_ MAX_VALUES WHERE Applicantld =
@A pplicantld)
SET @Temp2 = (SELECT
count(Applicantild) FROM ONE_MAX_VALUE WHERE Applicantld = @A pplicantld)
SET @Temp = @Templ + @Temp2
SET @Cl1 = (SELECT max(Counter)
FROM MULTIPLE_MAX_VALUESWHERE Applicantld = @Applicantld)
SET @C2 = (SELECT max(Counter)
FROM ONE_MAX_VALUE WHERE Applicantld = @A pplicantld)
IF @C2> @C1
SET @C1 = @C2
IF (@Temp <= @MinCount) AND (@C1
>= @C)
BEGIN
SET @Eurika=1
SET @MinCount = @Temp
SET @C = @C1
SET @Applicantldl = @Applicantld
END
END
FETCH NEXT FROM MultipleMaxV aueCursor
INTO @Applicantld
END

273

CLOSE MultipleMaxV aueCursor
DEALLOCATE MultipleMaxV aueCursor

END
--END
END
ELSE IF @Length = @Counter + 1
BEGIN

IF EXISTS(SELECT 'True¢ FROM MULTIPLE_MAX_VALUES
WHERE Counter = @Counter)
BEGIN
SET @Eurika=1
SET @Jobldl = (SELECT Jobld FROM PRIORITY WHERE
Counter = @Counter+ 1)
SET @PlaceCodel = (SELECT PlaceCode FROM PRIORITY
WHERE Counter = @Counter + 1)
SET @MIN1 = (SELECT min(HVaue) FROM H WHERE Jobld
= @Jobldl AND PlaceCode = @PlaceCodel AND Applicantld IN (SELECT
Applicantld FROM MULTIPLE_MAX_VALUES WHERE Counter = @Counter))

DECLARE MultipleMaxVaueCursorl CURSOR FOR
SELECT Applicantld, Counter
FROM MULTIPLE_MAX_VALUES

OPEN MultipleMaxVaueCursorl
FETCH NEXT FROM MultipleMaxV aueCursorl
INTO @Applicantld, @Counter2
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
SET @HVauel = (SELECT HVaue FROM H
WHERE Jobld = @Jobldl AND PlaceCode = @PlaceCodel AND Applicantld =
@A pplicantld)
IF @HVauel = @MIN1
SET @Applicantldl = @Applicantld
END
FETCH NEXT FROM MultipleMaxV aueCursorl
INTO @Applicantld, @Counter2
END

CLOSE MultipleMaxVaueCursorl
DEALLOCATE MultipleMaxVaueCursorl
END
END
ELSE IF @L ength = @Counter + 2

274

BEGIN
IF EXISTS(SELECT 'True¢ FROM MULTIPLE MAX_VALUES
WHERE Counter = @Counter + 1)
BEGIN
SET @Eurika=1
SET @Jobldl = (SELECT Jobld FROM PRIORITY WHERE
Counter = @Counter+ 2)
SET @PlaceCodel = (SELECT PlaceCode FROM PRIORITY
WHERE Counter = @Counter + 2)
SET @MIN1 = (SELECT min(HVaue) FROM H WHERE Jobld
= @Jobldl AND PlaceCode = @PlaceCodel AND Applicantld IN (SELECT
Applicantld FROM MULTIPLE_MAX_VALUES WHERE Counter = @Counter + 1))

DECLARE MultipleMaxVaueCursorl CURSOR FOR
SELECT Applicantld, Counter
FROM MULTIPLE_ MAX_VALUES

OPEN MultipleMaxV aueCursorl
FETCH NEXT FROM MultipleMaxVaueCursorl
INTO @Applicantld, @Counter2
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<> -2
BEGIN
SET @HVauel = (SELECT HVaue FROM H
WHERE Jobld = @Jobldl AND PlaceCode = @PlaceCodel AND Applicantld =
@A pplicantld)
IF @HVauel = @MIN1
SET @Applicantldl = @Applicantld
END
FETCH NEXT FROM MultipleMaxVaueCursorl
INTO @Applicantld, @Counter2
END

CLOSE MultipleMaxVaueCursorl
DEALLOCATE MultipleMaxVaueCursorl
END
END

IF @Eurika=0
BEGIN
SET @ONE_MAX VALUE Length = (SELECT max(Counter) FROM
ONE_MAX_VALUE WHERE Counter > @Counter + 1)
IF @ONE_MAX_VALUE_Length > @Counter + 1
BEGIN
SET @Eurika=1

275

SET @Spot = (SELECT max(Counter) FROM
ONE_MAX_VALUE)

SET @Applicantldl = (SELECT Applicantild FROM
ONE_MAX_VALUE WHERE Counter = @Spot)
END
END
END
IF @Eurika=0
BEGIN

DECLARE HCursorl CURSOR FOR
SELECT Applicantld
FROM H
WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode AND HVaue =
@MAXVaue AND
Applicantld IN (SELECT Applicantld FROM SAME_MAX_VALUE)

OPEN HCursorl
FETCH NEXT FROM HCursorl
INTO @Applicantld
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
SET @Applicantldl = @Applicantld
BREAK
FETCH NEXT FROM HCursor
INTO @Applicantld
END

CLOSE HCursorl
DEALLOCATE HCursorl
END

RETURN @Applicantldl
GO

Name: dec_ H_Fill

CREATE PROCEDURE ksergis.dec_H_Fill
AS

DELETE FROM H

INSERT INTO H
SELECT Jobld, Applicantld, PlaceCode, NULL

276

FROM JOB_PLACE, APPLICANT

DECLARE @Jobld char(10)
DECLARE @A pplicantld char(10)
DECLARE @PlaceCode char(10)
DECLARE @HVaue float

DECLARE @Rank int
DECLARE @Specialty int
DECLARE @Qualificationsint

DECLARE HCursor CURSOR FOR
SELECT Jobld, Applicantld, PlaceCode
FROM H

OPEN HCursor

FETCH NEXT FROM HCursor

INTO @Jobld, @A pplicantld, @PlaceCode
WHILE @@FETCH_STATUS <> -1

BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
EXEC @Rank = ksergis.dec_Rank @Jobld, @A pplicantld
EXEC @Specialty = ksergis.dec_Specialty @Jobld, @Applicantld
EXEC @Qudifications = ksergis.dec Qualifications @Jobld,
@Applicantld
IF @Rank = 1 AND @Specialty =1 AND @Qualifications= 1
BEGIN
EXEC @HVaue = ksergisdec H Function @Jobld,
@Applicantld, @PlaceCode
UPDATEH

SET HVaue = @HVaue
WHERE Jobld = @Jobld AND Applicantld = @Applicantld AND
PlaceCode= @PlaceCode
END
END
FETCH NEXT FROM HCursor
INTO @Jobld, @Applicantld, @PlaceCode
END

CLOSE HCursor
DEALLOCATE HCursor
GO

277

Name: dec_ H_ Function

CREATE PROCEDURE ksergis.dec H Function (@Jobld char(10), @Applicantld
char(10), @PlaceCode char (10))

AS

DECLARE @PreferenceCommand int

DECLARE @PreferenceApplicant int

DECLARE @L anguage float

DECLARE @Credentials float

DECLARE @Experience float

DECLARE @H float

DECLARE @PreferenceCommandCo int
DECLARE @PreferenceApplicantCo int
DECLARE @LanguageCo int
DECLARE @CredentialsCo int
DECLARE @ExperienceCo int

EXEC @PreferenceCommand = ksergis.dec PreferenceCommandReturn @Jobld,
@Applicantld, @PlaceCode

EXEC @PreferenceApplicant = ksergis.dec PreferenceApplicantReturn @Jobld,
@Applicantld, @PlaceCode

EXEC @Language = ksergis.dec_L anguage @Jobld, @A pplicantld

EXEC @Credentials = ksergis.dec_Credentials @Jobld, @A pplicantld

EXEC @Experience = ksergis.dec_Experience @Jobld, @Applicantid

SET @PreferenceCommandCo = (SELECT CoefficientValue FROM COEFFICIENT
WHERE Coefficientld = ‘CommandPreferenceCo’)

SET @PreferenceApplicantCo = (SELECT CoefficientValue FROM COEFFICIENT
WHERE Coefficientld = 'ApplicantPreferenceCo’)

SET @LanguageCo = (SELECT CoefficientValue FROM COEFFICIENT WHERE
Coefficientld = 'LanguageCo’)

SET @CredentialsCo = (SELECT CoefficientVaue FROM COEFFICIENT WHERE
Coefficientld = 'Credential sCo')

SET @ExperienceCo = (SELECT CoefficientValue FROM COEFFICIENT WHERE
Coefficientld = 'ExperienceCo’)

SET @H = (@PreferenceCommandCo * @PreferenceCommand) +
(@PreferenceApplicantCo * @PreferenceApplicant) + (@LanguageCo * @Language) +
(@CredentialsCo * @Credentials) + (@ExperienceCo * @Experience) + 1

RETURN @H
GO

Name: dec_ H_Normalize

CREATE PROCEDURE ksergis.dec H Normalize

278

AS
EXEC ksergis.dec MAX_VALUE _ALL_JOBS Fill

DECLARE @Jobld char(10)
DECLARE @A pplicantld char(10)
DECLARE @PlaceCode char(10)
DECLARE @HVaue float
DECLARE @MaxVaue float

