
 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

MANPOWER REQUIREMENTS DATABASE FOR THE 
GREEK NAVY 

 
by 
 

Kyriakos N. Sergis 
 

September 2003 
 
 

 Thesis Advisor:   Daniel Dolk 
 Second Reader: Rudy Darken 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2003 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE: Manpower Requirements Database for the Greek 
Navy 

6. AUTHOR(S) Kyriakos N. Sergis 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
The Greek Navy is trying to create a Web-enabled Data Base system, which will enhance and facilitate the process of 

assigning duties (jobs) to its officers.  
This study provides a prototype of implementing the job-to-officers assignment process by creating a manpower Data 

Base accessed via the Internet.  This prototype is based on the 3-tier architecture, having both the Web and Data Base design 
and implementation.  Behind the scenes, is a multi-criteria decision algorithm that takes the officers’ credentials and the 
officers’ and commands’ preferences into account and then it determines the best distribution of the officers to the available 
jobs. 

This thesis and the supporting research will strive to develop the requirements and a working prototype web site for 
the detailer and reduce both manpower and time required to complete the assignment process conducted by the Greek Navy’s 
Department of Personnel.   
 

15. NUMBER OF 
PAGES  

341 

14. SUBJECT TERMS  Web-Enabled Database, Relational Database, Manpower Systems, Three-
Tier Application, Multi-Criteria Decision Problem, Agorithm, Greek Navy, Officer, Command, 
Credentials, Qualifications, Officer’s Preference, Command’s Preference 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

MANPOWER REQUIREMENTS DATABASE FOR THE GREEK NAVY 
 
 

Kyriakos N. Sergis 
Lieutenant, Greek Navy 

B.S., Hellenic Naval Academy, 1995 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
and 

MASTER OF SCIENCE IN INFORMATION SYSTEMS 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2003 

 
 

Author:  Kyriakos N. Sergis 
 

 
Approved by:  Daniel Dolk 

Thesis Advisor 
 
 

Rudy Darken 
Second Reader 
 
 
Peter Denning 
Chairman, Department of Computer Science 
 
 
Dan C. Boger 
Chairman, Department of Information Sciences 



 iv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 
The Greek Navy is trying to create a Web-enabled Data Base system, which will 

enhance and facilitate the process of assigning duties (jobs) to its officers.  

This study provides a prototype of implementing the job-to-officers assignment 

process by creating a manpower Data Base accessed via the Internet.  This prototype is 

based on the 3-tier architecture, having both the Web and Data Base design and 

implementation.  Behind the scenes, is a multi-criteria decision algorithm that takes the 

officers’ credentials and the officers’ and commands’ preferences into account and then it 

determines the best distribution of the officers to the available jobs. 

This thesis and the supporting research will strive to develop the requirements and 

a working prototype web site for the detailer and reduce both manpower and time 

required to complete the assignment process conducted by the Greek Navy’s Department 

of Personnel.   



 vi

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii

TABLE OF CONTENTS 
 
 
 

I. INTRODUCTION .......................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. AREA OF RESEARCH ..................................................................................2 
C. RESEARCH QUESTIONS.............................................................................2 
D. SCOPE AND METHODOLOGY ..................................................................2 

1. Scope .....................................................................................................2 
2. Methodology .........................................................................................3 
3. Assumptions and Limitations .............................................................4 

II. BACKGROUND ..........................................................................................................7 
A. GREEK NAVY MANPOWER REQUIREMENTS.....................................7 
B. RELATED WORK..........................................................................................8 

III. DATABASE DESIGN ...............................................................................................17 
A. REQUIREMENTS.........................................................................................17 
B. ENTITY RELATIONSHIP DIAGRAM .....................................................41 

1. Applicant-Address .............................................................................43 
2. Applicant-Phone.................................................................................44 
3. Applicant-Rank..................................................................................45 
4. Job-Rank.............................................................................................45 
5. Applicant-Language ..........................................................................46 
6. Job-Language .....................................................................................46 
7. Applicant-Specialty............................................................................47 
8. Job-Specialty ......................................................................................47 
9. Applicant-Qualification.....................................................................48 
10. Job-Qualification ...............................................................................48 
11. Applicant-Experience-Job.................................................................49 
12. Applicant-Credentials .......................................................................49 
13. Job-Credentials ..................................................................................50 
14. Job-Place.............................................................................................50 
15. Command-Place .................................................................................50 
16. Assignment-Job-Place-Applicant .....................................................51 
17. Command Preference-Command- Job Place-Applicant................52 
18. Applicant Preference- Job Place-Applicant ....................................53 

C. RELATIONAL MODEL ..............................................................................54 

IV. DECISION MODEL..................................................................................................59 
A. DECISION VARIABLES .............................................................................59 

1. Rank ....................................................................................................60 
2. Specialty..............................................................................................60 
3. Qualifications .....................................................................................60 
4. Language.............................................................................................60 
5. Credentials..........................................................................................61 



 viii

6. Experience ..........................................................................................63 
7. Officer’s Preference ...........................................................................64 
8. Command’s Preference .....................................................................64 
9. Computation of the Goodness of Fit Index, Hij ...............................64 

B. ALGORITHM................................................................................................67 
1. H Table................................................................................................67 
2. PRIORITY Table...............................................................................67 
3. MAX VALUE Table ..........................................................................68 
4. USED APPLICANTS Table .............................................................68 
5. ASSIGNED APPLICANTS Table....................................................69 
6. DELETED JOBS Table.....................................................................69 

a. Same Max Value .....................................................................93 
b. Min Value Applicants .............................................................93 
c. Multiple Max Values...............................................................93 
d. One Max Value .......................................................................93 

C. UTILITY FUNCTION ..................................................................................99 
D. TEST RESULTS..........................................................................................105 

1. Time Length Estimation..................................................................106 
2. Increases on the Estimate Function Result When Changes Are 

Made on the Algorithm’s Solution .................................................114 
3. Changes on the Algorithm’s Distribution, When Different 

Coefficient Weights for the Decision Variables Are Given..........128 

V. WEBSITE .................................................................................................................137 
A. 3-TIER ARCHITECTURE.........................................................................137 
B. WEBSITE STRUCTURE ...........................................................................139 
C. MENU NAVIGATIONAL TREE ..............................................................148 

1. Officer ...............................................................................................149 
2. Command .........................................................................................150 
3. Detailer..............................................................................................151 

a. View Records .........................................................................152 
b. Insert Records .......................................................................155 
c. Update Records .....................................................................159 
d. Delete Records.......................................................................163 
e. Solve Model ...........................................................................166 

D. USE CASES..................................................................................................168 
1. Officer ...............................................................................................168 

a. Delete a Preference ...............................................................168 
b. Add a Preference...................................................................173 

2. Command .........................................................................................177 
a. Delete a Preference ...............................................................177 
b. Add a Preference...................................................................180 

3. Detailer..............................................................................................184 
a. Solve the Model .....................................................................184 

E. SYSTEM ARCHITECTURE .....................................................................206 
1. Microsoft SQL Server 2000-Management.....................................206 



 ix

a. Database Management .........................................................206 
b. Stored Procedures .................................................................207 
c. Database Diagrams...............................................................209 
d. Multiple Ways to Construct Queries ....................................209 

2. Manpower Database and Website-Security Issues .......................210 
a. Security Modes-Manpower Database...................................210 
b. Logins-Manpower Database.................................................211 
c. Manpower Website NTFS Permissions................................212 
d. Manpower Website IIS Permissions ....................................213 
e. SQL Server Logs-Manpower Database................................214 

3. Microsoft SQL Server 2000-Backup and Maintenance Issues ....215 
a. Maintenance Plan.................................................................215 
b. Backing Up............................................................................216 

VI. CONCLUSION AND RECOMMENDATIONS...................................................219 
A. CONCLUSIONS ..........................................................................................219 
B. RECOMMENDATIONS.............................................................................220 

1. Technology Selection .......................................................................220 
2. Definition of User Requirements ....................................................220 

C.  FURTHER WORK......................................................................................220 
1. Component Distribution..................................................................220 
2. Security Analysis..............................................................................221 
3. Systems Architecture.......................................................................221 
4. Coefficient Weights and HValue Definition ..................................221 

APPENDIX A.  TABLES ....................................................................................................223 

APPENDIX B.  STORED PROCEDURES .......................................................................231 

LIST OF REFERENCES....................................................................................................319 

INITIAL DISTRIBUTION LIST.......................................................................................321 
 
 
 
 
 
 
 
 
 
 
 



 x

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 xi

LIST OF FIGURES 
 
 
 

Figure 1. Officer’s Personal Information-Manpower Database. .....................................18 
Figure 2. Command’s Username and Password-Manpower Database. ..........................19 
Figure 3. Available Jobs-Manpower Database................................................................20 
Figure 4. Available Platforms/Bases-Manpower Database.............................................21 
Figure 5. Available Job – Platform/Base Pairs-Manpower Database. ............................22 
Figure 6. Available Ranks-Manpower Database.............................................................23 
Figure 7. Ranks Required for Different Jobs-Manpower Database. ...............................24 
Figure 8. Officers’ Ranks-Manpower Database..............................................................25 
Figure 9. Specialties-Manpower Database. .....................................................................26 
Figure 10. Specialties Required for Each Job-Manpower Database. ................................27 
Figure 11. Officers’ Specialties-Manpower Database. .....................................................28 
Figure 12. Education types (Qualifications)-Manpower Database. ..................................29 
Figure 13. Education Types (Qualifications) Required per Job-Manpower Database......30 
Figure 14. Officers’ Education (Qualifications)-Manpower Database. ............................31 
Figure 15. Attributes (Credentials)-Manpower Database. ................................................32 
Figure 16. Attributes (Credentials) Required Per Job and Corresponding Minimum 

Levels-Manpower Database. ...........................................................................33 
Figure 17. Officers’ Attributes (Credentials) and Corresponding Grades-Manpower 

Database...........................................................................................................34 
Figure 18. Languages-Manpower Database. .....................................................................35 
Figure 19. Languages Required Per Job and Corresponding Minimum Levels-

Manpower Database. .......................................................................................36 
Figure 20. Languages Officers Can Speak and Their Corresponding Grades-

Manpower Database. .......................................................................................37 
Figure 21. Experience Per Job Required in Years-Manpower Database. .........................38 
Figure 22. Experience an Officer Has for Each Job in Years-Manpower Database. ........39 
Figure 23. Officers’ Preferences-Manpower Database. ....................................................40 
Figure 24. Commands’ Preferences-Manpower Database. ...............................................41 
Figure 25. Job-Platform Pairs to be Fulfilled-Manpower Database................................106 
Figure 26. Officers To Be Assigned to the Job-Platform Pairs Above-Manpower 

Database.........................................................................................................107 
Figure 27. H Table (Only the First 44 Out of 528 Records Are Shown)-Manpower 

Database.........................................................................................................108 
Figure 28. The Solution of the Algorithm-MAX VALUE Table of Manpower 

Database.........................................................................................................109 
Figure 29. Job-Platform Pairs to Be Fulfilled-Manpower Database. ..............................110 
Figure 30. Officers To Be Assigned to the Job-Platform Pairs Above-Manpower 

Database.........................................................................................................111 
Figure 31. H Table-Manpower Database. .......................................................................112 
Figure 32. The Solution of the Algorithm-MAX VALUE Table of Manpower 

Database.........................................................................................................113 



 xii

Figure 33. JOB Table-Manpower Database. ...................................................................114 
Figure 34. EXPERIENCE Table-Manpower Database...................................................115 
Figure 35. JOB LANGUAGE Table-Manpower Database.............................................116 
Figure 36. APPLICANT LANGUAGE Table-Manpower Database. .............................117 
Figure 37. JOB CREDENTIALS Table-Manpower Database........................................118 
Figure 38. APPLICANT CREDENTIALS Table-Manpower Database.........................119 
Figure 39. JOB QUALIFICATION Table-Manpower Database....................................120 
Figure 40. QUALIFICATION APPLICANT Table-Manpower Database. ....................121 
Figure 41. APPLICANT PREFERENCE Table-Manpower Database. ..........................122 
Figure 42. COMMAND PREFERENCE Table-Manpower Database............................123 
Figure 43. H Table-Manpower Database. .......................................................................124 
Figure 44. Solution (Screen 1)-Manpower Database. .....................................................125 
Figure 45. Solution (Screen 2)-Manpower Database. .....................................................126 
Figure 46. Change on the Solution and Estimate Function (Screen 1)-Manpower 

Database.........................................................................................................127 
Figure 47. Change on the Solution and Estimate Function (Screen 2)-Manpower 

Database.........................................................................................................128 
Figure 48. Coefficient Weights Per Criterion-Manpower Database. ..............................129 
Figure 49. Coefficient Weights Per Criterion After the Weights Change-Manpower 

Database.........................................................................................................130 
Figure 50. H Table Before the Weights Change and the Algorithm Runs-Manpower 

Database.........................................................................................................131 
Figure 51. H Table After the Weights Change and the Algorithm Runs-Manpower 