DECLARE HCursor CURSOR FOR
SELECT Jobld, Applicantld, PlaceCode, HValue
FROM H

OPEN HCursor

FETCH NEXT FROM HCursor

INTO @Jobld, @Applicantld, @PlaceCode, @HValue
WHILE @@FETCH_STATUS<> -1

BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
IF @HValue ISNOT NULL
BEGIN
SET @MaxVaue = (SELECT MAXVadue FROM
MAX_VALUE_ALL_JOBS WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode)
UPDATEH

SET HVaue= (@HVaue* 9/ @MaxValue) + 1
WHERE Jobld = @Jobld AND Applicantld = @Applicantld AND
PlaceCode= @PlaceCode
END
END
FETCH NEXT FROM HCursor
INTO @Jobld, @Applicantld, @PlaceCode, @HV alue
END

CLOSE HCursor
DEALLOCATE HCursor
GO

Name: dec Language

CREATE PROCEDURE ksergis.dec Language (@Jobld char(10), @Applicantid
char(10))

AS

DECLARE @L anguageDegreel float

DECLARE @L anguageDegree? float

279

DECLARE @L anguageCode char(10)
DECLARE @SUM1 float

DECLARE @SUM2 float

DECLARE @ANS float

DECLARE @Count int

SET @SUM1=0
SET @SUM2=0
SET @Count=0

DECLARE LanguageCursor CURSOR FOR
SELECT Jobld, LanguageCode

FROM JOB_LANGUAGE

WHERE Jobld = @Jobld

OPEN LanguageCursor

FETCH NEXT FROM LanguageCursor
INTO @Jobld, @LanguageCode
WHILE @@FETCH_STATUS <> -1

BEGIN
IF @@FETCH_STATUS<> -2
BEGIN
EXEC @LanguageDegreel = ksergis.dec Languagel @Applicantld,
@L anguageCode
EXEC @LanguageDegree2 = ksergis.dec Language2 @Jobld,
@L anguageCode
SET @SUM1 = @SUM1 +@L anguageDegreel
SET @SUM2 = @SUM2 +@L anguageDegree2
SET @Count = @Count +1
END

FETCH NEXT FROM LanguageCursor
INTO @Jobld, @LanguageCode

END
CLOSE LanguageCursor
DEALLOCATE LanguageCursor
IF @SUM1 < @SUM2
SET @ANS=0
ELSE
BEGIN
IF @Count * 200 = @SUM2
SET @ANS=1
ELSE

SET @ANS = ((@SUM1 - @SUM2) * 9/ ((@Count * 200) - @SUM?2))
+1

280

END

RETURN @ANS
GO

Name: dec Languagel

CREATE PROCEDURE ksergisdec Languagel (@Applicantld char(10),
@L anguageCode char(10))

AS

DECLARE @L anguageDegree float

IF EXISTS (SELECT LanguageDegree FROM APPLICANT _LANGUAGE WHERE
Applicantld = @Applicantld AND LanguageCode = @L anguageCode)

SET @LanguageDegree = (SELECT LanguageDegree FROM
APPLICANT _LANGUAGE WHERE Applicantld = @Applicantld AND LanguageCode
= @L anguageCode)

ELSE

SET @LanguageDegree =0
RETURN @L anguageDegree
GO

Name: dec Language2

CREATE PROCEDURE ksergis.dec_Language2 (@Jobld char(10), @LanguageCode
char(10))

AS

DECLARE @L anguageDegree float

SET @LanguageDegree = (SELECT LanguageDegree FROM JOB_LANGUAGE
WHERE Jobld = @Jobld AND LanguageCode = @L anguageCode)

RETURN @L anguageDegree

GO

Name: dec_ Main

CREATE PROCEDURE ksergis.dec_Main AS

DELETE FROM DELETED_JOBS
DELETE FROM USED_APPLICANTS
DELETE FROM ASSIGNED_APPLICANTS

EXEC ksergis.dec H_Fill

EXEC ksergis.dec H _Normalize
EXEC ksergis.dec PRIORITY _Fill
EXEC ksergis.dec COUNTER_Fill
EXEC ksergis.dec MAX_VALUE Fill

281

EXEC ksergis.dec_DeleteEmptyJobs

DECLARE @Length int

DECLARE @Count int

DECLARE @PriorCount int
DECLARE @Flag bit

DECLARE @CheckHVaueExistsint

EXEC @Length = ksergis.dec_CountPriorityRecords
SET @Count =1

WHILE @Count <= @L ength
BEGIN
PRINT @Count
EXEC @CheckHV alueExists = ksergis.dec_CheckHV alueExists @Count

IF @Count = 1
BEGIN
SET @Flag = (SELECT Flag FROM PRIORITY WHERE Counter =
@Count)
IF @CheckHVaueExists=0 AND @Flag=1
BEGIN
EXEC ksergis.dec_DeleteJob
EXEC @Length = ksergis.dec_CountPriorityRecords
EXEC ksergis.dec_DeleteJobUsedV alues @Count
EXEC @CheckHValueExists = ksergis.dec_CheckHV alueExists
@Count
END
END

IF @CheckHVaueExists=1

BEGIN
EXEC ksergis.dec_ComputeM axV alue @Count
UPDATE PRIORITY
SET Flag=1
WHERE Counter = @Count
SET @Count = @Count + 1

END

ELSE

BEGIN
SET @PriorCount = @Count - 1
EXEC ksergis.dec_ SetMAXVaueNull @PriorCount
EXEC ksergis.dec_DeleteJobUsedV alues @Count
SET @Count = @PriorCount

END

282

END

EXEC ksergis.dec UNASSIGNED_APPLICANTS Fill

EXEC ksergis.dec MANIPULATE_SOLUTION_Fill

EXEC ksergis.dec_ UNASSIGNED_APPLICANTS MANIPULATE_Fill
EXEC ksergis.dec DELETED_JOBS MANIPULATE_Fill

EXEC ksergis.dec_EstimateFunction

GO

Name: dec_ MANIPULATE_SOLUTION_Fill

CREATE PROCEDURE ksergis.dec MANIPULATE_SOLUTION_Fill AS
DELETE FROM MANIPULATE_SOLUTION

INSERT INTO MANIPULATE_SOLUTION
SELECT Jobld, PlaceCode, Applicantld, MAXValue
FROM MAX_VALUE

GO

Name: dec MANIPULATE SOLUTION InsertRecord

CREATE PROCEDURE ksergis.dec MANIPULATE _SOLUTION_InsertRecord
(@Jobld char(10), @PlaceCode char(10), @Applicantld char(10)) AS
DECLARE @HVaue float

SET @HValue = (SELECT HVaue FROM H WHERE Jobld = @Jobld AND PlaceCode
= @PlaceCode AND Applicantld = @A pplicantld)

INSERT INTO MANIPULATE_SOLUTION
VALUES (@Jobld, @PlaceCode, @A pplicantld, @HV alue)
GO

Name: dec MAX_VALUE ALL_JOBS Fill

CREATE PROCEDURE ksergis.dec MAX_VALUE_ALL_JOBS Fill
AS

DELETE FROM MAX_VALUE_ALL_JOBS

INSERT INTO MAX_VALUE_ALL_JOBS
SELECT Jobld, PlaceCode, NULL
FROM JOB_PLACE

DECLARE @Jobld char(10)
DECLARE @PlaceCode char(10)
DECLARE @MValue float

283

DECLARE MAX_VALUE_ALL_JOBS_ Cursor CURSOR FOR
SELECT Jobld, PlaceCode
FROM MAX_VALUE_ALL_JOBS

OPEN MAX_VALUE_ALL_JOBS Cursor
FETCH NEXT FROM MAX_VALUE_ALL_JOBS Cursor
INTO @Jobld, @PlaceCode
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
SET @MVaue = (SELECT MAX(HVaue) FROM H WHERE Jobld =
@Jobld AND PlaceCode= @PlaceCode)
UPDATE MAX_VALUE ALL_JOBS
SET MaxVaue = @MVaue
WHERE Jobld = @Jobld AND PlaceCode= @PlaceCode
END
FETCH NEXT FROM MAX_VALUE_ALL_JOBS Cursor
INTO @Jobld, @PlaceCode
END

CLOSE MAX_VALUE_ALL_JOBS Cursor
DEALLOCATE MAX_VALUE_ALL_JOBS Cursor
GO

Name: dec MAX_VALUE Fill

CREATE PROCEDURE ksergis.dec MAX_VALUE_Fill
AS

DELETE FROM MAX_VALUE

INSERT INTO MAX_VALUE

SELECT Jobld, PlaceCode, NULL, NULL
FROM PRIORITY

GO

Name: dec_ PreferenceApplicantReturn

CREATE PROCEDURE ksergis.dec_PreferenceApplicantReturn (@Jobld char (10),
@Applicantld char(10), @PlaceCode char(10))

AS

DECLARE @PreferenceApplicant int

284

IF EXISTS(SELECT PreferenceApplicant FROM APPLICANT_PREFERENCE
WHERE Jobld = @Jobld AND Applicantld = @Applicantild AND PlaceCode =
@PlaceCode)
BEGIN
SET @PreferenceApplicant = (SELECT PreferenceApplicant FROM
APPLICANT _PREFERENCE WHERE Jobld = @Jobld AND Applicantld =
@Applicantld AND PlaceCode = @PlaceCode)
IF @PreferenceApplicant ISNOT NULL
RETURN 11 - @PreferenceApplicant
ELSE
RETURN O
END
ELSE
RETURN O
GO

Name: dec_ PreferenceCommandReturn

CREATE PROCEDURE ksergis.dec_PreferenceCommandReturn (@Jobld char (10),
@Applicantld char(10), @PlaceCode char(10))
AS
DECLARE @Ansint
IF EXISTS(SELECT PreferenceCommand FROM COMMAND_PREFERENCE
WHERE Jobld = @Jobld AND Applicantld = @Applicantid AND PlaceCode =
@PlaceCode)
BEGIN
SET @AnNs = (SELECT PreferenceCommand FROM
COMMAND_PREFERENCE WHERE Jobld = @Jobld AND Applicantld =
@Applicantld AND PlaceCode = @PlaceCode)
IF @AnsISNOT NULL
RETURN 11 - @Ans
ELSE
RETURN O
END
ELSE
RETURN O
GO

Name: dec_ PRIORITY _Fill

CREATE PROCEDURE ksergis.dec PRIORITY _Fill
AS

DELETE FROM PRIORITY

INSERT INTO PRIORITY

285

SELECT JOB_PLACE.Jobld, PlaceCode, Priority, NULL, 'O’
FROM JOB_PLACE, JOB
WHERE JOB_PLACE.Jobld = JOB.Jobld

DECLARE @Jobld char(10)
DECLARE @PlaceCode char(10)
DECLARE @Priority int
DECLARE @Priorityl int
DECLARE @Counter int
DECLARE @Counterl int

SET @Counterl =1
SET @Priorityl =10

WHILE @Priorityl >0
BEGIN

DECLARE PriorityCursor CURSOR FOR
SELECT Jobld, PlaceCode, Priority, Counter
FROM PRIORITY

OPEN PriorityCursor
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Priority, @Counter
WHILE @@FETCH_STATUS <> -1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
IF @Priorityl = (SELECT Priority FROM PRIORITY WHERE Jobld =
@Jobld AND PlaceCode = @PlaceCode)
BEGIN
UPDATE PRIORITY
SET Counter = @Counterl
WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode AND
Priority= @Priorityl
SET @Counterl = @Counterl + 1
END
END
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Priority, @Counter
END

CLOSE PriorityCursor
DEALLOCATE PriorityCursor

SET @Priorityl = @Priorityl - 1

286

END
GO

Name: dec_ QualificationExistsl

CREATE PROCEDURE ksergis.dec QualificationExistsl (@Applicantld char(10),
@QualificationCode char(10))
AS
IF EXISTS(SELECT 'True¢ FROM QUALIFICATION_APPLICANT WHERE
Applicantld = @Applicantld AND QualificationCode = @QualificationCode)
RETURN 1
ELSE
RETURN O
GO

Name: dec QualificationExists2

CREATE PROCEDURE ksergis.dec QuadlificationExists2 (@Jobld char(10),
@QualificationCode char(10))
AS
IF EXISTS(SELECT 'True FROM JOB_QUALIFICATION WHERE Jobld = @Jobld
AND QualificationCode = @QualificationCode)
RETURN 1
ELSE
RETURN O
GO

Name: dec Qualifications

CREATE PROCEDURE ksergis.dec_Quadlifications (@Jobld char(10), @Applicantid
char(10))

AS

DECLARE @QualificationCode char(10)

DECLARE @QualificationResultl int

DECLARE @QualificationResult2 int

DECLARE @Ansint

SET @Ans=0

DECLARE QualificationsCursor CURSOR FOR
SELECT Jobld, QualificationCode

FROM JOB_QUALIFICATION

WHERE Jobld = @Jobld

OPEN QualificationsCursor
FETCH NEXT FROM QualificationsCursor

287

INTO @Jobld, @QualificationCode
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
EXEC @QuadlificationResultl
@A pplicantld, @QualificationCode
EXEC @QuadlificationResult2
@Jobld, @QualificationCode

ksergis.dec_QualificationExistsl

ksergis.dec_QualificationExists2

IF @QualificationResult1l = @QualificationResult2 AND
@QuadlificationResultl <> 0
SET @Ans=1

END
FETCH NEXT FROM QualificationsCursor
INTO @Jobld, @QualificationCode

END

CLOSE QualificationsCursor
DEALLOCATE QualificationsCursor

RETURN @Ans
GO

Name: dec_ Rank

CREATE PROCEDURE ksergis.dec_Rank (@Jobld char(10), @Applicantld char(10))
AS

DECLARE @RankCode char(10)

DECLARE @RankResultl int

DECLARE @RankResult2 int

DECLARE @Ansint

SET @Ans=0

DECLARE RankCursor CURSOR FOR
SEL ECT Jobld, RankCode

FROM JOB_RANK

WHERE Jobld = @Jobld

OPEN RankCursor
FETCH NEXT FROM RankCursor
INTO @Jobld, @RankCode
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<> -2
BEGIN

288

EXEC @RankResultl = ksergis.dec RankExistsl @Applicantld,
@RankCode
EXEC @RankResult2 = ksergis.dec_RankExists2 @Jobld, @RankCode
IF @RankResultl = @RankResult2 AND @RankResultl <> 0
SET @Ans=1
END
FETCH NEXT FROM RankCursor
INTO @Jobld, @RankCode
END

CLOSE RankCursor
DEALLOCATE RankCursor

RETURN @Ans
GO

Name: dec RankExistsl

CREATE PROCEDURE ksergisdec RankExistsl (@Applicantld char (10),
@RankCode char(10))
AS
IF EXISTS(SELECT 'Truet FROM APPLICANT WHERE Applicantld = @Applicantld
AND RankCode = @RankCode)
RETURN 1
ELSE
RETURN O
GO

Name: dec_ RankEXxists2

CREATE PROCEDURE ksergis.dec RankExists2 (@Jobld char (10), @RankCode
char(10))
AS
IF EXISTS(SELECT 'True FROM JOB_RANK WHERE Jobld = @Jobld AND
RankCode = @RankCode)
RETURN 1
ELSE
RETURN 0
GO

Name: dec_ SetMAXVaueNull

CREATE PROCEDURE ksergis.dec_SetMAXVaueNull (@Counter int)
AS

DECLARE @Applicantldl char(10)

289

DECLARE @Jobld char(10)
DECLARE @Jobld1 char(10)
DECLARE @PlaceCode char(10)
DECLARE @PlaceCodel char(10)

DECLARE PriorityCursor CURSOR FOR
SELECT Jobld, PlaceCode, Counter
FROM PRIORITY

WHERE Counter = @Counter

OPEN PriorityCursor
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<>-2
BEGIN
SET @Jobldl = @Jobld
SET @PlaceCodel = @PlaceCode
END
FETCH NEXT FROM PriorityCursor
INTO @Jobld, @PlaceCode, @Counter
END

CLOSE PriorityCursor
DEALLOCATE PriorityCursor

SET @Applicantldl = (SELECT Applicantld FROM MAX_VALUE WHERE Jobld =
@Jobld1l AND PlaceCode = @PlaceCodel)

PRINT @Applicantldl
PRINT @Jobld1l
PRINT @PlaceCodel

DELETE FROM ASSIGNED_APPLICANTS
WHERE Applicantld = @Applicantldl

INSERT INTO USED_APPLICANTS
VALUES (@Jobldl, @PlaceCodel, @A pplicantidl)

UPDATE MAX_VALUE

SET Applicantld = NULL, MAXValue = NULL

WHERE Jobld = @Jobld1 AND PlaceCode = @PlaceCodel
GO

290

Name: dec_ ShowDeletedJobs

CREATE PROCEDURE ksergis.dec_ShowDeletedJobs AS

SELECT JobName, PlaceName

FROM DELETED_JOBS, JOB, PLACE

WHERE DELETED JOBS.Jobld = JOB.Jobld AND DELETED_JOBS.PlaceCode =
PLACE.PlaceCode

GO

Name: dec_ ShowDeletedJobsM anipulate

CREATE PROCEDURE ksergis.dec_ShowDeletedJobsManipulate AS

SELECT JOB.Jobld, JobName, PLACE.PlaceCode, PlaceName

FROM DELETED_JOBS MANIPULATE, JOB, PLACE

WHERE DELETED _JOBS MANIPULATE.Jobld = JOB.Jobld AND
DELETED_JOBS MANIPULATE.PlaceCode = PLACE.PlaceCode

GO

Name: dec_ ShowEstimateFunctionResult

CREATE PROCEDURE ksergis.dec_ShowEstimateFunctionResult AS
SELECT Result

FROM ESTIMATE_FUNCTION_RESULT

GO

Name: dec_ ShowJobNameOnJobld

CREATE PROCEDURE ksergis.dec_ShowJobNameOnJobld (@Jobld char(10)) AS
SELECT JobName

FROM JOB

WHERE Jobld = @Jobld

GO

Name: dec ShowM anipulateSolution

CREATE PROCEDURE ksergis.dec_ShowManipulateSolution AS

SELECT JOB.Jobld, JobName, PLACE.PlaceCode, PlaceName,

APPLICANT.Applicantld, FirstName, LastName, MAXValue

FROM MANIPULATE_SOLUTION, JOB, PLACE, APPLICANT

WHERE MANIPULATE_SOLUTION.Jobld = JOB.Jobld AND

MANIPULATE_SOLUTION.PlaceCode = PLACE.PlaceCode AND
MANIPULATE_SOLUTION.Applicantld = APPLICANT.Applicantld