Database.........................................................................................................132 
Figure 52. Solution (Screen 1)-Manpower Database. .....................................................133 
Figure 53. Solution (Screen 2)-Manpower Database. .....................................................134 
Figure 54. 3-Tier Architecture. .......................................................................................137 
Figure 55. 3-Tier Architecture-Manpower Database. .....................................................138 
Figure 56. ODBC connectivity-Manpower Website.......................................................140 
Figure 57. Manpower Website Configuration Wizard....................................................141 
Figure 58. DSN Connection-Manpower Website. ..........................................................142 
Figure 59. Recordset Based on the ksergis.ShowCredentialsIdOnApplicantId Stored 

Procedure-Manpower Website.......................................................................143 
Figure 60. Webpage with a Form-Manpower Website. ..................................................145 
Figure 61. Master Page-The Repeated Region and the Navigation Bar Are Displayed. 146 
Figure 62. Master Page (1st Screen)-How the Repeated Region and the Navigation 

Bar Are Displayed on the Internet. ................................................................147 
Figure 63. Master Page (2nd Screen)-How the Repeated Region and the Navigation 

Bar are Displayed on the Internet. .................................................................148 
Figure 64. The Officer Selects the ‘Already Have a Password? Sign In’-Manpower 

Website. .........................................................................................................168 
Figure 65. The Officer Types the User Name and Password-Manpower Website. ........169 
Figure 66. The Officer Selects ‘Delete A Preference’-Manpower Website....................170 
Figure 67. The Officer Selects Preference Number 2 to Delete-Manpower Website. ....171 
Figure 68. Preference Number 2 is Selected-Manpower Website. .................................172 



 xiii

Figure 69. Preference Number 2 is Deleted and the Officer Goes Back to the Control 
Page-Manpower Website. ..............................................................................173 

Figure 70. The Officer Selects the ‘Select A New Assignment’ Option-Manpower 
Website. .........................................................................................................174 

Figure 71. The Officer Selects the Communications Officer-Manpower Website. ........175 
Figure 72. The Officer Selects the Frigate 1 and Preference 2-Manpower Website.......176 
Figure 73. The Officer Has Applied His/Her Preference-Manpower Website. ..............177 
Figure 74. The Command Selects ‘Delete A Preference’-Manpower Website. .............178 
Figure 75. The Command Selects the job Commanding Officer for Frigate 1 with 

Preference Number 3-Manpower Website. ...................................................179 
Figure 76. The Preference Number 3 is Deleted-Manpower Website. ...........................180 
Figure 77. The Command Selects the ‘Select An Officer’ Option-Manpower Website.181 
Figure 78. The Command Selects Frigate 1-Manpower Website. ..................................182 
Figure 79. The Command Selects the Commanding Officer Job and Officer 4 with 

Preference Number 3-Manpower Website. ...................................................183 
Figure 80. The Commanding Officer Job and Officer 4 with Preference Number 3 Is 

Selected-Manpower Website. ........................................................................184 
Figure 81. The Detailer Selects the ‘Already Have a Password? Sign In’-Manpower 

Website. .........................................................................................................185 
Figure 82. The Detailer Types the User Name and Password-Manpower Website........186 
Figure 83. The Detailer Types the Second Password the Detailer Has-Manpower 

Website. .........................................................................................................187 
Figure 84. The Detailer Selects the ‘Solve The Model’ Option-Manpower Website. ....188 
Figure 85. The Algorithm Solution (Screen 1)-Manpower Website...............................189 
Figure 86. The Algorithm Solution (Screen 2)-Manpower Website...............................190 
Figure 87. The Page the Detailer Can Change the Solution (Screen 1)-Manpower 

Website ..........................................................................................................191 
Figure 88. The Page on Which the Detailer Can Change the Solution (Screen 2). On 

That Page the Detailer Selects the MAX Value 10 Link That Corresponds 
to Job Commanding Officer and Officer 1-Manpower Website. ..................192 

Figure 89. The Job Commanding Officer and Officer 1 is Deleted from the Solution 
(Screen 1)-Manpower Website. .....................................................................193 

Figure 90. The Job Commanding Officer and Officer 1 is Deleted from the Solution 
(Screen 2)-Manpower Website. .....................................................................194 

Figure 91. The Job Communications Officer and Officer 2 is Deleted from the 
Solution (Screen 1)-Manpower Website........................................................195 

Figure 92. The Job Communications Officer and Officer 2 Is Deleted from the 
Solution (Screen 2)-Manpower Website........................................................196 

Figure 93. The Detailer Selects the CO Link Under the Deleted Jobs-Manpower 
Website. .........................................................................................................197 

Figure 94. The CO Link is Selected Under ‘Selected Job’ (Screen 1)-Manpower 
Website. .........................................................................................................198 

Figure 95. The CO Link Is Selected Under ‘Selected Job’. Notice the Available 
Officers Under ‘Add An Officer’ (screen 2)-Manpower Website.................199 



 xiv

Figure 96. The Detailer Selects Officer 2 Under the ‘Add An Officer’ (Screen 2)-
Manpower Website. .......................................................................................200 

Figure 97. Officer 2 Is Selected. The Job Commanding Officer and Officer 2 Appear 
in the Solution Domain (Screen 1)-Manpower Website................................201 

Figure 98. Officer 2 is Selected. The Job Commanding Officer and Officer 2 Appear 
in the Solution Domain (Screen 2)-Manpower Website................................202 

Figure 99. Job Communications Officer and Officer 1 Are Selected (Screen 1)-
Manpower Website. .......................................................................................203 

Figure 100. Job Communications Officer and Officer 1 Are Selected (Screen 2)-
Manpower Website. .......................................................................................204 

Figure 101. The Detailer Accepts the Solution. The ‘Accept Solution’ Link is 
Selected-Manpower Website. ........................................................................205 

Figure 102. The Solution Is Accepted.  The Detailer Goes Back to the Detailer Control 
Page-Manpower Website. ..............................................................................206 

Figure 103. Microsoft SQL Server 2000 Enterprise Manager-Manpower Database........207 
Figure 104. Use of Stored Procedure-Manpower Database. .............................................208 
Figure 105. Transact-SQL Code Example-Manpower Database......................................209 
Figure 106. Use of SQL Query Analyzer-Manpower Database. ......................................210 
Figure 107. SQL Server 2000 Authentication Mode-Manpower Database. .....................211 
Figure 108. Standard Login-Creation of Detailer Login for the Manpower Database. ....212 
Figure 109. The Detailer ‘ksergis’ as a Member of the Detailer Group-Manpower 

Website NTFS Permissions. ..........................................................................213 
Figure 110. Anonymous Access-Manpower Website IIS Permissions.............................214 
Figure 111. SQL Server Logs-Manpower Database. ........................................................215 
Figure 112. Database Maintenance Plan-Manpower Database.........................................216 
Figure 113. Backup-Manpower Database. ........................................................................217 

 
 
 
 
 
 
 



 xv

LIST OF TABLES 
 
 
 

Table 1. Social Welfare Per Assignment (Change from Unassisted Control Group)....10 
Table 2. Above is the Penalty Function for Not Filling School Seats.  The Penalty 

is Disproportionately High for Week 1 Classes, Since Unassigned Seats 
Will Remain Unutilized. ..................................................................................11 

Table 3. Above is the Exponential Function for Assigning Fitness Points Based on 
the Level of Property Satisfied. .......................................................................12 

Table 4. Example: Finding a Good Distribution.  The first two columns represent 
extreme solutions on Fit and Fill. Run 3 achieves excellent Fit, but at some 
loss in Fill and Wait.  Run 4 makes only a marginal improvement in 
Fitness.  Run 5 achieves an excellent fit while keeping the best scores on 
the Fill and Wait metrics..................................................................................14 

Table 5. All Entities with a Short Description of Each..................................................43 
 



 xvi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xvii

ACKNOWLEDGMENTS 
 
 
 

I would like to thank Dr. Daniel Dolk for all his instruction and guidance during 

the progress of this thesis.  His knowledge helped me overcome many obstacles I came 

around during the evolution of it.  I would also like to thank Dr. Thomas Wu and Prof. 

George Zolla who created my interest in the database and 3-tier architecture concepts. 

Finally, I would like to thank my family because of the support they have provided me 

during all these years of studies. 

 



 xviii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



1 

I. INTRODUCTION 

A. BACKGROUND 

Greek Navy officers are currently assigned to new billets by detailers, much the 

same way as the U.S. Navy operates.  Detailers are subject matter experts who use 

intuition and experience to match officers with available command billets.  However, 

officer preferences for available billets and command preferences for available officers 

are not explicitly taken into account.  Thus, it is likely that the assignment of officers to 

billets is suboptimal with respect to “goodness of fit” involving preferences from both the 

supply and demand sides.   

At present, the detailer has no direct on-line access to manpower data for the 

naval officers and no direct ability to make decisions.  The appropriate data, which are 

the individual officer’s preferences, the Command’s preferences and the officer’s 

credentials and qualifications, are collected manually, rather than automatically, and then 

processed by the detailer who is responsible to make the final decisions.  The current 

process requires time and effort for the detailer to make a final decision.  Changes and 

tracking of each job-officer assignments are difficult to accomplish since there is no tool 

operated specially for that purpose. 

The purpose of this thesis is to develop requirements and a corresponding 

prototype database, decision support system, and web site for the Greek Navy’s 

Manpower Requirements.  This work will develop a web-enabled database by which the 

detailer - the Greek Navy’s Department of Personnel (DoP) officer in charge of the job-

to-officer assignment process - can view manpower data about the officers of the Greek 

Navy, view officers’ preferences for available jobs and commands’ preferences for 

available officers, and finally exercise a pattern-matching heuristic which provides a 

straw-man assignment from which he/she can eventually assign the best officers to the 

most applicable and available jobs-stations allowing him/her to make appropriate, 

relevant and rational decisions.   

 

 



2 

B. AREA OF RESEARCH 

The area of research for this thesis deals with multi-tiered web enabled databases, 

the synchronization of distributed databases, and the use of decision support tools.  

Currently, the Greek Navy is in the planning stages of developing a “Web-Interface” 

whereby the detailer can view manpower data on the officers of the Greek Navy and 

assign the best officers to the most applicable, relevant, and available jobs-stations.  All 

the naval officers will have to visit the website and declare their preferences on-line over 

the Internet, while at the same time the Commands will designate their own preferences 

for the officers whom they would like to fill their corresponding job vacancies.  This 

effort will replace the current way of managing manpower data.  This thesis and the 

supporting research will develop the requirements and a working prototype web site for 

the detailer with the objective of improving the assignment process with respect to 

goodness of fit while simultaneously reducing both manpower and time required to 

complete the assignment process conducted by the Greek Navy’s DoP.   

C. RESEARCH QUESTIONS 

• What is an appropriate design for the data, model, and user interface 
components of a decision support system to support the matching of 
officers with jobs?  

• What a multi-criteria, pattern-matching decision model is appropriate for 
choosing preferred jobs and/or selecting preferred people to fill specific 
jobs? 

• What overall system architecture model is appropriate for integrating 
database with decision tools in a Web-based environment? 

D. SCOPE AND METHODOLOGY 

1. Scope 

This thesis will provide a single user prototype for the assignment process.  It will 

provide the essentials for designing and creating a database for the jobs-to-officers 

assignment process and also integrate some kind(s) of multi-criteria decision model(s) 

with that database.  It will not use real data in most, if not all, cases, but rather use 

fabricated data to show “proof of concept”.  Moreover the thesis will provide a means for 

accessing the database via the Internet. 

 



3 

The scope includes:  

• Definition and description of the functional requirements of the Manpower 
Web Site 

• Technical description of the ASP scripts written to implement the 
functional requirements 

• Description of a proposed general administration of the web site and local 
database 

• Development of a prototype web site that utilizes a local relational 
database 

• Demonstration of an operational web site on a server.  The following 
items will be the technical products of my thesis work: 

• Set up backend database (SQL Sever 2000) containing a 
manpower data file 

• Set up a web server (IIS-5) and load appropriate HTML and ASP 
files 

• Demonstrate User authentication 

• The prototype will demonstrate several different WRITE pages 
(data update).  The thrust of the prototype is to demonstrate that 
this approach can work in principle, not to program 50-100 ASP 
web pages in its entirety. 

2. Methodology 

The methodology used in this thesis research follows: 

• Investigate existing manpower assignment models 

• Conduct review of IIS-5 web server technology 

• Conduct review of Microsoft SQL Server 2000 technology 

• Conduct review of Windows XP Professional network administration 

• Design Microsoft SQL Server 2000 database 

• Build web site containing web pages for the users – Officers, Commands, 
Detailer 

• Build multi-criteria model for job preference and candidate preference 

• Implement multi-criteria matching process 

• Test produced prototype 

 
 
 
 



4 

3. Assumptions and Limitations 

• Assumptions 

• Network Architecture and Server Software.  The Greek Navy is 
more oriented towards the Microsoft software technology.  This 
justifies the use of a Microsoft’s product like SQL Server 2000 for 
this application. 