GO

Name: dec_ ShowNotNullHVaue

CREATE PROCEDURE ksergis.dec_ShowNotNull[HVaue AS

291

SELECT *

FROM H

WHERE HValue ISNOT NULL
GO

Name: dec_ ShowPlaceNameOnPlaceCode

CREATE PROCEDURE ksergis.dec_ShowPlaceNameOnPlaceCode (@PlaceCode
char(10)) AS

SELECT PlaceName

FROM PLACE

WHERE PlaceCode = @PlaceCode

GO

Name: dec_ ShowSolution

CREATE PROCEDURE ksergis.dec_ShowSolution AS
SELECT JobName, PlaceName, APPLICANT.Applicantld, FirstName, LastName,
MAXValue
FROM MAX_VALUE, JOB, PLACE, APPLICANT
WHERE MAX VALUE.Jobld = JOB.Jobld AND MAX VALUE.PlaceCode =
PLACE.PlaceCode AND
MAX_VALUE.Applicantld = APPLICANT.Applicantld
GO

Name: dec_ ShowUnassignedA pplicants

CREATE PROCEDURE ksergis.dec_ShowUnassignedApplicants AS

SELECT APPLICANT.Applicantld, FirstName, LastName

FROM APPLICANT, UNASSIGNED_APPLICANTS

WHERE APPLICANT.Applicantld = UNASSIGNED_APPLICANTS.Applicantld
GO

Name: dec_ ShowUnassignedA pplicantsM anipul ate

CREATE PROCEDURE ksergis.dec_ShowUnassignedA pplicantsManipulate AS

SELECT APPLICANT.Applicantld, FirstName, LastName
FROM APPLICANT, UNASSIGNED_APPLICANTS MANIPULATE

WHERE APPLICANT.Applicantld =
UNASSIGNED_APPLICANTS MANIPULATE.Applicantld
GO

Name: dec_ Specialty

292

CREATE PROCEDURE ksergis.dec Specialty (@Jobld char(10), @Applicantid
char(10))

AS

DECLARE @SpeciatyCode char(10)

DECLARE @SpeciatyResultl int

DECLARE @SpeciatyResult2 int

DECLARE @Ansint

SET @Ans=0

DECLARE SpeciatyCursor CURSOR FOR
SELECT Jobld, SpecialtyCode

FROM JOB_SPECIALTY

WHERE Jobld = @Jobld

OPEN SpecialtyCursor
FETCH NEXT FROM SpecialtyCursor
INTO @Jobld, @SpecialtyCode
WHILE @@FETCH_STATUS<>-1
BEGIN
IF @@FETCH_STATUS<> -2
BEGIN
EXEC @SpeciatyResultl = ksergis.dec_SpecialtyExistsl @Applicantld,
@SpeciatyCode
EXEC @SpecialtyResult2 = ksergis.dec SpecialtyExists2 @Jobld,
@SpeciadtyCode
IF @SpecialtyResultl = @SpeciatyResult2 AND @SpeciatyResultl <>

0
SET @Ans=1
END
FETCH NEXT FROM SpecialtyCursor
INTO @Jobld, @SpecialtyCode
END

CLOSE SpecialtyCursor
DEALLOCATE SpecialtyCursor

RETURN @Ans
GO

Name: dec SpecialtyExistsl

CREATE PROCEDURE ksergis.dec SpeciatyExistsl (@Applicantld char (10),
@SpeciatyCode char(10))

AS

IF EXISTS(SELECT 'True' FROM APPLICANT WHERE Applicantld = @Applicantld

293

AND SpecialtyCode = @SpecialtyCode)
RETURN 1

ELSE
RETURN O

GO

Name: dec SpecialtyExists2

CREATE PROCEDURE ksergis.dec_SpecidtyExists2 (@Jobld char (10),
@SpeciatyCode char(10))
AS
IF EXISTS(SELECT 'True¢t FROM JOB_SPECIALTY WHERE Jobld = @Jobld AND
SpecialtyCode = @SpecialtyCode)
RETURN 1
ELSE
RETURN O
GO

Name: dec UNASSIGNED_APPLICANTS Fill

CREATE PROCEDURE ksergis.dec_ UNASSIGNED_APPLICANTS Fill AS
DELETE FROM UNASSIGNED_APPLICANTS

INSERT INTO UNASSIGNED_APPLICANTS

SELECT Applicantld

FROM APPLICANT

WHERE Applicantld NOT IN (SELECT Applicantld FROM
ASSIGNED_APPLICANTYS)

GO

Name: dec UNASSIGNED_APPLICANTS MANIPULATE_DeleteRecord

CREATE PROCEDURE
ksergis.dec_ UNASSIGNED_APPLICANTS MANIPULATE_DeleteRecord
(@Applicantld char(10)) AS

DELETE FROM UNASSIGNED_APPLICANTS MANIPULATE

WHERE Applicantld = @Applicantld

GO

Name: dec UNASSIGNED _APPLICANTS MANIPULATE_Fill

CREATE PROCEDURE
ksergis.dec_UNASSIGNED_APPLICANTS MANIPULATE_Fill AS
DELETE FROM UNASSIGNED_APPLICANTS MANIPULATE

INSERT INTO UNASSIGNED_APPLICANTS MANIPULATE

294

SELECT *
FROM UNASSIGNED_APPLICANTS
GO

Name: DeleteA pplicantldOnApplicantCredentials

CREATE PROCEDURE ksergis.DeleteApplicantldOnA pplicantCredentials
(@Applicantld char(10), @Credentialsld char(10))
AS

DELETE FROM APPLICANT_CREDENTIALS
WHERE Applicantld = @Applicantld AND Credentialsld = @Credentialsld
GO

Name: DeleteA pplicantldOnA pplicantL anguage

CREATE PROCEDURE ksergis.Del eteA pplicantl dOnA pplicantL anguage
(@Applicantld char(10), @L anguageCode char(10))
AS

DELETE FROM APPLICANT _LANGUAGE
WHERE Applicantld = @Applicantld AND LanguageCode = @L anguageCode
GO

Name: DeleteA pplicantl dOnQualificationA pplicant

CREATE PROCEDURE ksergis.DeleteApplicantldOnQualificationApplicant
(@Applicantld char(10), @QualificationCode char(10))

AS

DELETE FROM QUALIFICATION_APPLICANT

WHERE Applicantld = @Applicantld AND QualificationCode = @QualificationCode
GO

Name: DeleteA pplicantPreference

CREATE PROCEDURE ksergis.DeleteApplicantPreference (@Applicantld char(10),
@PreferenceApplicant char(10))

AS

DELETE FROM APPLICANT_PREFERENCE

WHERE Applicantld = @Applicantld AND PreferenceApplicant =
@PreferenceA pplicant

GO

Name: DeleteApplicants

CREATE PROCEDURE ksergis.DeleteApplicants (@A pplicantld char(10))
AS
DELETE FROM APPLICANT

295

WHERE Applicantld = @Applicantld
GO

Name: DeleteCoefficient

CREATE PROCEDURE ksergis.DeleteCoefficient (@Coefficientld char(30))
AS

DELETE FROM COEFFICIENT

WHERE Coefficientld = @Coefficientld

GO

Name: DeleteCommandPreference

CREATE PROCEDURE ksergis.DeleteCommandPreference (@PlaceCode char(10),
@Jobld char(10), @PreferenceCommand char(10), @Applicantld char(10))

AS

DELETE FROM COMMAND_PREFERENCE

WHERE PlaceCode = @PlaceCode AND Jobld = @Jobld AND PreferenceCommand =
@PreferenceCommand AND Applicantld = @Applicantld

GO

Name: DeleteCommands

CREATE PROCEDURE ksergis.DeleteCommands (@CommandCode char(10))
AS

DELETE FROM COMMAND

WHERE CommandCode = @CommandCode

GO

Name: DeleteCredentials

CREATE PROCEDURE ksergis.DeleteCredentials (@Credentialsld char(10))
AS

DELETE FROM CREDENTIALS

WHERE Credentialsild = @Credentiasid

GO

Name: DeleteCredentialsldOnJobCredentials

CREATE PROCEDURE ksergis.DeleteCredentiasidOnJobCredentials (@Jobld
char(10), @Credentialsld char(10))

AS

DELETE FROM JOB_CREDENTIALS

WHERE Jobld = @Jobld AND Credentialsild = @Credentiasid

GO

296

Name: DeleteJobs

CREATE PROCEDURE ksergis.DeleteJobs (@Jobld char(10))
AS

DELETE FROM JOB

WHERE Jobld = @Jobld

GO

Name: Deletel. anguageCodeOnJobL anguage

CREATE PROCEDURE ksergis.Deletel anguageCodeOnJdobLanguage (@Jobld
char(10), @LanguageCode char(10))