• Client Software.  Virtually all of the desktop computers within the 
Greek Navy have a Windows-based operating system, usually 
Windows 2000 Professional (Client). 

• Database.  Beyond Microsoft Access available in the Microsoft 
Office (2000/XP), there is no widely utilized DBMS (Database 
Management System) within the Greek Navy.  Microsoft Access is 
widely used at the local unit level.  Access is an adequate DBMS 
client/server product for limited functions, but is not appropriate as 
a backend database for larger scale requirements with greater 
security needs.  The requirements for this database demand a 
commercial DBMS.  As such, I have selected Microsoft SQL 
Server 2000 mainly for the ease of integration with the Microsoft 
based networks used throughout the Greek Navy. 

• Limitations 

• Data.  The manpower web site prototype does not use real data for 
a variety of reasons.  First, the confidentiality of real data is by 
itself a significant reason for not using it.  A second reason is the 
limited availability of real data.  The dispersion of data makes it 
difficult to be collected and organized.  A final reason is that this 
prototype is implemented several miles away from Greece.  

• Security.  Security features of the manpower web site prototype 
will be addressed in Chapter V.  However, the thrust of this thesis 
and the prototype is a proof of technical concept.  Before any 
actual deployment of the prototype, it would need to be thoroughly 
analyzed by security experts to ensure that the manpower data 
being accessed is indeed secure. 

• Scale.  The manpower web site prototype developed for this thesis 
will not address issues related to scale.  Any actual deployment of 
the web site prototype could entail a sizable load (number of 
connected users) on the web and database server.  The manpower 
web site prototype is being developed on a home computer that has 
neither the hardware nor software to handle/test heavily 
web/database traffic.  Professional web and database 
administrators would need to be employed to test the manpower 
web site prototype. 



5 

• Reliability.  Reliability is on the other side of the coin of scale.  
Again, it is beyond the scope of this thesis to analyze and test the 
reliability of the web and database server with a heavy load.  
Commercial servers and their software have features that provide 
for fail-over mechanisms and mirror sites both for the web server 
and database server. 

In order to fulfill the objectives of this thesis, the material presented will be 

organized in the following manner.  Chapter II will cover background material regarding 

the Greek Navy’s Manpower requirements and related works on that subject.  Chapter III 

will address the database design presenting the Entity-Relationship Diagram (ERD) and 

the final relational concepts.  Chapter IV will cover the multi-dimension decision model 

and the corresponding pattern-matching algorithm.  Chapter V will address the system 

architecture of the prototype providing a description of the programming of the web 

pages and database queries necessary to support the functional requirements of the 

prototype.  Finally, Chapter VI will present recommendations, conclusions, and further 

work on the web enabled database. 



6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



7 

II. BACKGROUND  

In order to analyze the requirements and develop a prototype for the Greek Navy 

web-enabled database, an understanding of the Greek Navy’s DoP’s process to assign a 

job to an officer is required.  Also, past researches and papers are thoroughly examined in 

order to suggest ways and methods that will help to solve the problem more efficiently. 

A. GREEK NAVY MANPOWER REQUIREMENTS 

Currently the DoP is following a rather old fashioned procedure to select an 

officer for a specific job.  This does not mean that the DoP doesn’t use current 

technology in order to help its job perform its job better.  The DoP is using proprietary 

systems like desktop computers, which have W2K Professional as their operating 

systems.  Based on the needs of the Navy the DoP examines the jobs and their 

requirements.  It also examines the qualifications and credentials of the officers.  After 

that it assigns a job to an officer trying to find the best match between them.  It tries to 

find a match beginning from the officers with higher ranks through those with lower 

ranks. 

The whole process, even if it is quite straightforward, it requires significant effort 

because of the huge amount of data that is dispersed in different places.  The DoP 

personnel have to first collect the data first, and then process it, and this may require 

significant man months of time.  Things may become more complicated when a change 

must be made.  The personnel might have to reexamine the job and the officers and 

probably collect different data than the ones collected before since the requirements 

might have changed.  Changes and tracking of each job-officer assignments are difficult 

to be accomplished since there is no tool operated specially for that purpose. 

The DoP decided recently that it will take the preferences of the officers for their 

next job assignment into account.  Every officer must complete a form, which contains all 

the appropriate personnel information such as the officer’s identification number, first 

name, last name, rank, preference and then send it back to the DoP via secure mail.  The 

DoP personnel collect all these forms and use them for the job-to-officer assignment  



8 

process.  The distribution and collection of the forms may last many days or maybe even 

weeks.  Should a mistake be made or could a form get lost, the whole process for that 

specific form must be reinitiated from scratch. 

At present, the detailer has no direct on-line access to manpower data for the 

naval officers and no direct ability to make decisions.  The officers have to send their 

preferences manually instead of automatically via an on-line intermediary tool.  The 

commands currently do not have the ability to specify preferences for the officers that the 

commands would like them to occupy the jobs under their command.  The appropriate 

data, which are the individual officer’s preferences and the officer’s credentials and 

qualifications, are collected manually, rather than automatically, and then processed by 

the DoP, with the detailer who is responsible to making the final decisions. 

The Greek Navy wants a place where all manpower data related to the Navy 

officers and commands will be stored.  These data include the credentials and 

qualifications of the officer, the officer’s job preferences and the command’s preferences 

for the officers for a particular job under that command.  The qualifications of an officer 

include the languages that he can speak, and past experience that he/she may have for a 

particular job.  Diligence, discretion and secrecy are some of the credentials that an 

officer may have.  Moreover, data such as the rank, the specialty and the minimum sea 

time required for an officer’s rank should be stored. 

This thesis will suggest an alternate approach to replace the current way of 

managing manpower data.  It will strive to develop the requirements and a working 

prototype web site for the detailer and in order to reduce both manpower and time 

required to complete the assignment process conducted by the DoP.  

B. RELATED WORK  

In order to determine an efficient approach to this project, sufficient research 

should be done to documents that tried to find an effective solution to the multi-criteria 

decision problem of matching officers and jobs. 

The meaning of multi-criteria decision problem, in contrast to the one-criterion 

decision problem, is that there are at least two criteria as variable inputs in the decision 

problem.  In this particular case, the first criterion is the preference of an officer for a 



9 

particular job.  For example the x officer prefers the y job (that belongs to the z 

command).  The second criterion is the command preference for the officers for a 

particular job under that command.  In other words “the y job (that belongs to the z 

command) specifies a preference for the x officer”.  The third criterion is the credentials 

and qualifications of the officers.  For example an x1 officer may be eligible only for jobs 

y1 and y2 but not for job y3, whereas an x2 officer may be eligible for jobs y2 and y3, but 

not eligible for job y1, but he may be more qualified for the job y3 than x1 is. 

We will examine two approaches to this problem that have appeared in the recent 

literature.  The first adopts agent-based technology as a way of establishing a marketplace 

for jobs and officers, whereas the second adopts a more traditional operations research 

optimization approach based upon the assignment algorithm.   

The first approach is described in William R. Gates and Mark E. Nissen with title 

“Two-Sided Matching Agents for Electronic Employment Market Design: Social Welfare 

Implications [Reference 1]”. 

The paper describes an exploratory experiment to assess the performance of five 

alternative employment market designs.  These are the following: a. unassisted, b. 

assisted, c. personnel mall, d. two-sided matching algorithm and e. optimization.  In the 

first two methods, the job-to-seeker matching process is conducted by people.  In the 

remaining methods, this matching is conducted automatically by different market 

mechanisms.  As the name implies, the unassisted condition is used to assess the 

performance of people performing the matching task with no technological or algorithmic 

support.  In the assisted condition people use a product called Logical Decisions for 

Windows (Logical Decisions 1993) to assist them with the matching task.  The Personnel 

Mall uses software agents to represent both employers and job seekers, and quasi-prices 

(i.e., inverse utilities) to represent employer and job seeker preferences.  The fourth 

experimental condition automates the matching task through a two-sided matching 

algorithm, which is set up to simultaneously consider the preferences of all employers 

and job seekers.  Lastly, the fifth experimental condition automates the matching task 

through an optimization algorithm, which explicitly seeks to minimize average quasi-

price across the entire set of employers, job seekers, or both. 



10 

Table 1 summarizes job seeker, employer and total social welfare for each of the 

experimental conditions.  It appears from these results that the optimization approach 

produces an increase for both the job seeker and employer social welfare, while the 

combined optimization produces the highest payoff in terms of total social welfare.  The 

latter conclusion illuminates the need of an optimization algorithm that automates the 

job-to-officer matching process for the current thesis. 

 

 
Table 1. Social Welfare Per Assignment (Change from Unassisted Control Group). 

 

The second approach, which was conducted by Hemant K. Bhargava and Kevin J. 

Snoap, is described in “Reengineering Recruit Distribution in the U.S. Marine Corps 

[Reference 2].  The purpose of this paper is to improve the way that the U.S. Marine 

Corps’ new recruits are distributed to entry-level schools.  The system that performs the 

distribution is called RDdss and uses a computer-based model called RDM.  The RDM 

finds the best distribution by trying to minimize the total number of unfilled seats over all 

the entire schools.  This paper describes some improvements on that system taking into 

account a variety of additional factors not heretofore considered. 

First of all, the desire of the Marine is fulfilled through a contract guarantee called 

a PEF (program enlisted for), specified during the recruiting process.  A PEF establishes 

which schools a recruit wishes to go to.  A second concern in recruit distribution is that 

the Marine should be checked to see whether he/she is suitable for a specific school.  The  



11 

Suitability is determined by matching a Marine's qualifications and a school's 

requirements, described as properties.  This is analogous to the Greek Navy preference 

system we are proposing. 

Third, the timing of the distributions is of great significance since schools may 

have different starting dates whereas Marines are seeking for jobs every week.  Any seats 

left unfilled in classes are a wasted resource.   

Finally, since there may be a lack of seats in the only classes for which a Marine 

is eligible for, or perhaps because a Marine is not qualified for any of the schools 

consistent with his or her PEF guarantee, there is a possibility that some Marines may be 

left unassigned in the end. 

The new approach develops a penalty function in which week 1 school seats have 

a disproportionately high shortfall penalty, since seats left empty in these schools will 

never get filled.  Beyond week 1, shortfall penalty is an inverse function of the school's 

start date.  Table 2 shows the penalty for each unfilled seat per days to school start date. 

 

 
Table 2. Above is the Penalty Function for Not Filling School Seats.  The Penalty 

is Disproportionately High for Week 1 Classes, Since Unassigned Seats Will 
Remain Unutilized. 

  



12 

RDM was based on a procedure meant to minimize unfilled seats.  It is not 

concerned about the quality of the assignment decisions.  There is an obvious tradeoff 

between the desire to fill more seats and the desire to achieve good fit in the distributions.  

For that purpose a multi-criteria objective function is used: 

 

 
 

Coefficients Kfit and Kfill are control parameters which the model manager can use 

to create multiple alternative solutions. 

In order to compute the FitnessScore, the properties of each school and the 

qualifications of each Marine are taken into account.  Each school has some mandatory 

properties that affect eligibility.  Moreover it may have some desirable properties.  These 

properties are ranked along descending importance in levels 1 through 6. 

 

 
Table 3. Above is the Exponential Function for Assigning Fitness Points Based on 

the Level of Property Satisfied. 
 

The procedure for computing Marine-to-School fitness can be summarized in two 

steps as follows. 

• For each school, assign a fixed initial score to all Marines who meet the 
eligibility criteria for that school (ineligible Marines get a score of zero).  
This score (a typical value is 70) represents the weight given to the 
mandatory properties in computing suitability.  Then, examine desirable 
properties and assign additional points according to the level of the 



13 

property to Marines who meet each desirable property (see Figure 3).  The 
result is an initial fitness score for each Marine for the given school. 

• For each school, normalize the initial scores so that the average fitness 
score computed over all Marines eligible for that school is 100.  This 
condition is critical for gaming RDdss to produce good recruitment 
decisions. 

Given the assignment model, it may seem that the solution with the highest utility 

is the best distribution.  However, this is not always true.  First, the utility score cannot be 

used for comparative purposes, partly because it is vulnerable to the choice of scales for 

measuring penalty and fitness.  Second, the relative importance of fit and fill has not been 

established in the Marine Corps.  Third, while fit and fill are important aspects of solution 

quality they are not the only ones. 

For that purpose there are four metrics for evaluating the solution that are defined.  

The first metric is the total number of unfilled seats in schools starting in the first week.  

These represent wasted resources.  The second metric is the average number of weeks 

Marines wait before beginning school.  The third metric is the total number of Marines 

not assigned to any school and finally the fourth metric is the fitness premium (averaged 

over all schools), compared to an average distribution.  This is the difference between the 

average fitness for the proposed distribution and the average fitness (by definition, 100) 

for an average distribution. 

Now it may be seen why it is important to normalize fitness scores.  Since all 

schools have an average fitness score of 100, an average distribution will have a score of 

100 for every problem instance.  Hence any increase (decrease) in average fitness can be 

interpreted as a fitness premium that can then be traded off against any loss (gain) in the 

other 3 metrics.  This concept of a fitness premium supports the tradeoff analysis that is 

necessary to choose a good final solution. 

Giving different values to Kfit and Kfill, different values for the four metrics are 

produced.  Below is a procedure that determines what Kfit and Kfill values should be used 

and when the comparison should stop. 

• Run the model with Kfit = 0 and Kfill = 1.  The “fill” and “wait” scores for 
this run are, by definition, the best achievable fill and wait scores for the 
given problem instance. 



14 

• Run the model with Kfit to 1 and Kfill to 0.  The “fit” score for this run is 
the best possible fitness for the given instance, and this usually is 
accompanied by a large loss in fill and wait. 

• Set Kfit to 1 and Kfill to around 10.  This run closes part of the fitness gap, 
but possibly results in some loss in fill and/or wait. 

• Conduct additional runs by successively increasing (or decreasing) the fill 
weight depending on whether the aim is to improve fill (or fit).  The final 
decision is made by comparing the scores on the 4 metrics. 

Table 4 gives a representative example of this procedure. 

 

 
Table 4. Example: Finding a Good Distribution.  The first two columns represent 

extreme solutions on Fit and Fill. Run 3 achieves excellent Fit, but at some loss in 
Fill and Wait.  Run 4 makes only a marginal improvement in Fitness.  Run 5 
achieves an excellent fit while keeping the best scores on the Fill and Wait 

metrics. 
 

The methods and concepts of both papers were the guide and directive, on which 

this thesis’ multi-criteria decision model is built.  The first paper makes an in depth 

research over labor market economics and information systems.  It conducts five 

experimental conditions and it considers social welfare as a metric to measure the 

effectiveness of each one of the experimental conditions.  This paper illuminates the need 

to create and develop an optimized two-sided matching tool and algorithm as it is 

described through the optimization experimental condition.  What is different from the 

paper is the metrics that this thesis uses.  This paper does not provide any clues over the 

design and implementation of such an algorithm, or any clues about the nature of the two-

sided matching tool.  



15 

Many of the principles that are used in this thesis are based upon the results of the 

second paper.  The Marines-to-schools distribution concepts are quite similar to those of 

the jobs-to-officers.  One difference is that on the Marines-to-schools distribution model 

there is a tolerance for having seats unfilled in the end.  However, this is not the same 

case for us.  The algorithm should take care of this issue and provide the maximum 

number of filled jobs.  This means that there is no need for having a penalty function 

concerning unfilled jobs.  On the other hand it is necessary to provide priorities to the 

jobs in order to fill available jobs with the most suitable officers.  In other words, the job 

of the Chief of the Navy must have higher priority than the Fleet Commander and the 

latter job must have higher priority than the Commanding Officer of a Frigate, and so on. 

Moreover, the algorithm for this thesis must take the officer’s suitability for a job 

into account.  Every matching of a job with an officer is assigned a value that refers to the 

degree of fitness between the job and the officer.  This value is a number that describes 

the officer’s preferences for that job, the command’s preferences for the officer to occupy 

that job and finally the officer’s credentials.  Each one of these criteria may have different 

importance.  This importance is measured by a coefficient, just like the Kfit and Kfill 

coefficients that are used in the paper.  These coefficients are actually weight factors that 

multiplied by the corresponding criteria values give a weighted estimation of the criteria 

importance.  Again, these coefficients are used as control parameters through which the 

model manager can create multiple alternative solutions.  

A major difference between this thesis and [2] is that the latter considers a utility 

function as a way to find different distributions and also evaluate them post facto.  This 

thesis uses a greedy-choice algorithm in order to find a distribution.  The need for a 

utility function is based upon being able to evaluate the impact on the solution from any 

change(s) the detailer may decide to make. 

Since the algorithm tries to fill up the maximum number of jobs by always 

following the same pattern, a change to each coefficient value is not going to affect or 

change the jobs the algorithm selects.  The jobs are always the same.  Only the fitness 

values change, depending on the coefficient values.  By changing the coefficient values, 

the distribution of the officers to the jobs is changed.  This means that there is no need to 



16 

use the various metrics described in [2].  Any change on the coefficients is made on an 

experimental basis.  The utility function estimates how much “worse” off the change the 

detailer makes is in contrast with the solution the algorithm produces. 

Before we implement any pattern matching algorithms, we must first establish an 

appropriate database design to hold the necessary data for the detailer to evaluate any 

assignment.  The next chapter discusses this database design.  



17 

III. DATABASE DESIGN 

The data that are stored in the database reflect the needs and the purpose of this 

project.  The database should store an officer’s personal information such as his/her 

name, phone and address, a job’s information and information about the platform or base 

that this job belongs to.  It must also contain the credentials and qualifications of an 

officer and the qualifications that a job requires from an officer in order to be eligible to 

get that job. 

A. REQUIREMENTS 

In order to design an appropriate ERD and create a suitable database for this 

thesis, it is necessary to define the requirements.  These requirements are derived from 

specific queries that the users of the database/website should perform in order to do their 

job.  These queries are the following. 

• Who are the officers that participate in the job-to-officer distribution?  
What is their personal information (e.g., address, phone number or email) 
in order to contact them? 

This query presents the need of a special place to store personal 
information such as the first, last and middle name of the officer.  Also, 
the address including the street and city the officer lives in should be 
provided.  The different phone numbers and email addresses the officer 
has should be stored too.  Below is an example from this project’s 
database. 



18 

 
Figure 1.   Officer’s Personal Information-Manpower Database. 

 
• Who is a valid user for the database/website?  What is the username and 

password of each of the database/website users? 

The officers’ and commands’ usernames and passwords should be stored 
too, in order to accept valid users only for logon to the services that the 
website/database provides.  The figure below shows the various usernames 
and passwords for the Manpower database. 



19 

 
Figure 2.   Command’s Username and Password-Manpower Database. 

 

• What are the Navy’s jobs to which officers may be assigned?  Since a job 
could exist on many platforms or bases (for example the Navigation job 
exists in all the ships of the Greek Fleet), which are the Navy’s 
platforms/bases the Navy? 

An entity should be created in order to store all the available jobs the Navy 
has.  Moreover, all the available platforms/bases should be stored in a 
separate entity as well.  Also, since a job can exist in many 
platforms/bases (like the example just mentioned), or a job can exist in 
some platforms/bases and not in others (for example the Base Commander 
does not exist in any of the Fleet’s ships but exists in all the Navy’s bases), 
there should be a place to store the jobs per platform/base.  The figures 
below show some examples of all these just mentioned. 



20 

 
 
 
 
 
 
 

 
Figure 3.   Available Jobs-Manpower Database. 



21 

 
 
 
 
 
 

 
Figure 4.   Available Platforms/Bases-Manpower Database. 



22 

 
Figure 5.   Available Job – Platform/Base Pairs-Manpower Database. 
  
• Which officers are eligible for which jobs?  What ranks must an officer 

have in order to be eligible for a job? 

An Ensign should never be able to be assigned to the Chief of the Navy 
job.  This means that first there should be a place to store all the available 
ranks, and there should be a place to store the ranks that are required for a 
specific job (for example a Commanding officer could be either a 
Commander or a Captain).  Third, the rank of each officer should be 
stored too.  The figures below show corresponding examples. 



23 

 
 
 
 
 
 
 

 
Figure 6.   Available Ranks-Manpower Database. 



24 

 
 
 
 
 
 
 

 
Figure 7.   Ranks Required for Different Jobs-Manpower Database. 
 



25 

 
Figure 8.   Officers’ Ranks-Manpower Database. 

 
• Which specialty should an officer have in order to be eligible for a specific 

job? 

An officer should be able to get assigned to a specific job, according to 
his/her specialty.  For example an officer should have the Navigation 
specialty in order to be assigned to the Navigation job for a ship, so there 
needs to be an entity that describes all the specialties.  Also, there should 
be an entity that describes the specialties each job requires.  Moreover, an 
officer’s specialty must be stored too.  The figures below show examples. 



26 

 
 
 
 
 
 
 

 
Figure 9.   Specialties-Manpower Database. 



27 

 
 
 
 
 
 
 

 
Figure 10.   Specialties Required for Each Job-Manpower Database. 
 



28 

 
Figure 11.   Officers’ Specialties-Manpower Database. 

 
• What is the education type an officer must have in order to be eligible for 

a specific job?  Which education type does an officer have? 

An officer’s education type is one of the criteria for assigning an officer to 
a specific job.  An entity must be created that contains the whole set of 
education types, and another entity must describe the education that an 
officer requires for a specific job.  The officer’s education type must be 
stored too.  The figures below show pertinent examples. 



29 

 
 
 
 
 
 
 

 
Figure 12.   Education types (Qualifications)-Manpower Database. 



30 

 
 
 
 
 
 
 

 
Figure 13.   Education Types (Qualifications) Required per Job-Manpower Database. 

 



31 

 
Figure 14.   Officers’ Education (Qualifications)-Manpower Database. 
 
• What are the attributes an officer must have for a specific job?  What is 

the accepted level of each attribute for an officer to be assigned to a 
specific job?  What are the attributes and levels for each one of the 
officers? 

Diligence, bravery, and discipline are some of the attributes an officer 
should have for a job.  An entity must be created to store all the available 
attributes.  Also, the minimum level of these attributes for each of the jobs 
must be stored too.  Another entity is required to describe the level of 
attributes each officer has.  The figures below show these examples. 



32 

 
 
 
 
 
 
 

 
Figure 15.   Attributes (Credentials)-Manpower Database. 



33 

 
 
 
 
 
 
 

 
Figure 16.   Attributes (Credentials) Required Per Job and Corresponding Minimum 

Levels-Manpower Database. 
 



34 

 
Figure 17.   Officers’ Attributes (Credentials) and Corresponding Grades-Manpower 

Database. 
 
• What are the languages an officer should speak in order to be applicable 

for a job?  What are the minimum levels of these languages for a specific 
job?  What languages and at what level does the officer speak? 

English and German could be language requirements for the job of the 
Greek Naval Attaché in Germany.  All these languages should be stored in 
a special entity created for that purpose.  Also the languages that are 
required for a specific job should be stored too, with their corresponding 
minimum levels.  Finally, the languages an officer can speak must be 
stored too, as the figures below show. 



35 

 
 
 
 
 
 
 

 
Figure 18.   Languages-Manpower Database. 



36 

 
 
 
 
 
 
 

 
Figure 19.   Languages Required Per Job and Corresponding Minimum Levels-

Manpower Database. 
 



37 

 
Figure 20.   Languages Officers Can Speak and Their Corresponding Grades-

Manpower Database. 
 
• Can an inexperienced officer be eligible for a job?  What are the 

acceptable levels of experience an officer should have for a job? 

The database should store the years of experience a job requires an officer 
to have.  It should also store the officer’s experience.  For example, in 
order to be a Navigation officer, somebody must have at least 1 year of 
ship experience (see Figures 19 and 20).  



38 

 
 
 
 
 
 
 

 
Figure 21.   Experience Per Job Required in Years-Manpower Database. 



39 

 
 
 
 
 
 
 

 
Figure 22.   Experience an Officer Has for Each Job in Years-Manpower Database. 

 
• What is the preference of an officer for a specific job belonging to a 

specific platform/base? 

The database should provide the means to store the preferences an officer 
has for specific jobs.  The officer’s relative preferences for different jobs 
should be stored too.  For example, an officer may prefer to be a 
Navigation officer for a small ship or better, a Commanding officer for a 
smaller ship.  The figure below provides an example of officers’ 
preferences. 



40 

 
Figure 23.   Officers’ Preferences-Manpower Database. 

 
• What are the command’s preferences of the officers for a job that belongs 

under that command? 

The database should also store the various preferences a command has for 
the officers that may occupy a job under that command.  For example the 
Frigate’s Command may prefer to have officer O1 for the Commanding 
Officer’s position of the FG HYDRA over officer O2.  Figure 22 below 
provides an example of a commands’ preferences. 



41 

 
Figure 24.   Commands’ Preferences-Manpower Database. 

 
B. ENTITY RELATIONSHIP DIAGRAM 

The Entity Relationship Diagram (ERD) is a method of describing the entities and 

the relationships between them.  Since the ERD in this application is quite large, it is 

reasonable to break it into parts in order to better understand the entities and the relations 

between them.  The entire ERD is presented in the Appendices. 

In order to be consistent with the Greek Navy’s manpower database requirements 

as outlined in the previous section and before describing the ERD in depth, we provide a 

table listing all the entities with a short description of each. 

 

 

 

 



42 

Number Entities Description 
1 JOB Includes all the job information such as the job 

name and the experience required for a job.  It 
also contains the priority of a job.  The priority is 
ranked along ascending importance in levels 1 
through 10.  It is stored by the detailer and 
describes the importance of a particular job. 