AS

DELETE FROM JOB_LANGUAGE

WHERE Jobld = @Jobld AND LanguageCode = @L anguageCode

GO

Name: Deletel anguages

CREATE PROCEDURE ksergis.Deletelanguages (@L anguageCode char(10))
AS

DELETE FROM LANGUAGE

WHERE LanguageCode = @LanguageCode

GO

Name: DeletePlaceCodeOnJobPlace

CREATE PROCEDURE ksergis.DeletePlaceCodeOnJobPlace (@Jobld char(10),
@PlaceCode char(10))

AS

DELETE FROM JOB_PLACE

WHERE Jobld = @Jobld AND PlaceCode = @PlaceCode

GO

Name: DeletePlaces

CREATE PROCEDURE ksergis.DeletePlaces (@PlaceCode char(10))
AS

DELETE FROM PLACE

WHERE PlaceCode = @PlaceCode

GO

Name: DeleteQualificationCodeOnJobQualification

CREATE PROCEDURE ksergis.DeleteQualificationCodeOnJobQualification (@Jobld
char(10), @QualificationCode char(10))

297

AS

DELETE FROM JOB_QUALIFICATION

WHERE Jobld = @Jobld AND QualificationCode = @QualificationCode
GO

Name: DeleteQualifications

CREATE PROCEDURE ksergis.DeleteQualifications (@QualificationCode char(10))
AS

DELETE FROM QUALIFICATION

WHERE QualificationCode = @QualificationCode

GO

Name: DeleteRankCodeOnJobRank

CREATE PROCEDURE ksergis.DeleteRankCodeOnJobRank (@Jobld char(10),
@RankCode char(10))

AS

DELETE FROM JOB_RANK

WHERE Jobld = @Jobld AND RankCode = @RankCode

GO

Name: DeleteRanks

CREATE PROCEDURE ksergis.DeleteRanks (@RankCode char(10))
AS

DELETE FROM RANK

WHERE RankCode = @RankCode

GO

Name: DeleteSpecialties

CREATE PROCEDURE ksergis.DeleteSpecialties (@SpeciatyCode char(10))
AS

DELETE FROM SPECIALTY

WHERE SpeciatyCode = @SpecialtyCode

GO

Name: DeleteSpecialtyCodeOnJobSpecialty

CREATE PROCEDURE ksergis.DeleteSpecialtyCodeOnJobSpecialty (@Jobld char(10),
@SpeciatyCode char(10))

AS

DELETE FROM JOB_SPECIALTY

WHERE Jobld = @Jobld AND SpecialtyCode = @SpecialtyCode

GO

298

Name: FindPlaceCodelobld

CREATE PROCEDURE ksergis.FindPlaceCodeldobld (@CommandCode char(10),
@JobName char(30), @PlaceName char(50), @PreferenceCommand int)

AS

SELECT PLACE.PlaceCode, JOB.Jobld

FROM EXPERIENCE_PREFERENCE, JOB, PLACE

WHERE EXPERIENCE PREFERENCE.CommandCode=@CommandCode @ AND
JobName = @JobName AND PlaceName = @PlaceName AND JOB.Jobld

EXPERIENCE_PREFERENCE.Jobld AND PLACE.PlaceCode =
EXPERIENCE_PREFERENCE.PlaceCode AND PreferenceCommand =
@PreferenceCommand

GO

Name: |nsertCoefficient

CREATE PROCEDURE ksergis.InsertCoefficient (@Coefficientld char(30),
@CoefficientVaueint) AS

INSERT INTO COEFFICIENT

VALUES (@Coefficientld, @CoefficientValue)

GO

Name: |nsertDate

CREATE PROCEDURE ksergis.InsertDate (@Applicantld char(10), @ReportDate
varchar(10), @DetachDate varchar(10)) AS

DECLARE @d_ReportDate datetime
DECLARE @d DetachDate datetime

SET @d_ReportDate = @ReportDate
SET @d_DetachDate = @DetachDate

UPDATE ASSIGNMENT

SET ReportDate = @d_ReportDate, DetachDate = @DetachDate
WHERE Applicantld = @Applicantld

GO

Name: InsertExperience

CREATE PROCEDURE ksergis.InsertExperience (@Jobld char(10), @Applicantid
char(10), @Experience float) AS

INSERT INTO EXPERIENCE

VALUES (@Jobld, @Applicantld, @Experience)

GO

299

Name: SearchCommandName

CREATE PROCEDURE ksergis.SearchCommandName (@UserName varchar(50))
AS

SELECT CommandName, CommandCode

FROM COMMAND

WHERE UserName=@UserName

GO

Name: SearchLastName

CREATE PROCEDURE ksergis.SearchLastName (@UserName varchar(50))
AS

SELECT LastName, Applicantld, DetailerCheck

FROM APPLICANT

WHERE UserName=@UserName

GO

Name: ShowAllAssignmentinfo

CREATE PROCEDURE ksergis.ShowAllAssignmentinfo AS

SELECT ASSIGNMENT.Jobld, JobName, ASSIGNMENT.PlaceCode, PlaceName,
ASSIGNMENT.Applicantld, FirstName, LastName, ReportDate, DetachDate

FROM ASSIGNMENT, JOB, PLACE, APPLICANT

WHERE ASSIGNMENT.Jobld = JOB.Jobld AND ASSIGNMENT.PlaceCode =
PLACE.PlaceCode AND ASSIGNMENT.Applicantld = APPLICANT.Applicantld

GO

Name: ShowAllJobldRelatedData

CREATE PROCEDURE ksergis.ShowAllJobldRelatedData (@Jobld char(10))
AS
SELECT JOB.Jobld, JobName, ExperienceRequired, RankName, LanguageName,
LanguageDegree, SpecialtyName, QualificationName, PlaceName, CredentialsName,
CredentialsGrade
FROM JOB, JOB_RANK, RANK, JOB_LANGUAGE, LANGUAGE, SPECIALTY,
JOB_SPECIALTY, QUALIFICATION, JOB_QUALIFICATION, PLACE,
JOB_PLACE, CREDENTIALS, JOB_CREDENTIALS
WHERE JOB.Jobld = @Jobld AND JOB.Jobld = JOB_RANK.Jobld AND
JOB_RANK.RankCode = RANK.RankCode AND JOB_LANGUAGE.LanguageCode =
LANGUAGE.LanguageCode AND JOB_LANGUAGE.Jobld = JOB.Jobld

AND JOB_SPECIALTY .SpecidtyCode = SPECIALTY .SpecialtyCode AND
JOB_SPECIALTY .Jobld = JOB.Jobld

AND JOB_QUALIFICATION.QualificationCode =
QUALIFICATION.QualificationCode AND JOB_QUALIFICATION.Jobld = JOB. Jobld

300

AND JOB_PLACE.PlaceCode = PLACE.PlaceCode AND JOB_PLACE.Jobld =
JOB.Jobld

AND JOB_CREDENTIALS.Credentialsld = CREDENTIALS.Credentiasld
AND JOB_CREDENTIALS.Jobld = JOB.Jobld
GO

Name: ShowA pplicantAddressPhoneData

CREATE PROCEDURE ksergis.ShowApplicantAddressPhoneData (@A pplicantid
char(10))

AS

SELECT FirstName, LastName, MiddleName, UserName, Password, EmailAddress,
CityOrTown, Street, Appartment, ZIP, HomePhoneNumber, CellPhoneNumber,
OtherPhoneNumber

FROM APPLICANT, ADDRESS, PHONE

WHERE APPLICANT.Applicantld = @Applicantild AND ADDRESS.Applicantld
@Applicantid AND PHONE.Applicantld = @Applicantld

GO

Name: ShowApplicantData

CREATE PROCEDURE ksergis.ShowApplicantDataAS
SELECT FirstName, LastName, MiddleName, CityOrTown, Street, Appartment
FROM dbo.APPLICANT, dbo.ADDRESS

WHERE UserName = Request.Form(“UserName’) AND Password =
Request.Form(* Password”)
GO

Name: ShowA pplicantDataOnJobldFromEXPERIENCE

CREATE PROCEDURE ksergis.ShowA pplicantDataOnJobl dFromEX PERIENCE
(@Jobld char(10)) AS

SELECT APPLICANT.Applicantld, FirstName, LastName

FROM APPLICANT, EXPERIENCE

WHERE APPLICANT.Applicantld = EXPERIENCE.Applicantld AND
EXPERIENCE.Jobld = @Jobld
GO

Name: ShowA pplicantld

CREATE PROCEDURE ksergis.ShowApplicantld AS
SELECT Applicantld

FROM APPLICANT

GO

301

Name: ShowA pplicantldFromUserName

CREATE PROCEDURE ksergis.ShowApplicantildFromUserName (@UserName
char(50))

AS

SELECT Applicantld

FROM dbo.APPLICANT

WHERE UserName = @UserName

GO

Name: ShowA pplicantldL astNameFirstName

CREATE PROCEDURE ksergis.ShowA pplicantldLastNameFirstName AS
SELECT Applicantld, FirstName, LastName, RankName

FROM APPLICANT, RANK

WHERE APPLICANT.RankCode = RANK.RankCode

GO

Name: ShowA pplicantl dL astNameFirstNameOnApplicantld

CREATE PROCEDURE ksergis.ShowA pplicantldL astNameFirstNameOnA pplicantld
(@Applicantld char(10)) AS