2 APPLICANT It contains the officer’s information like the 
officer’s identification number, the officer’s last 
name, first name, middle name, email address, 
username and password for the website and 
finally the officer’s rank and specialty. 

3 ADDRESS It includes the officer’s address information, like 
the city that the officer lives in, the street name 
and number, the apartment and the zip code. 

4 PHONE It includes the officer’s phone numbers, like the 
home phone number, the cell phone number or 
any additional phone number the officer might 
have. 

5 COMMAND It includes the command’s data like the 
command’s name and the username and 
password that is used for the website. 

6 PLACE It includes information like the base’s/platform’s 
name (where different kinds of jobs exist) and 
image (a photo of the base/platform). 

7 ASSIGNMENT It includes all assignment information like the 
job, the platform/base and the officer that is 
assigned a particular job, the report date and the 
detach date. 

8 RANK It includes all the possible ranks that an officer 
may have or that a job requires from an officer to 
have. 

9 LANGUAGE It includes all the possible languages that an 
officer may speak or that a job requires from an 
officer to speak. 

10 SPECIALTY It includes all the possible specialties that an 
officer may have or that a job requires from an 
officer to have. 

11 QUALIFICATION It includes all the possible qualifications that an 
officer may have or that a job requires from an 
officer to have.  An example of it is an entire 
catalog of all the schools or educational 
programs. 

12 CREDENTIALS It includes all the possible credentials that an 
officer may have or that a job requires from an 
officer to have.  Some of them are diligence, 



43 

Number Entities Description 
discretion, secrecy, discipline, etc. 

13 EXPERIENCE It includes the experience in years that an officer 
has for a particular job.  For example an officer y 
has 1 year of experience for the job x.  This 
experience can be directly compared with the 
experience that a job requires, which is stored in 
the table of the entity JOB. 

14 APPLICANT 
PREFERENCE 

It describes an officer’s preference for a 
particular job.  It includes the officer, the job, the 
platform/base and the preference.  The latter one 
is ranked along descending importance in levels 
1 through 10. 

15 COMMAND 
PREFERENCE 

It describes a command’s preference concerning 
a particular job that belongs to this command, 
for which officer the command prefers to occupy 
that job.  It includes the officer, the job, the 
platform/base, the command and the preference.  
The latter one is ranked along descending 
importance in levels 1 through 10. 

 
Table 5. All Entities with a Short Description of Each. 

 

Below we present the various segments of the Manpower Database ERD. 

 
1. Applicant-Address 

APPLICANT ADDRESS 

ApplicantId CityOrTown 

FirstName Street 

LastName Number 

MiddleName Apartment 

RankCode ZIP 

SpecialtyCode ApplicantId 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

   Foreign Key 

 

 

1..1                            0..M 

 



44 

The relation is one-to-many since an officer may live in more than one residence.  

Thus, the officer may have more than one address.  The attribute ApplicantId is the 

foreign key from the entity ADDRESS referencing the entity APPLICANT. 

2. Applicant-Phone 

APPLICANT PHONE 

ApplicantId HomePhoneNumber 

FirstName CellPhoneNumber 

LastName OtherPhoneNumber 

MiddleName ApplicantId 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

Foreign Key 

 

1..1                                    0..1              

 

 

The relation is one-to-one.  An officer may have one home phone number or one 

cellular phone number or possibly another phone number.  The attribute ApplicantId is 

the foreign key from the entity PHONE referencing the entity APPLICANT. 



45 

3. Applicant-Rank 

APPLICANT RANK 

ApplicantId RankCode 

FirstName RankName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

Foreign Key 

1..M                                    1..1 

  

 

The relation is many-to-one since an officer has only one rank, but a rank may be 

applied to many officers.  For example an officer can have only the rank O2, but O2 can 

be the rank of more officers.  The attribute RankCode is the foreign key from the entity 

APPLICANT referencing the entity RANK. 

4. Job-Rank 

JOB RANK 

JobId RankCode 

JobName RankName 

ExperienceRequired 

Priority 

 

1..M                             1..N 

 

 

The relation is many-to-many since the ranks that a job requires for the officers to 

have may be more than one.  Also a rank may be required for more than one job.  For 

example a Commander can be an officer with rank O3 or O4 or O5, and an officer with 

rank O4 can be a Commander or a Base Commander. 

 



46 

5. Applicant-Language 

APPLICANT LANGUAGE 

ApplicantId LanguageCode 

FirstName LanguageName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

0..M                                   0..N 

 

 

The relation is many-to-many since an officer can speak many languages, and 

since a language can be spoken by many officers.  For example an officer can speak 

English and German, but also the German language can be spoken by many officers. 

6. Job-Language 

JOB LANGUAGE 

JOBID LANGUAGECODE 

JOBNAME LANGUAGENAME 

EXPERIENCEREQUIRED 

PRIORITY 

 

0..M                           0..N 

 

 

The relation is many-to-many since there can be many languages that a job 

requires for the officers to speak.  Also a language may be a requirement for many jobs.  

For example a job can require an officer to speak both English and Spanish, while 

English can be considered by many jobs as a requirement. 

 

 

 



47 

7. Applicant-Specialty 

APPLICANT SPECIALTY 

ApplicantId SpecialtyCode 

FirstName SpecialtyName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

                             Foreign Key 

1..M                                    1..1 

 

 

The relation is many-to-one since an officer has only one specialty, but a specialty 

may be applied to many officers.  For example, an officer can only have one specialty 

like the Weapons specialty.  The Weapon specialty can be assigned to many officers.  

The attribute SpecialtyCode is the foreign key from the entity APPLICANT referencing 

the entity SPECIALTY. 

8. Job-Specialty 

JOB SPECIALTY 

JobId SpecialtyCode 

JobName SpecialtyName 

ExperienceRequired 

Priority 

 

0..M                           1..N 

 

The relation is many-to-many since the specialties that a job requires for the 

officers to have may be more than one.  Also a specialty may be applied for more than 

one job.  For example, a Commander can be an officer with Weapons specialty, or an 

officer with Navigation specialty, while the Weapons specialty can be a requirement for 

both the Commander and the Weapons officer. 

 



48 

9. Applicant-Qualification 

APPLICANT QUALIFICATION 

ApplicantId QualificationCode 

FirstName QualificationName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

                         

1..M                                  1..N 

 

 

The relation is many-to-many since an officer can have many qualifications, and 

one qualification can be applied to many officers.  For example, an officer can be a 

graduate of both the Greek and the US Weapons Schools.  Also, there could be many 

officers that graduated the Greek Weapons School. 

10. Job-Qualification 

JOB QUALIFICATION 

JobId QualificationCode 

JobName QualificationName 

ExperienceRequired 

Priority 

 

0..M                                   

1..N 

 

 

The relation is many-to-many since a job can have many qualifications, and one 

qualification can be applied to many jobs.  For example a job may require that the 

officers should have been graduated from both the Greek and the US Weapons Schools 

and the Greek Weapons School could be a requirement for many jobs. 

 
 



49 

11. Applicant-Experience-Job 

 

APPLICANT EXPERIENCE JOB 

ApplicantId JobId JobId 

FirstName ApplicantId JobName 

LastName Experience ExperienceRequired 

MiddleName Priority 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPasswo

rd 

 

Foreign Key 

 

1..1             1..M 

  

Foreign Key 

 

 

1..M             1..1 

 

These are the relations between the three entities, the APPLICANT, the 

EXPERIENCE, and the JOB entity.  The attribute ApplicantId is the foreign key from the 

entity EXPERIENCE referencing the entity APPLICANT.  The attribute JobId is the 

foreign key from the entity EXPERIENCE referencing the entity JOB. 

12. Applicant-Credentials 

APPLICANT CREDENTIALS 

ApplicantId CredentialsId 

FirstName CredentialsName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

                         

1..M                                  1..N 

 



50 

The relation is many-to-many since an officer can have many credentials, and a 

credential can be assigned by many officers.  For example an officer can be diligent and 

brave, but also bravery can be a credential for many officers. 

13. Job-Credentials 

JOB CREDENTIALS 

JobId CredentialsId 

JobName CredentialsName 

ExperienceRequired 

Priority 

 

1..M                          1..N 

 

The relation is many-to-many since a job may require many credentials, and one 

credential can be applied to many jobs.  For example a job may require that the officers 

should be diligent and brave and also bravery could be a requirement for many jobs. 

14. Job-Place 

JOB PLACE 

JobId PlaceCode 

JobName PlaceName 

ExperienceRequired PlaceImage 

Priority 

 

1..M                                   1..N 

CommandCode 

The relation is many-to-many since a platform/base may have more than one job.  

Also, a job can be in more than one platform/base.  For example, the Navigation job is a 

job in every ship.  Also a ship has many jobs like the navigation and the weapons jobs. 

15. Command-Place 

COMMAND PLACE 

CommandCode PlaceCode 

CommandName PlaceName 

UserName PlaceImage 

Password 

 

Foreign Key 

1..1                                  1..M 

CommandCode 

 

 



51 

The relation is one-to-many.  A Command may have many Platforms/Bases under 

its command.  The Platform/Base belongs to only one Command.  For example, the 

Frigates Headquarters have many ships under their command (e.g. FG HYDRA, FG 

SPETSAI).  On the other hand, FG HYDRA belongs only to the Frigates Headquarters. 

16. Assignment-Job-Place-Applicant 

JOB PLACE 

JobId PlaceCode 

JobName PlaceName 

ExperienceRequired PlaceImage 

Priority 

1..1                               1..1 

 

 

 

1..M  1..M CommandCode 

ASSIGNMENT 

ApplicantId 

JobId 

PlaceCode 

ReportDate 

1..M 

 

 

 

 

1..1 DetachDate 

APPLICANT 

ApplicantId 

FirstName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

This is a ternary relationship between the ASSIGNMENT, JOB, PLACE, 

APPLICANT entities.  The attribute ApplicantId is the foreign key from the entity 

ASSIGNMENT referencing the entity APPLICANT.  The attribute JobId is the foreign 

key from the entity ASSIGNMENT referencing the entity JOB.  The attribute PlaceCode 

is the foreign key from the entity ASSIGNMENT referencing the entity PLACE. 

17. Command Preference-Command- Job Place-Applicant 

 
JOB PLACE COMMAND 

JobId CommandCode 

PlaceCode CommandName 

UserName 

1..1                                  1..1 

 

 

 

                 1..M  1..M Password 

COMMAND 

PREFERENCE 

ApplicantId 

JobId 

PlaceCode 

CommandCode 

 

 

1..M 

 

 

 

 

 

1..1 PreferenceCommand 

APPLICANT 

ApplicantId 

FirstName 

LastName 

MiddleName 

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

This is a ternary relationship between the COMMAND PREFERENCE, 

COMMAND, JOB PLACE, APPLICANT entities. The attribute ApplicantId is the 

foreign key from the entity COMMAND PREFERENCE referencing the entity 

APPLICANT.  The attribute JobId is the foreign key from the entity COMMAND 

PREFERENCE referencing the entity JOB PLACE.  The attribute PlaceCode is the 

foreign key from the entity COMMAND PREFERENCE referencing the entity JOB 

PLACE.  The attribute CommandCode is the foreign key from the entity COMMAND 

PREFERENCE referencing the entity COMMAND. 

18. Applicant Preference- Job Place-Applicant 

 
APPLICANT APPLICANT 

PREFERENCE 

JOB PLACE 

ApplicantId ApplicantId JobId 

FirstName JobId PlaceCode 

LastName PlaceCode 

MiddleName PreferenceApplicant  

RankCode 

SpecialtyCode 

UserName 

Password 

EmailAddress 

DetailerCheck 

DetailerPassword 

1..1            1..M 

 

  Foreign Key 

 

 

 

 

1..M            1..1 

 

      Foreign Key 

 

      Foreign Key 

 

 

 

 

This is a ternary relationship between the APPLICANT PREFERENCE, JOB 

PLACE, APPLICANT entities.  The attribute ApplicantId is the foreign key from the 

entity APPLICANT PREFERENCE referencing the entity APPLICANT.  The attribute 

JobId is the foreign key from the entity APPLICANT PREFERENCE referencing the 

entity JOB PLACE.  The attribute PlaceCode is the foreign key from the entity 

APPLICANT PREFERENCE referencing the entity JOB PLACE.  

 



54 

C. RELATIONAL MODEL 

The ERD can be automatically transformed into a set of tables which form a 

schema in a target database management system such as SQL Server 2000 or Microsoft 

Access.  The attributes that are underlined below are the primary keys, the values of 

which uniquely identify each row of the corresponding table.  The attributes that in italics 

are foreign keys, which are the primary keys of other tables embedded in order to 

represent a relationship between the two tables. 

 

APPLICANT (ApplicantId, FirstName, LastName, MiddleName, RankCode_FK, 

SpecialtyCode_FK, UserName, Password, EmailAddress, DetailerCheck, 

DetailerPassword) 

ApplicantId is the officer’s identification number (e.g. A001), FirstName is the 

officer’s first name (e.g. Kyriakos), LastName is the officer’s last name (e.g. Sergis), 

MiddleName is the officer’s middle name (e.g. Nikitas), UserName and Password are the 

officer’s user name and password the officer uses for the web site, EmailAddress is the 

officer’s email address, DetailerCheck is a special Boolean attribute that is ‘yes’ for the 

detailer and ‘no’ for the rest officers, and DetailerPassword is an extra password that only 

the detailer has. 

 

JOB  (JobId, JobName, ExperienceRequired, Priority) 

JobId is the job’s identification number (e.g. BCO), JobName is the job’s name 

(e.g. Base Commander), and Priority is the priority of the job as it was described 

previously (e.g. 9). 

 

ADDRESS  (CityOrTown, Street, Number, Apartment, ZIP, ApplicantId FK) 

CityOrTown is the city or town the officer lives (e.g. Athens), Street is the street 

the officer’s residence exists (e.g. Markora), Number is the number of the building the 

officer’s residence sits (e.g. 302), Apartment is the number of the officer’s apartment 

(e.g. A), and ZIP is the ZIP or Postal Code of the area the officer lives. 

 
 



55 

PHONE (ApplicantId FK, HomePhoneNumber, CellPhoneNumber, 

OtherPhoneNumber) 

HomePhoneNumber is the officer’s home phone number, CellPhoneNumber is 

the officer’s cellular phone number, and OtherPhoneNumber is any other phone number 

the officer has. 

 

RANK (RankCode, RankName) 

RankCode is the rank code (e.g. O3), and RankName is the name of the rank (e.g. 

Lieutenant) 

 

LANGUAGE (LanguageCode, LanguageName) 

LanguageCode is the language code (e.g. EN), and LanguageName is the name of 

the language (e.g. English) 

 

SPECIALTY (SpecialtyCode, SpecialtyName) 

SpecialtyCode is the specialty code (e.g. WPS), and SpecialtyName is the name 

of the specialty (e.g. Weapons) 

 

QUALIFICATION (QualificationCode, QualificationName) 

QualificationCode is the qualification code (e.g. WPSGR), and 

QualificationName is the name of the qualification (e.g. Weapons School Greece) 

 

EXPERIENCE (JobId FK, ApplicantId FK, Experience) 

Experience is the years of experience e.g. 3 that the officer with Identification 

Number (ID) ApplicantId has for the job with ID JobId. 

 
 
 
 
 
 



56 

COMMAND (CommandCode, CommandName, UserName, Password) 

CommandCode is the command code (e.g. FRH), CommandName is the name of 

the command (e.g. Frigates Headquarters), and UserName, Password are special user 

names and passwords for each one of the commands. 

 

PLACE (PlaceCode, PlaceName, PlaceImage, CommandCode FK) 

PlaceCode is the Platform or Base code (e.g. F-450), PlaceName is the name of 

the Base/Platform (e.g. FG HYDRA), and PlaceImage is the image of the Platform/Base 

(e.g. F-450.jpeg) 

 

APPLICANT PREFERENCE (JobId FK, ApplicantId FK, PlaceCode FK, 

PreferenceApplicant) 

PreferenceApplicant is the preference (e.g. 7) of the officer with ID ApplicantId 

for the job with ID JobId that is cited in the Platform/Base with code PlaceCode. 

 

COMMAND PREFERENCE (JobId FK, ApplicantId FK, PlaceCode FK, 

CommandCode FK, PreferenceCommand) 

PreferenceCommand is the preference (e.g. 7) of the command with command 

code CommandCode for the officer with ID ApplicantId for the job with ID JobId that is 

sited in the Platform/Base with code PlaceCode. 

 

CREDENTIALS (CredentialsId, CredentialsName) 

CredentialsId is the ID of the credential (e.g. 001), and CredentialsName is the 

name of the credential (e.g. diligence) 

 

ASSIGNMENT (ApplicantId FK, JobId FK, PlaceCode FK, ReportDate, 

DetachDate) 

ReportDate and DetachDate are the report and detach dates of each one of the 

assignments. Each assignment has also the ApplicantId of the officer who is assigned the 

job with ID JobId that sites in the Base/Platform with code PlaceCode. 



57 

In order to achieve redundancy of tables and to perform some additional 

functionality, the following tables/entities are also defined. 

APPLICANT CREDENTIALS (ApplicantId FK, CredentialsId FK, 

CredentialsGrade) 

CredentialsGrade is the grade (e.g. 7) of the credential with ID CredentialsId that 

an officer with ID ApplicantId has. 

 

APPLICANT LANGUAGE (ApplicantId FK, LanguageCode FK, 

LanguageDegree) 

LanguageDegree is the grade (e.g. 70) of the language with code LanguageCode 

that an officer with ID ApplicantId has. 

 

JOB CREDENTIALS (JobId FK, CredentialsId FK, CredentialsGrade) 

CredentialsGrade is the minimum grade (e.g. 8) of the credential with ID 

CredentialsId that an officer should have to be qualified for the job with ID JobId. 

 

JOB LANGUAGE (JobId FK, LanguageCode FK, LanguageDegree) 

LanguageDegree is the minimum grade (e.g. 8) of the language with code 

LanguageCode that an officer should have to be qualified for the job with ID JobId. 

 

JOB PLACE (JobId FK, PlaceCode FK) 

JobId is the ID of the job and PlaceCode refers to the Platform/Base the job 

belongs to. 

 

JOB QUALIFICATION (JobId FK, QualificationCode FK) 

JobId is the ID of the job and QualificationCode refers to the qualification that is 

required for that job. 

 
 
 



58 

JOB RANK (JobId FK, RankCode FK) 

JobId is the ID of the job and RankCode refers to the rank that this job requires 

from an officer to have. 

 

JOB SPECIALTY (JobId FK, SpecialtyCode FK) 

JobId is the ID of the job and SpecialtyCode refers to the specialty that this job 

requires from an officer to have. 

 

QUALIFICATION APPLICANT (ApplicantId FK, QualificationCode FK) 

ApplicantId is the ID of the officer and QualificationCode refers to the 

qualification that this officer has. 

 

The table schema described above is actually the set of tables that was entered 

into SQL Server 2000 in the Manpower Database and is described in section B. 

The Manpower database meets all the requirements that are necessary for the 

distribution of officers to jobs.  The following chapter makes one step further on this 

direction.  It describes the algorithm, which is responsible for creating that distribution.  

Then the detailer can intervene and change that distribution according to the Navy’s 

needs. 



59 

IV. DECISION MODEL 

In Chapter III, we discussed the design of the database that holds all the relevant 

information for the officers to jobs distribution.  This distribution is achieved by an 

algorithm that, when executed, solves the multi-criteria problem.  The detailer can alter 

any part of the entire solution according to the wishes of the Navy, and subsequently see 

what effect it has on the overall “goodness” of the assignment.  

This chapter presents in full detail the philosophy and implementation of the 

algorithm and utility function.  In this chapter and in order to simplify the algorithm, the 

word “job” will refer to the combination of a job with a specific platform/base.  

A. DECISION VARIABLES 

In order for the algorithm to determine the most suitable officer for a specific job, 

the algorithm takes into account the following decision variables. 

• Rank 

• Specialty 

• Qualifications 

• Language 

• Credentials 

• Experience 

• Officer’s Preference 

• Command’s Preference 

These variables are expressed in the form of values, which determine the 

suitability of an officer for a specific job.  This suitability is named Hij (where i, j are the 

indices of the i-th job Ji and j-th officer Oj accordingly) and is expressed as a function of 

the above eight variables. 

Hij = Function (Rank, Specialty, Qualifications, Language, Credentials, 

Experience, Officer’s Preference, Command’s Preference) 

More specifically, the values of each one of the decision variables are as follows. 

 

 



60 

1. Rank 

The Rank is expressed by a value, which is 1 if the Oj officer has the appropriate 

rank for the Ji job or 0 if the officer has not. 

2. Specialty 

The Specialty is expressed by a value, which is 1 if the Oj officer has the 

appropriate specialty for the Ji job or 0 if the officer has not. 

3. Qualifications 

The Qualifications are expressed by a value, which is 1 if the Oj officer has the 

appropriate qualifications (qualification is considered the education of the officer for a 

specific job) for the Ji job or 0 if the officer has not. 

4. Language 

The Language is expressed by a value in the real interval [0,10], computed as 

follows: First, the summation of the grades the Oj officer has for the languages that are 

required for the Ji job is computed.  Then the summation of the minimum grades of these 

languages required for the Ji job is computed also.  If the first summation is smaller than 

the second, the Language variable’s value is 0.  Else, the Language variable’s value is a 

number between 1 and 10, according to a formula that takes into account the relative 

difference of these two summations.  Below is pseudocode that describes the computation 

of the Language variable’s value.  Keep in mind that the maximum grade of each 

language is 200. 

Step 1: SUM1 = (Sum of grades the Oj officer has for the languages required for Ji 

job) 

Step 2: SUM2 = (Sum of minimum grades of the languages required for Ji job) 

Step 3: COUNT = (Number of the languages required for Ji job) 

Step 4: IF (SUM1 < SUM2) THEN 

 BEGIN 

Step 5:  Languageij -> 0 

 END 

Step 6: ELSE 

 BEGIN 

 



61 

Step 7:  IF (COUNT x 200 = SUM2) 

  BEGIN 

Step 8:   Languageij -> 1 

  END 

Step 9:  ELSE 

  BEGIN 

Step 10:   Languageij -> [(SUM1-SUM2) x 9 / ((COUNT x 200)-

SUM2)] + 1 

  END 

 END 

The following example makes it clear.  

Consider an officer O1 that is eligible for a job J1.  J1 job requires the languages 

English and German with minimum grades 160 and 120 (0 is the minimum and 200 is the 

maximum grade) accordingly.  Officer O1 speaks English with a grade of 180 and 

German with a grade of 110.  The value of the variable Language for the O1 officer and J1 

job is as follows. 

 
Step 1:  SUM1 = 180 + 110 = 290 

Step 2:  SUM2 = 160 + 120 = 280 

Step 3:  COUNT = 2 

Step 6:  SUM1 = 290 > 280 = SUM2 

Step 9:  COUNT x 200 = 400 > 280 = SUM2 

  SUM1 – SUM2 = 10 

  COUNT x 200 – SUM2 = 400 – 280 = 120 

Step 10: Language11 = [10 x 9 / 120] + 1 = 1.75 

5. Credentials 

The Credentials variable is an integer in the interval [0,10] and is computed as 

follows: First, the summation of the grades the Oj officer is evaluated for the credentials 

that are required for the Ji job is computed.  Then the summation of the minimum grades 

of these credentials required for the Ji job is computed too.  If the first summation is 

smaller than the second, the Credentials variable’s value is 0.  Else, the Credentials 



62 

variable’s value is a number between 1 and 10, according to a formula that takes into 

account the relative difference of these two summations.  Below is a pseudocode that 

describes the computation of the Credentials variable’s value.  Have in mind that the 

maximum grade of each language is 10. 

 
Step 1: SUM1 = (Sum of grades the Oj officer is evaluated for the credentials 

required for Ji job) 

Step 2:  SUM2 = = (Sum of minimum grades of the credentials required for Ji job) 

Step 3:  COUNT = (Number of the credentials required for Ji job) 

Step 4:  IF (SUM1 < SUM2) THEN 

  BEGIN 

Step 5:   Credentialsij -> 0 

  END 

Step 6:  ELSE 

  BEGIN 

Step 7:   IF (COUNT x 10 = SUM2) 

   BEGIN 

Step 8:    Credentialsij -> 1 

   END 

Step 9:   ELSE 

   BEGIN 

Step 10: Credentialsij -> [(SUM1-SUM2) x 9 / ((COUNT x 10)-

SUM2)] + 1 

   END 

  END 

The following example makes it clear.  Consider again officer O1 that is eligible 

for the job J1. J1 job requires the credentials Diligence and Bravery with minimum grades 

9 and 8 (0 is the minimum and 10 is the maximum grade) accordingly.  O1 officer’s 

credential grades are 10 and 8 for Diligence and Bravery accordingly.  The value of the 

variable Credentials for the O1 officer and J1 job is as follows. 

 
 



63 

 
Step 1:  SUM1 = 10 + 8 = 18 

Step 2:  SUM2 = 9 + 8 = 17 

Step 3:  COUNT = 2 

Step 6:  SUM1 = 18 > 17 = SUM2 

Step 9:  COUNT x 10 = 20 > 17 = SUM2 

  SUM1 – SUM2 = 1 

  COUNT x 10 – SUM2 = 20 – 17 = 3 

Step 10: Credentials11 = [1 x 9 / 3] + 1 = 4     

6. Experience 

The Experience variable is expressed by a value in the real interval [0,10], 

computed as follows.  If the experience the Oj officer has on the Ji job is smaller than the 

minimum experience required for the Ji job, the Experience variable’s value is 0.  Else, 

the Experience variable’s value is a number between 1 and 10, according to a formula 

that takes into account the relative difference of the experience the Oj officer has on the Ji 

job and the minimum experience required for the Ji job.  Below is pseudocode that 

describes the computation of the Experience variable’s value.  Keep in mind that the 

maximum experience an officer can have for a job is 15 years, and the minimum 

experience required for a job cannot be more than 10 years. 