SELECT Applicantld, FirstName, LastName

FROM APPLICANT

WHERE Applicantld = @Applicantld

GO

Name: ShowA pplicantldL astNameFirstNameRankNameOnA pplicantld

CREATE PROCEDURE
ksergis.ShowA pplicantldL astNameFirstNameRankNameOnApplicantld (@A pplicantld
char(10)) AS

SELECT Applicantld, FirstName, LastName, RankName

FROM APPLICANT, RANK

WHERE APPLICANT.RankCode = RANK.RankCode AND Applicantld =
@Applicantld

GO

Name: ShowA pplicantldL astNameFirstNameWORank

CREATE PROCEDURE ksergis.ShowA pplicantldLastNameFirstNameWORank AS
SELECT Applicantld, FirstName, LastName

FROM APPLICANT

GO

Name: ShowA pplicantPreferences

302

CREATE PROCEDURE ksergis.ShowA pplicantPreferences (@A pplicantld varchar(10))
AS

SELECT PreferenceApplicant, JOB.JobName, PlaceName

FROM APPLICANT_PREFERENCE, JOB, PLACE

WHERE Applicantld=@A pplicantld AND JOB.Jobld
APPLICANT_PREFERENCE.Jobld AND PLACE.PlaceCode
APPLICANT_PREFERENCE.PlaceCode

ORDER BY PreferenceApplicant, PlaceName, JOB.JobName

GO

Name: ShowA pplicantRank Specialty SeaTlimeForRank

CREATE PROCEDURE ksergis.ShowA pplicantRank Specialty SeaT imeForRank
(@Applicantld char (10))

AS

SELECT RankName, SpecialtyName, SeaTimeForRank

FROM APPLICANT, SPECIALTY, RANK

WHERE Applicantld = @Applicantid AND APPLICANT.RankCode =
RANK.RankCode AND APPLICANT.SpeciatyCode = SPECIALTY .SpecialtyCode

GO

Name: ShowCoefficients

CREATE PROCEDURE ksergis.ShowCoefficients AS
SELECT *

FROM COEFFICIENT

GO

Name: ShowCommandCode

CREATE PROCEDURE ksergis.ShowCommandCode AS
SELECT CommandCode, CommandName

FROM COMMAND

GO

Name: ShowCommandsData

CREATE PROCEDURE ksergis.ShowCommandsData AS
SELECT *

FROM COMMAND

GO

Name: ShowCommandsPreferences

CREATE PROCEDURE ksergis.ShowCommandsPreferences (@CommandCode
char(50))

303

AS

SELECT JOB.JobName, PlaceName, PreferenceCommand, LastName, FirstName,
RankName

FROM COMMAND_PREFERENCE, JOB, PLACE, APPLICANT, RANK

WHERE COMMAND _PREFERENCE.CommandCode=@CommandCode AND

COMMAND_PREFERENCE.Applicantld = APPLICANT.Applicantld AND
APPLICANT.RankCode = RANK.RankCode AND JOB.Jobld =
COMMAND_PREFERENCE.Jobld AND PLACE.PlaceCode =

COMMAND _PREFERENCE.PlaceCode

ORDER BY PlaceName, JOB.JobName, PreferenceCommand, RankName, LastName,
FirstName

GO

Name: ShowCommandsPreferencesForDelete

CREATE PROCEDURE ksergis.ShowCommandsPreferencesForDel ete
(@CommandCode char(50))
AS

SELECT PlaceName, JOB.JobName, PreferenceCommand, APPLICANT.Applicantid,
LastName, FirstName, RankName, JOB.Jobld, PLACE.PlaceCode

FROM COMMAND_PREFERENCE, JOB, PLACE, APPLICANT, RANK

WHERE COMMAND_PREFERENCE.CommandCode=@CommandCode AND

COMMAND_PREFERENCE.Applicantld = APPLICANT.Applicantld AND
APPLICANT.RankCode = RANK.RankCode AND JOB.Jobld =
COMMAND_PREFERENCE.Jobld AND PLACE.PlaceCode =

COMMAND _PREFERENCE.PlaceCode

ORDER BY PlaceName, JOB.JobName, PreferenceCommand, RankName, LastName,
FirstName

GO

Name: ShowCommandsPreferencesOnPlaceCode

CREATE PROCEDURE ksergis.ShowCommandsPreferencesOnPlaceCode
(@CommandCode char(50), @PlaceCode char(10))
AS

SELECT JOB.JobName, PreferenceCommand, LastName, FirstName, RankName
FROM COMMAND_PREFERENCE, JOB, APPLICANT, RANK

WHERE COMMAND _PREFERENCE.CommandCode=@CommandCode AND
COMMAND_PREFERENCE.Applicanttd = APPLICANT.Applicantld ~ AND
APPLICANT.RankCode = RANK.RankCode AND JOB.Jobld =
COMMAND_PREFERENCE.Jobld AND COMMAND_PREFERENCE.PlaceCode =
@PlaceCode

ORDER BY JOB.JobName, PreferenceCommand, RankName, LastName, FirstName
GO

304

Name: ShowCredentialsGrade

CREATE PROCEDURE ksergis.ShowCredentialsGrade (@Applicantld char(10),
@Credentialsld char(10))AS
SELECT CredentialsGrade
FROM APPLICANT_CREDENTIALS
WHERE Applicantld = @Applicantld
AND Credentialsld = @Credentiasld
GO

Name: ShowCredentialslid

CREATE PROCEDURE ksergis.ShowCredentialsild AS
SELECT Credentialsld, CredentialsName

FROM CREDENTIALS

GO

Name: ShowCredentialsldOnApplicantld

CREATE PROCEDURE ksergis.ShowCredentialsldOnApplicantld (@Applicantld
char(10))AS
SELECT CREDENTIALS.Credentialsld, CredentialsName, CredentialsGrade
FROM CREDENTIALS, APPLICANT, APPLICANT_CREDENTIALS
WHERE APPLICANT.Applicantld = @Applicantld

AND APPLICANT.Applicantld = APPLICANT_CREDENTIALS.Applicantld

AND APPLICANT_CREDENTIALS.Credentialsild = CREDENTIALS.Credentialsid
GO

Name: ShowCredentialsldOnJobld

CREATE PROCEDURE ksergis.ShowCredentialsldOnJobld (@Jobld char(10))

AS

SELECT distinct(JOB_CREDENTIALS.Credentialsld), CredentialsName

FROM CREDENTIALS, JOB_CREDENTIALS

WHERE CREDENTIALS.Credentialsld = JOB_CREDENTIALS.Credentialsld AND
Jobld = @Jobld

GO

Name: ShowCredential sSNameCredential sGradeOnJobld

CREATE PROCEDURE ksergis.ShowCredentialsNameCredential sGradeOnJobld
(@Jobld char(10))

AS

SELECT CredentialsName, Credential sGrade

FROM JOB_CREDENTIALS, CREDENTIALS

WHERE Jobld = @Jobld AND JOB CREDENTIALS. Credentiasld =
CREDENTIALS.Credentialsid

305

| GO

Name: ShowCurrentAssignment

CREATE PROCEDURE ksergis.ShowCurrentAssignment (@Applicantld char(10)) AS

SELECT LastName, FirstName, PlaceName, Placelmage, JobName, ReportDate,
DetachDate
FROM ASSIGNMENT, JOB, PLACE, APPLICANT
WHERE ASSIGNMENT.Applicantld = @Applicantld AND
ASSIGNMENT.Applicantld = APPLICANT.Applicantld

AND PLACE.PlaceCode = ASSIGNMENT.PlaceCode AND JOB.Jobld =
ASSIGNMENT.Jobld
GO

Name: ShowExperienceOnJobldJobName

CREATE PROCEDURE ksergis.ShowExperienceOnJobldJobName (@Jobld char(10),
@Applicantld char(10))AS

SELECT Experience

FROM EXPERIENCE

WHERE Jobld = @Jobld AND Applicantld= @Applicantld

GO

Name: ShowExperiencePerJobOfficer

CREATE PROCEDURE ksergis.ShowExperiencePerJobOfficer AS

SELECT EXPERIENCE.Jobld, JobName, APPLICANT.Applicantld, LastName,
FirstName, Experience

FROM EXPERIENCE, JOB, APPLICANT

WHERE EXPERIENCE.Jobld = JOB.Jobld AND EXPERIENCE.Applicantld =
APPLICANT.Applicantld

GO

Name: ShowExperienceRequired

CREATE PROCEDURE ksergis.ShowExperienceRequired (@Jobld char(10),
@JobName char(30))

AS

SELECT ExperienceRequired

FROM Job

WHERE Jobld = @Jobld AND JobName = @JobName

GO

Name: ShowJobld

306

CREATE PROCEDURE ksergis.ShowJobld AS
SELECT Jobld, JobName

FROM JOB

GO

Name: ShowJobldJobNameFromEXPERIENCE

CREATE PROCEDURE ksergis.ShowJobl dJobNameFromEXPERIENCE AS
SELECT distinct (JOB.Jobld), JobName