 
Step 1:  OfficerExperience = (Experience the Oj officer has on the Ji job) 

Step 2:  JobExperience = (Minimum experience required for Ji job) 

Step 3:  IF (OfficerExperience < JobExperience) THEN 

  BEGIN 

Step 4:   Experienceij -> 0 

  END 

Step 5:  ELSE 

  BEGIN 

Step 6: Experienceij -> [(OfficerExperience – JobExperience) x 9 / (15 – 

JobExperience)] + 1 

  END 



64 

The example with the same job and officer makes it clear. Consider again officer 

O1 that is eligible for the job J1.  J1 job requires 3 years of experience.  If the O1 officer 

has 1 year of experience on that job, the value of the Experience variable is 0.  If the O1 

officer has 4 years of experience on that job, the value of the Experience variable is [(4 – 

3) x 9 / (15 – 3)] + 1 on a total of 1.75. 

7. Officer’s Preference 

The Officer’s Preference value is an integer in the interval [1,10].  Since the value 

stored in the APPLICANT PREFERENCE table is ranked by descending importance in 

levels 1 through 10, the Officer’s Preference value is 11 minus the APPLICANT 

PREFERENCE table value.  If the officer does not have any preference for the job, the 

Officer’s Preference value is 0. 

8. Command’s Preference 

The Command’s Preference value is an integer in the interval[1,10].  Since the 

value stored in the COMMAND PREFERENCE table is ranked by descending 

importance in levels 1 through 10, the Command’s Preference value is 11 minus the 

COMMAND PREFERENCE table value.  If the command does not have any preference 

for the officer occupying the job that belongs to that command, the Command’s 

Preference value is 0. 

9. Computation of the Goodness of Fit Index, Hij  

If the Oj officer has a value of 0 for any of the Rank, Specialty or Qualifications 

variables concerning job Ji, the Hij value is NULL.  This means that the Oj officer is not 

eligible for the job Ji. 

In the case that Oj officer is eligible for the Ji job, the Hij value is a function of the 

remaining five decision variables.  Each one of these variables may have different 

importance, measured by the coefficient that is stored in the COEFFICIENT table (a table 

that contains the coefficients and the coefficient numbers that are used to weight the 

importance of each criterion described above).  It is actually a weight factor that, when 

multiplied by the corresponding variables value, gives a weighted estimation of the 

variables’ importance. 



65 

( )ij k ij

k 5

H 1 C x Variable

k 1

=

= + ∑

=

 

Addition with number 1 is necessary since the summation can be a non-negative 

number and 0 values are not desirable for the utility function as we shall see below.  ck is 

the decision variable coefficient’s value. 

Now it may be seen why it is important normalize all the variable values to have 

the same maximum and minimum scores, 10 and 0 respectively.  If one variable has a 

greater maximum value than the rest, it would have a bigger advantage over the 

remaining variables and conversely, if one variable has lesser minimum value than the 

rest, it would suffer a bigger disadvantage compared to the remaining variables especially 

when multiplied by a coefficient. 

The following example makes the computation of the Hij function clear. 

Consider again officer O1 and job J1.  If one of the Rank11, Specialty11, or 

Qualifications11 values is 0, then the O1 officer is not eligible for the J1 job, and the H11 

value is NULL. 

 
H11 = NULL 

 

Assume that Rank11, Specialty11, or Qualifications11 value are all greater than 0 as 

follows: 

• Language Coefficient is 1. c1 = 1 

• Credentials Coefficient is 1. c2 = 1 

• Experience Coefficient is 1. c3 = 1 

• Officer’s Preference Coefficient is 2. c4 = 2 

• Command’s Preference Coefficient is 2. c5 = 2 

• J1 job requires the languages English and German with minimum grades 
160 and 120 accordingly.  Officer O1 speaks English with a grade of 180 
and German with a grade of 110. 

• J1 job requires the credentials Diligence and Bravery with minimum 
grades 9 and 8 accordingly.  O1 officer’s credential grades are 10 and 8 for 
Diligence and Bravery accordingly. 



66 

• J1 job requires 3 years of experience.  Officer O1 has 4 years of experience 
on that job.  

• Officer O1 preference for the J1 job, as it is stored in the APPLICANT 
PREFERENCE table is 2. 

• There is no preference of the command concerning the J1 job for the O1 
officer.  Thus, there is no record in the COMMAND PREFERENCE table. 

The H11 value is computed as follows. 

• From above, Language11 = 1.75 

• From above, Credentials11 = 4 

• Experience11 = [(4 – 3) x 9 / (15 – 3)] + 1 = 1.75 

• Officer’s Preference11 = 11 – 2 = 9 

• Command’s Preference11 = 0 

• H11 = 1 + (c1 x Language11) + (c2 x Credentials11) + (c3 x Experience11) + 
(c4 x Officer’s Preference11) + (c5 x Command’s Preference11) = 1 + (1 x 
1.75) + (1 x 4) + (1 x 1.75) + (2 x 9) + (2 x 0) = 26.5. 

The computation of the Hij values is done with the ksergis.dec_H_Function stored 

procedure. Also, the ksergis.dec_H_Fill stored procedure stores these Hij values in the H 

table described in the previous chapter.  Both of these procedures are presented in the 

Appendix. 

The nature of the utility function needs Hij values in the real interval [1,10], so the 

Hij values need to be ‘normalized’ between these two limits.  In order to perform this 

‘normalization’, the maximum Hij value among all the Oj officers per each Ji job is first 

stored in the MAX VALUE ALL JOBS table described in the previous chapter.  This 

table contains the max (H.j) for every Ji job.  Then, for each Oj officer every Hij value is 

normalized using the following function. 

 
Hij = [Hij x 9 / max (H.j)] + 1 

 

The ksergis.dec_H_Normalize stored procedure performs this conversion and the 

new Hij value is stored back to the H table.  This procedure is presented in the Appendix. 

Take the last example and assume that max (H.1) = 28. Since the H11 value is 

26.5, the new H11 value is the following: 

H11 = [H11 x 9 / max (H.1)] + 1 = [26.5 x 9 / 28] + 1 = 9.5178 



67 

B. ALGORITHM 

The philosophy of the algorithm is greedy choice.  It tries to pick the maximum 

Hij value from the remaining Oj officers per Ji job, beginning from the job with the 

highest priority through the job with the lowest one.  At the same time, it tries to 

minimize the number of unassigned jobs. 

The algorithm uses the following tables. 

1. H Table 

The H table contains the Job (JobId, PlaceCode as described in Chapter 3), the 

Officer and the corresponding HValue. 

A visual representation is shown on the table below.  Every Hij value is a number 

between 1 and 10.  There could be cells with NULL values as it was mentioned before. 

 
 J1 J2 ... Jn 

O1 H11 H12 ... H1n 

O2 H21 H22 ... H2n 

... ... ... ... ... 

Om Hm1 Hm2 ... Hmn 

 

2. PRIORITY Table 

The PRIORITY table contains the Job (JobId, PlaceCode), the Detailer’s Priority 

(the JOB entity’s Priority - different per JobId as described in Chapter 3), the overall 

Priority (a Counter that describes the sorting order of each JobId, PlaceCode pair 

according to the Detailer’s Priority) and a Flag.  An example is shown in the table below. 

 
 
 
 
 
 
 
 
 
 
 



68 

Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 1 

J3 9 3 1 

J4 9 4 1 

J5 9 5 0 

J6 8 6 0 

J7 7 7 0 

... ... ... ... 

Jn 4 n 0 

 
3. MAX VALUE Table 

The MAX VALUE table contains the Job (JobId, PlaceCode), the Officer 

(ApplicantId) and the Hij max value (MAXValue), a value that is selected after the 

algorithm completes the jobs-to-officers distribution.  ApplicantId corresponds to the 

officer who has the MAXValue for the specific Job-Platform/Base pair.  An example is 

shown on the table below. 

 
Job Officer Hij max value 

J1 O7 6.83 

J2 O2 8.76 

... ... ... 

Jn Ok 9.52 

 
4. USED APPLICANTS Table 

The USED APPLICANTS table contains the Job (JobId, PlaceCode) and the 

Officer (ApplicantId).  This entity contains the officers of the used max Hij values per job 

Ji, while the algorithm checks for any available max value on the Ji+1 job.  An example is 

shown in the table below. 

 
 
 



69 

Job Officer 

J1 O1, O3, O5 

J2 O2 

J3 O4, O6 

 
5. ASSIGNED APPLICANTS Table 

The ASSIGNED APPLICANTS table contains the Officers (ApplicantId) that 

have been already assigned to jobs.  An example is shown on the table below. 

 
Officer 

O7 

O8 

 
6. DELETED JOBS Table 

The DELETED JOBS table contains the Jobs (JobId, PlaceCode) for which a 

match cannot be found.  An example is shown on the table below. 

 
Job 

J4 

J6 

 

Before presenting the algorithm, there is a need to present a predicate that will be 

used extensively in the algorithm.  Vi contains all the Hij values of the Ji job that are not 

NULL and the corresponding Oj officers do not belong to either the ASSIGNED 

APPLICANTS table nor the USED APPLICANTS table.  Vi = {{Hij ? H for Ji job 

(excluding NULL values)} – {Hij ? H: Oj ? ASSIGNED APPLICANTS table} – { Hij ? 

H: Oj ? USED APPLICANTS table for Ji job}} 

 
 
 
 
 
 
 
 



70 

Algorithm: 

 
i refers to Priority of job Ji 

 
Step 1:  Compute the PRIORITY table and fill the Flag entries with 0. 

Step 2:  Compute the H table. 

Step 3:  Delete the jobs on the PRIORITY table that have only null values on the H 

table (adjust the Priority numbers on the Priority table) and populate the DELETED 

JOBS table. 

Step 4:  i -> 1 

Step 5:  WHILE (i <= PRIORITY table length) 

  BEGIN 

Step 6:   Calculate Vi 

 
Step 7:   IF (i =1) AND (Flagi = 1) AND (V1 = 0) THEN 

   BEGIN 

Step 8:    Delete Higher Priority Job (lowest Priority number) with 

Flag = 0 

Step 9:    Recalculate PRIORITY table length 

Step 10:   Delete all J1 entries from the USED APPLICANTS table 

Step 11:   Recalculate V1  

   END 

 

Step 12:  IF (Vi ? 0) THEN 

   BEGIN 

Step 13:   Compute MAX(Hik) from the Vi set 

Step 14:   Input MAX(Hik), Ok in the MAX VALUE table for job Ji 

Step 15:   Input Ok in the ASSIGNED APPLICANTS table  

Step 16:   Flagi -> 1 

Step 17:   i -> i + 1 

   END 

 



71 

Step 18:  ELSE 

 
   BEGIN 

Step 19:   Delete Hi-1,r and Pr from the MAX VALUE table for job Ji-1 

Step 20:   Delete Or from the ASSIGNED APPLICANTS table 

Step 21:   Input Or in the USED APPLICANTS table for job Ji-1 

Step 22:   Delete all Ji entries from the USED APPLICANTS table 

Step 23:   i -> i - 1 

   END 

  END 

 

The following example considers the case when there are five officers to be 

assigned to 6 Jobs.  For this demonstration and in order to keep it simple, the Hij values 

are considered to be positive numbers with no upper bound limit. 

After Step 1 the PRIORITY table is: 
 

Job Detailer’s Priority Priority Flag 

J1 10 1 0 

J2 10 2 0 

J3 9 3 0 

J4 8 4 0 

J5 8 5 0 

J6 7 6 0 

 
Suppose that after Step 2 the H table looks like: 

 
 J1 J2 J3 J4 J5 J6 

O1 10      

O2 20 40 15  60  

O3  35     

O4       

O5      40 

 



72 

The empty cells are NULL values. 
 