FROM EXPERIENCE, JOB

WHERE EXPERIENCE.Jobld = JOB.Jobld

GO

Name: ShowJobldOnPlaceCode

CREATE PROCEDURE ksergis.ShowJobl dOnPlaceCode (@PlaceCode char(10))
AS

SELECT JOB_PLACE.Jobld, JobName

FROM JOB_PLACE, JOB

WHERE PlaceCode = @PlaceCode AND JOB_PLACE.Jobld = JOB.Jobld

GO

Name: ShowJobl dPlaceCodeA pplicantldFromASSIGNMENT

CREATE PROCEDURE ksergis.ShowJobl dPlaceCodeA pplicantl dFromASSIGNMENT
AS

SELECT ASSIGNMENT.Jobld, JobName, ASSIGNMENT.PlaceCode, PlaceName,
ASSIGNMENT.Applicantld, FirstName, LastName

FROM ASSIGNMENT, JOB, PLACE, APPLICANT

WHERE ASSIGNMENT.Jobld = JOB.Jobld AND ASSIGNMENT.PlaceCode =
PLACE.PlaceCode AND ASSIGNMENT.Applicantld = APPLICANT.Applicantld

GO

Name: ShowJobl dPlaceCodeA pplicantldFromA SSIGNMENT ForUpdate

CREATE PROCEDURE
ksergis.ShowJobl dPlaceCodeA pplicantldFromASSIGNMENTForUpdate AS
SELECT ASSIGNMENT.Jobld, JobName, ASSIGNMENT.PlaceCode, PlaceName,
ASSIGNMENT.Applicantld, FirstName, LastName, ReportDate, DetachDate
FROM ASSIGNMENT, JOB, PLACE, APPLICANT
WHERE ASSIGNMENT.Jobld = JOB.Jobld AND ASSIGNMENT.PlaceCode =
PLACE.PlaceCode AND ASSIGNMENT.Applicantld = APPLICANT.Applicantld

AND (ReportDate ISNOT NULL OR DetachDate ISNOT NULL)
GO

307

Name: ShowJobl dPlaceCodeA pplicantl dOnA pplicantldFromASSIGNMENT

CREATE PROCEDURE
ksergis.ShowJobl dPlaceCodeA pplicantldOnA pplicantl dFromASSIGNMENT
(@Applicantld char(10)) AS
SELECT ASSIGNMENT.Jobld, JobName, ASSIGNMENT.PlaceCode, PlaceName,
ASSIGNMENT.Applicantld, FirstName, LastName
FROM ASSIGNMENT, JOB, PLACE, APPLICANT
WHERE ASSIGNMENT.Jobld = JOB.Jobld AND ASSIGNMENT.PlaceCode =
PLACE.PlaceCode AND ASSIGNMENT.Applicantld = APPLICANT.Applicantld

AND ASSIGNMENT.Applicantld = @Applicantld
GO

Name: ShowJobl dPlaceCodeA pplicantldOnA pplicantldFromA SSIGNMENTForUpdate

CREATE PROCEDURE
ksergis.ShowJobl dPlaceCodeA pplicantldOnA pplicantl dFromA SSIGNMENT ForUpdate
(@Applicantld char(10)) AS
SELECT ASSIGNMENT.Jobld, JobName, ASSIGNMENT.PlaceCode, PlaceName,
ASSIGNMENT.Applicantld, FirstName, LastName, ReportDate, DetachDate
FROM ASSIGNMENT, JOB, PLACE, APPLICANT
WHERE ASSIGNMENT.Jobld = JOB.Jobld AND ASSIGNMENT.PlaceCode =
PLACE.PlaceCode AND ASSIGNMENT.Applicantld = APPLICANT.Applicantld

AND ASSIGNMENT.Applicantld = @Applicantld
GO

Name: ShowL anguageCode

CREATE PROCEDURE ksergis.ShowLanguageCode AS
SELECT LanguageCode, LanguageName

FROM LANGUAGE

GO

Name: ShowL anguageCodeOnA pplicantld

CREATE PROCEDURE ksergis.ShowL anguageCodeOnApplicantld (@Applicantld
char(10))AS
SELECT LANGUAGE.LanguageCode, LanguageName, LanguageDegree
FROM LANGUAGE, APPLICANT, APPLICANT_LANGUAGE
WHERE APPLICANT.Applicantld = @Applicantld

AND APPLICANT.Applicantld = APPLICANT_LANGUAGE.Applicantld

AND APPLICANT_LANGUAGE.LanguageCode = LANGUAGE.L anguageCode
GO

Name: ShowL anguageCodeOnJobld

CREATE PROCEDURE ksergis.ShowL anguageCodeOnJobld (@Jobld char(10))

308

AS

SELECT LANGUAGE.LanguageCode, LanguageName

FROM LANGUAGE, JOB_LANGUAGE

WHERE LANGUAGE.LanguageCode = JOB_LANGUAGE.LanguageCode AND
JOB_LANGUAGE.Jobld = @Jobld

GO

Name: ShowL anguageDegree

CREATE PROCEDURE ksergis.ShowLanguageDegree (@Applicantld char(10),
@L anguageCode char(10))AS
SELECT LanguageDegree
FROM APPLICANT_LANGUAGE
WHERE Applicantld = @Applicantld
AND LanguageCode = @L anguageCode
GO

Name: ShowL anguageNamel anguageDegreeOnJobld

CREATE PROCEDURE ksergis.ShowL anguageNamel anguageDegreeOnJobld
(@Jobld char(10))

AS

SELECT LanguageName, LanguageDegree

FROM JOB_LANGUAGE, LANGUAGE

WHERE Jobld = @Jobld AND JOB LANGUAGE.LanguageCode =
LANGUAGE.LanguageCode
GO

Name: ShowPlaceCode

CREATE PROCEDURE ksergis.ShowPlaceCode AS
SELECT PlaceCode, PlaceName

FROM PLACE

GO

Name: ShowPlaceCodeOnCommandCode

CREATE PROCEDURE ksergis.ShowPlaceCodeOnCommandCode (@CommandCode
char(10))AS

SELECT PlaceCode, PlaceName

FROM PLACE

WHERE CommandCode = @CommandCode

GO

Name: ShowPlaceCodeOnJobld

309

CREATE PROCEDURE ksergis.ShowPlaceCodeOnJobld (@Jobld varchar(10))
AS

SELECT JOB_PLACE.PlaceCode, PlaceName

FROM JOB_PLACE, PLACE

WHERE Jobld = @Jobld AND JOB_PL ACE.PlaceCode = PLACE.PlaceCode
GO

Name: ShowPlaceData

CREATE PROCEDURE ksergis.ShowPlaceData AS

SELECT Placelmage, PlaceCode, PlaceName, PLACE.CommandCode, CommandName
FROM PLACE, COMMAND

WHERE PLACE.CommandCode = COMMAND.CommandCode

GO

Name: ShowPlacelmage

CREATE PROCEDURE ksergis.ShowPlacel mage (@CommandCode char(50))

AS

SELECT DISTINCT (PlaceName), Placel mage,
COMMAND _PREFERENCE.PlaceCode

FROM COMMAND_PREFERENCE, JOB, PLACE

WHERE COMMAND _PREFERENCE.CommandCode=@CommandCode AND
PLACE.PlaceCode = COMMAND_PREFERENCE.PlaceCode

ORDER BY PlaceName

GO

Name: ShowPlaceNamePlacel mageCommandNameOnJobld

CREATE PROCEDURE ksergis.ShowPlaceNamePlacel mageCommandNameOnJobld
(@Jobld char(10))

AS

SELECT Placelmage, PlaceName, CommandName

FROM JOB_PLACE, PLACE, COMMAND

WHERE Jobld = @Jobld AND JOB_PLACE.PlaceCode = PLACE.PlaceCode AND
PLACE.CommandCode = COMMAND.CommandCode

GO

Name: ShowQualificationCode

CREATE PROCEDURE ksergis.ShowQualificationCode AS
SELECT QuadlificationCode, QualificationName

FROM QUALIFICATION

GO

310

Name: ShowQualificationCodeOnA pplicantld

CREATE PROCEDURE ksergis.ShowQualificationCodeOnApplicantld (@Applicantld
char(10))

AS

SELECT QUALIFICATION.QualificationCode, QualificationName

FROM QUALIFICATION_APPLICANT, QUALIFICATION

WHERE QUALIFICATION.QualificationCode
QUALIFICATION_APPLICANT.QualificationCode AND Applicantld = @Appllcantld
GO

Name: ShowQualificationCodeOnJobld

CREATE PROCEDURE ksergis.ShowQualificationCodeOnJobld (@Jobld char(10))
AS

SELECT distinct(JOB_QUALIFICATION.QualificationCode), QualificationName
FROM QUALIFICATION, JOB_QUALIFICATION

WHERE QUALIFICATION.QuadlificationCode =
JOB_QUALIFICATION.QualificationCode AND Jobld = @Jobld
GO

Name: ShowQualificationNameOnJobld

CREATE PROCEDURE ksergis.ShowQualificationNameOnJobld (@Jobld char(10))
AS

SELECT QualificationName

FROM JOB_QUALIFICATION, QUALIFICATION

WHERE Jobld = @Jobld AND JOB_QUALIFICATION.QualificationCode =
QUALIFICATION.QualificationCode

GO

Name: ShowRankCode

CREATE PROCEDURE ksergis.ShowRankCode AS
SELECT RankCode, RankName

FROM RANK

GO

Name: ShowRankCodeOnJobid

CREATE PROCEDURE ksergis.ShowRankCodeOnJobld (@Jobld char(10))
AS

SELECT distinct(JOB_RANK.RankCode), RankName

FROM RANK, JOB_RANK

WHERE RANK.RankCode = JOB_RANK.RankCode AND Jobld = @Jobld
GO

311

Name: ShowRankCodeSpecialtyCodeSeaServiceOnA pplicantld

CREATE PROCEDURE
ksergis.ShowRankCodeSpecialtyCodeSeaServiceOnApplicantld (@Applicantld
char(10)) AS

SELECT RankCode, SpecialtyCode, SeaTimeForRank
FROM APPLICANT

WHERE APPLICANT.Applicantld = @Applicantld
GO

Name: ShowRankData

CREATE PROCEDURE ksergis.ShowRankData AS
SELECT *

FROM RANK

GO

Name: ShowRankNameTimeSeaServiceOnJobld

CREATE PROCEDURE ksergis.ShowRankNameTimeSeaServiceOnJobld (@Jobld
char(10))

AS

SELECT RankName, TimeSeaService

FROM JOB_RANK, RANK

WHERE Jobld = @Jobld AND JOB_RANK.RankCode = RANK.RankCode

GO

Name: ShowRankOnApplicantld

CREATE PROCEDURE ksergis.ShowRankOnA pplicantld (@Applicantld char(10)) AS
SELECT APPLICANT.RankCode, RankName
FROM APPLICANT, RANK

WHERE Applicantild = @Applicantid AND APPLICANT.RankCode =
RANK.RankCode
GO

Name: ShowRankSpecialty SeaServiceOnA pplicantld

CREATE PROCEDURE ksergis.ShowRank Speciaty SeaServiceOnApplicantld
(@Applicantld char(10)) AS

SELECT RankName, SpecialtyName, SeaTimeForRank

FROM APPLICANT, RANK, SPECIALTY

WHERE APPLICANT.Applicantld = @Applicantld AND APPLICANT.RankCode =
RANK.RankCode AND APPLICANT.SpecialtyCode = SPECIALTY .SpecialtyCode

312

| GO

Name: ShowSeaTimeForRankOnA pplicantld

CREATE PROCEDURE ksergis.ShowSeaTimeForRankOnApplicantld (@A pplicantld
char(10)) AS

SELECT Applicantld, SeaTimeForRank
FROM APPLICANT

WHERE Applicantld = @Applicantld
GO

Name: ShowSpecialtyCode

CREATE PROCEDURE ksergis.ShowSpecialtyCode AS
SELECT SpecialtyCode, SpecialtyName

FROM SPECIALTY

GO

Name: ShowSpeciatyCodeOnJobld

CREATE PROCEDURE ksergis.ShowSpecialtyCodeOnJobld (@Jobld char(10))

AS

SELECT distinct(JOB_SPECIALTY .SpecialtyCode), SpecialtyName

FROM SPECIALTY, JOB_SPECIALTY

WHERE SPECIALTY .SpeciatyCode = JOB_SPECIALTY .SpecialtyCode AND Jobld
= @Jobld

GO

Name: ShowSpecialtyNameOnJobld

CREATE PROCEDURE ksergis.ShowSpecialtyNameOnJobld (@Jobld char(10))
AS

SELECT SpecialtyName

FROM JOB_SPECIALTY, SPECIALTY

WHERE Jobld = @Jobld AND JOB_SPECIALTY.SpeciatyCode =
SPECIALTY .SpeciatyCode

GO

Name: ShowSpecialtyOnA pplicantld

CREATE PROCEDURE ksergis.ShowSpecialtyOnApplicantld (@Applicantld char(10))
AS

SELECT SPECIALTY .SpecialtyCode, SpecialtyName
FROM APPLICANT, SPECIALTY

313

WHERE Applicantld = @Applicantid AND APPLICANT.SpecidtyCode =
SPECIALTY .SpeciatyCode
GO

Name: UpdateAddressData

CREATE PROCEDURE ksergis.UpdateAddressData (@Applicantld char(10),
@CityOrTown char(50), @Street char(50), @A ppartment char(10), @ZIP char(10))

AS

UPDATE dbo.ADDRESS

SET CityOrTown = @CityOrTown, Street = @Street, Appartment = @Appartment, ZIP
= @ZIP

WHERE Applicantld = @Applicantld

GO

Name: UpdateApplicantData

CREATE PROCEDURE ksergis.UpdateApplicantData (@Applicantld char(10),
@FirstName char(30), @LastName char(30), @MiddleName char(30), @EmailAddress
char(50))

AS

UPDATE dbo.APPLICANT

SET FirstName = @FirstName, LastName = @LastName, MiddleName =
@MiddleName, EmailAddress = @Email Address

WHERE Applicantld = @Applicantld

GO

Name: UpdateApplicantld

CREATE PROCEDURE ksergis.UpdateApplicantld (@Applicantld char(10),
@UserName char(50))

AS

UPDATE dbo.APPLICANT

SET Applicantld = @Applicantld

WHERE UserName = @UserName

GO

Name: UpdateA pplicantl dSpecialtyRank

CREATE PROCEDURE ksergis.UpdateApplicantldSpecialtyRank (@Applicantld
char(10), @RankCode char(10), @SpeciatyCode char(10), @SeaTimeForRank float)
AS

UPDATE dbo.APPLICANT

SET RankCode = @RankCode, SpecialtyCode = @SpecialtyCode, SeaTimeForRank =
@SeaTimeForRank

WHERE Applicantld = @Applicantld

314

| GO

Name: UpdateCoefficient

CREATE PROCEDURE ksergis.UpdateCoefficient (@Coefficientld char(30),
@CoefficientVaueint) AS

UPDATE COEFFICIENT

SET CoefficientVaue = @CoefficientVaue
WHERE Coefficientld = @Coefficientld
GO

Name: UpdateCredential sGrade

CREATE PROCEDURE ksergis.UpdateCredentialsGrade (@Applicantld char(10),
@Credentiasld char(10), @CredentialsGrade float)

AS

UPDATE dbo.APPLICANT_CREDENTIALS

SET Credential sGrade = @Credentia sGrade

WHERE Applicantld = @Applicantld AND Credentialsld = @Credentialsld

GO

Name: UpdateExperience

CREATE PROCEDURE ksergis.UpdateExperience (@Jobld char(10), @Applicantid
char(10), @Experience float) AS

UPDATE EXPERIENCE

SET Experience = @Experience

WHERE Jobld = @Jobld AND Applicantld = @Applicantld

GO

Name: UpdateJobl dJobNameExperienceRequired

CREATE PROCEDURE ksergis.UpdateJobldJobNameExperienceRequired (@Jobld
char(10), @JobldNew char(10), @JobName char(30), @ExperienceRequired float)

AS

UPDATE dbo.JOB

SET Jobld = @JobldNew, JobName = @JobName, ExperienceRequired =
@ExperienceRequired

WHERE Jobld = @Jobld

GO

Name: UpdateJobNameExperienceRequired

CREATE PROCEDURE ksergis.UpdateJobNameExperienceRequired (@Jobld char(10),
@JobName char(30), @ExperienceRequired float)

315

AS

UPDATE dbo.JOB

SET JobName = @JobName, ExperienceRequired = @ExperienceRequired
WHERE Jobld = @Jobld

GO

Name: Updatel. anguageDegree

CREATE PROCEDURE ksergis.Updatel anguageDegree (@Applicantld char(10),
@L anguageCode char(10), @L anguageDegree float)

AS

UPDATE dbo.APPLICANT_LANGUAGE

SET LanguageDegree = @L anguageDegree

WHERE Applicantld = @Applicantild AND LanguageCode = @L anguageCode

GO

Name: UpdatePhoneData

CREATE PROCEDURE ksergis.UpdatePhoneData (@Applicantld char(10),
@HomePhoneNumber char(30), @CellPhoneNumber char(30), @OtherPhoneNumber
char(30))

AS

UPDATE PHONE

SET HomePhoneNumber = @HomePhoneNumber, CelPhoneNumber =
@CellPhoneNumber, OtherPhoneNumber = @OtherPhoneNumber

WHERE Applicantld = @Applicantld

GO

Name: UpdateUserNamePassword

CREATE PROCEDURE ksergis.UpdateUserNamePassword (@Applicantld char(10),
@UserName char(50), @Password char(50))

AS

UPDATE dbo.APPLICANT

SET UserName = @UserName, Password = @Password

WHERE Applicantld = @Applicantld

GO

316

Name: UpdateUserNamePasswordCommand

CREATE PROCEDURE ksergis.UpdateUserNamePasswordCommand
(@CommandCode char(10), @UserName char(50), @Password char(50))

AS

UPDATE dbo.COMMAND

SET UserName = @UserName, Password = @Password

WHERE CommandCode = @CommandCode

GO

317

THISPAGE INTENTIONALLY LEFT BLANK

318

LI1ST OF REFERENCES

William R. Gates and Mark E. Nissen: Two Sided Matching Agents for Electronic
Employment Market Design: Social Welfare Implications, December 2002

Hemant K. Bhargava and Kevin J. Snoap: Reengineering Recruit Distribution in
the U.S. Marine Corps, October 28, 1999.

319

THISPAGE INTENTIONALLY LEFT BLANK

320

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Fort Belvair, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Dr. Daniel R. Dolk

Department of Information Sciences
Naval Postgraduate School
Monterey, California

Dr. Rudy Darken

Department of Computer Science
Monterey, California

321