After Step 3 the H table becomes: 

 
 J1 J2 J3 J5 J6 

O1 10     

O2 20 40 15 60  

O3  35    

O4      

O5     40 

 
The Priority table becomes: 
 

Job Detailer’s Priority Priority Flag 

J1 10 1 0 

J2 10 2 0 

J3 9 3 0 

J5 8 4 0 

J6 7 5 0 

 
And the DELETED JOBS table becomes: 

 
Jobs J4 

 
After Step 4: i = 1 

After Step 5: WHILE (1 <= 5) 

After Step 6: V1 = {{10, 20} - 0 - 0} = {10, 20} 

Step 7 IF statement is False since Flag1 = 0 and V1 ? 0 

Step 12 IF statement is True since V1 ? 0 

After Step 13: MAX(H1k) = H12 = 20 for O2 

After Step 14 20, O2 are put in the MAX VALUE table for job J1 

 
 
 
 
 



73 

MAX Value table: 
 

Job Officer max value Hij 

J1 O2 20 

 
After Step 15 O2 is put in the Assigned Applicants table 
 
Assigned Applicants table: 

 
Officer O2 

 
After Step 16 Flag1 = 1 
 
The PRIORITY table becomes: 

 

Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 0 

J3 9 3 0 

J5 8 4 0 

J6 7 5 0 

 
After Step 17 i = 2 

After Step 5: WHILE (2 <= 5) 

After Step 6: V2 = {{40, 35}-{40} - 0} = {35} 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is True since V2 ? 0 

After Step 13: MAX(H2k) = H23 = 35 for O3 

After Step 14 35, O3 are put in the MAX VALUE table for job J2 

 
 
 
 
 
 
 
 
 



74 

MAX Value table: 
 

Job Officer max value Hij 

J1 O2 20 

J2 O3 35 

 
After Step 15 O3 is put in the ASSIGNED APPLICANTS table 
 
Assigned Applicants table: 

 
Officer O2, O3 

 
After Step 16 Flag2 = 1 
 
The PRIORITY table becomes: 

 
Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 1 

J3 9 3 0 

J5 8 4 0 

J6 7 5 0 

 
After Step 17 i = 3 

After Step 5: WHILE (3 <= 5) 

After Step 6: V3 = {{15}-{15} - 0} = 0 

Step 7 IF statement is False since i = 3 

Step 12 IF statement is False since V3 = 0 

Step 18 Else statement is True 

After Step 19 H23 and O3 are deleted from the MAX VALUE table for job J2 

 
MAX Value table: 

 
Job Officer max value Hij 

J1 O2 20 

 



75 

After Step 20 O3 is deleted from the ASSIGNED APPLICANTS table 
 
Assigned Applicants table: 

 
Officer O2 

 
After Step 21 O3 is put in the USED APPLICANTS table for job J2 

 
USED APPLICANTS table: 

 
Job Officer 

J2 O3 

 
After Step 22 all J3 entries are deleted from the USED APPLICANTS table. In this case 

there is no entry for J3 

After Step 23 i = 2 

After Step 5: WHILE (2 <= 5) 

After Step 6: V2 = {{40, 35}-{40}-{35}} = 0 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is False since V2 = 0 

Step 18 Else statement is True 

After Step 19 H12 and O2 are deleted from the MAX VALUE table for job J1. The MAX 

VALUE table is empty 

After Step 20 O2 is deleted from the ASSIGNED APPLICANTS table. The ASSIGNED 

APPLICANTS table is empty 

After Step 21 O2 is put in the USED APPLICANTS table for job J1 

 
Used Applicants table: 

 
Job Officer 

J1 O2 

J2 O3 

 
After Step 22 all J2 entries are deleted from the USED APPLICANTS table. 
 
 
 



76 

Used Applicants table: 
 

Job Officer 

J1 O2 

 
After Step 23 i = 1 

After Step 5: WHILE (1 <= 5) 

After Step 6: V1 = {{10, 20}- 0 - {20}} = 10 

Step 7 IF statement is False since V1 ? 0 

Step 12 IF statement is True since V1 ? 0 

After Step 13: MAX(H1k) = H11 = 10 for O1 

After Step 14 10, O1 are put in the MAX VALUE table for job J1 

MAX Value table: 
 

Job Officer max value Hij 

J1 O1 10 

 
After Step 15 O1 is put in the ASSIGNED APPLICANTS table 
 
ASSIGNED APPLICANTS table: 

 
Officer O1 

 
After Step 16 Flag1 = 1 

After Step 17 i = 2 

After Step 5: WHILE (2 <= 5) 

After Step 6: V2 = {{40, 35}- 0 - 0} = {40, 35} 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is True since V2 ? 0 

After Step 13: MAX(H2k) = H22 = 40 for O2 

After Step 14 40, O2 are put in the MAX VALUE table for job J2 

 
 
 
 
 



77 

MAX Value table: 
 

Job Officer max value Hij 

J1 O1 10 

J2 O2 40 

 
After Step 15 O2 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1, O2 

 
After Step 16 Flag2 = 1 

After Step 17 i = 3 

After Step 5: WHILE (3 <= 5) 

After Step 6: V3 = {{15}-{15} - 0} = 0 

Step 7 IF statement is False since i = 3 

Step 12 IF statement is False since V3 = 0 

Step 18 Else statement is True 

After Step 19 H22 and O2 are deleted from the MAX VALUE table for job J2 

 
MAX Value table: 

 
Job Officer max value Hij 

J1 O1 10 

 
After Step 20 O2 is deleted from the ASSIGNED APPLICANTS table 
 
ASSIGNED APPLICANTS table: 

 
Officer O1 

 
After Step 21 O2 is put in the USED APPLICANTS table for job J2 

 
 
 
 
 



78 

USED APPLICANTS table: 
 

Job Officer 

J1 O2 

J2 O2 

 
After Step 22 all J3 entries are deleted from the USED APPLICANTS table.  In this case 

there is no entry for J3 

After Step 23 i = 2 

After Step 5: WHILE (2 <= 5) 

After Step 6: V2 = {{40, 35} - 0 -{40}} = 35 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is True since V2 ? 0 

After Step 13: MAX(H2k) = H23 = 35 for O3 

After Step 14 35, O3 are put in the MAX VALUE table for job J2 

 
MAX Value table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

 
After Step 15 O3 is put in the Assigned Applicants table 
 
Assigned Applicants table: 

 
Officer O1, O3 

 
After Step 16 Flag2 = 1 

After Step 17 i = 3 

After Step 5: WHILE (3 <= 5) 

After Step 6: V3 = {{15} - 0 - 0} = 15 

Step 7 IF statement is False since i = 3 

Step 12 IF statement is True since V3 ? 0 

 



79 

After Step 13: MAX(H3k) = H32 = 15 for O2 

After Step 14 15, O2 are put in the MAX VALUE table for job J3 

 
MAX Value table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

J3 O2 15 

 
After Step 15 O2 is put in the ASSIGNED APPLICANTS table 
 
ASSIGNED APPLICANTS table: 

 

Officer O1, O3, O2 

 
After Step 16 Flag3 = 1 
 
The PRIORITY table becomes: 

 
Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 1 

J3 9 3 1 

J5 8 4 0 

J6 7 5 0 

 
After Step 17 i = 4 

After Step 5: WHILE (4 <= 5) 

After Step 6: V4 = {{60}-{60} - 0} = 0 

Step 7 IF statement is False since i = 4 

Step 12 IF statement is False since V4 = 0 

Step 18 Else statement is True 

After Step 19 H32 and O2 are deleted from the MAX VALUE table for job J3. 

 



80 

MAX Value table: 
 

Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

 
After Step 20 O2 is deleted from the ASSIGNED APPLICANTS table 
 
ASSIGNED APPLICANTS table: 

 
Officer O1, O3 

 
After Step 21 O2 is put in the USED APPLICANTS table for job J3 

 

USED APPLICANTS table: 

 
Job Officer 

J1 O2 

J2 O2 

J3 O2 

 
After Step 22 all J4 entries are deleted from the USED APPLICANTS table.  In this case 

there is no entry for J4 

After Step 23 i = 3 

After Step 5: WHILE (3 <= 5) 

After Step 6: V3 = {{15} - 0 -{15}} = 0 

Step 7 IF statement is False since i = 3 

Step 12 IF statement is False since V3 = 0 

Step 18 Else statement is True 

After Step 19 H23 and O3 are deleted from the MAX VALUE table for job J2. 

 
 
 
 
 
 



81 

MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

 
After Step 20 O3 is deleted from the ASSIGNED APPLICANTS table 
 
ASSIGNED APPLICANTS table: 
 

Officer O1 

 
After Step 21 O3 is put in the USED APPLICANTS table for job J2 

 
USED APPLICANTS table: 

 
Job Officer 
J1 O2 
J2 O2, O3 
J3 O2 

 
After Step 22 all J3 entries are deleted from the USED APPLICANTS table. 
 
USED APPLICANTS table: 
 

Job Officer 

J1 O2 

J2 O2, O3 

 
After Step 23 i = 2 

After Step 5: WHILE (2 <= 5) 

After Step 6: V2 = {{40, 35} - 0 - {40, 35}} = 0 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is False since V2 = 0 

Step 18 Else statement is True 

After Step 19 H11 and O1 are deleted from the MAX VALUE table for job J1. The MAX 

VALUE table is empty 



82 

After Step 20 O1 is deleted from the ASSIGNED APPLICANTS table. The ASSIGNED 

APPLICANTS table is empty 

After Step 21 O1 is put in the USED APPLICANTS table for job J1 

 
USED APPLICANTS table: 

 
Job Officer 

J1 O2, O1 

J2 O2, O3 

 
After Step 22 all J2 entries are deleted from the USED APPLICANTS table. 

 
USED APPLICANTS table: 

 
Job Officer 
J1 O2, O1 

 
After Step 23 i = 1 

After Step 5: WHILE (1 <= 5) 

After Step 6: V1 = {{10, 20} - 0 - {10, 20}} = 0 

Step 7 IF statement is True since i = 1, Flag1 = 1 and V1 = 0 

After Step 8 J5 is deleted from the PRIORITY table, since it’s the Higher Priority Job 

(lowest Priority number) with Flag = 0 

 
The H table becomes: 

 
 J1 J2 J3 J6 

O1 10    

O2 20 40 15  

O3  35   

O4     

O5    40 

 
 
 



83 

The PRIORITY table becomes: 

 
Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 1 

J3 9 3 1 

J6 7 4 0 

 
And the DELETED JOBS table becomes: 

 
Jobs J4, J5 

 

After Step 9 the PRIORITY table length is recalculated to 4 

After Step 10 all J1 entries are deleted from the USED APPLICANTS table. The USED 

APPLICANTS table is empty 

After Step 11: V1 = {{10, 20} - 0 - 0} = {10, 20} 

Step 12 IF statement is True since V1 ? 0 

After Step 13: MAX(H1k) = H12 = 20 for O2 

After Step 14 20, O2 are put in the MAX VALUE table for job J1 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O2 20 

 
After Step 15 O2 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O2 

 
After Step 16 Flag1 = 1 

After Step 17 i = 2 

After Step 5: WHILE (2 <= 4) 



84 

After Step 6: V2 = {{40, 35}-{40} - 0} = {35} 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is True since V2 ? 0 

After Step 13: MAX(H2k) = H23 = 35 for O3 

After Step 14 35, O3 are put in the MAX VALUE table for job J2 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O2 20 

J2 O3 35 

 
After Step 15 O3 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O2, O3 

 
After Step 16 Flag2 = 1 

After Step 17 i = 3 

After Step 5: WHILE (3 <= 4) 

After Step 6: V3 = {{15}-{15} - 0} = 0 

Step 7 IF statement is False since i = 3 

Step 12 IF statement is False since V3 = 0 

Step 18 Else statement is True 

After Step 19 H23 and O3 are deleted from the MAX VALUE table for job J2 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O2 20 

 
After Step 20 O3 is deleted from the ASSIGNED APPLICANTS table 

 



85 

ASSIGNED APPLICANTS table: 

 
Officer O2 

 
After Step 21 O3 is put in the USED APPLICANTS table for job J2 

 
USED APPLICANTS table: 

 
Job Officer 

J2 O3 

 
After Step 22 all J3 entries are deleted from the USED APPLICANTS table. In this case 

there is no entry for J3 

After Step 23 i = 2 

After Step 5: WHILE (2 <= 4) 

After Step 6: V2 = {{40, 35}-{40}-{35}} = 0 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is False since V2 = 0 

Step 18 Else statement is True 

After Step 19 H12 and O2 are deleted from the MAX VALUE table for job J1. The MAX 

VALUE table is empty 

After Step 20 O2 is deleted from the ASSIGNED APPLICANTS table. The ASSIGNED 

APPLICANTS table is empty 

After Step 21 O2 is put in the USED APPLICANTS table for job J1 

 
USED APPLICANTS table: 

 
Job Officer 
J1 O2 
J2 O3 

 
After Step 22 all J2 entries are deleted from the USED APPLICANTS table. 

 
 
 
 



86 

USED APPLICANTS table: 

 
Job Officer 

J1 O2 

 
After Step 23 i = 1 

After Step 5: WHILE (1 <= 4) 

After Step 6: V1 = {{10, 20}- 0 - {20}} = 10 

Step 7 IF statement is False since V1 ? 0 

Step 12 IF statement is True since V1 ? 0 

After Step 13: MAX(H1k) = H11 = 10 for O1 

After Step 14 10, O1 are put in the MAX VALUE table for job J1 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

 
After Step 15 O1 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1 

 
After Step 16 Flag1 = 1 

After Step 17 i = 2 

After Step 5: WHILE (2 <= 4) 

After Step 6: V2 = {{40, 35}- 0 - 0} = {40, 35} 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is True since V2 ? 0 

After Step 13: MAX(H2k) = H22 = 40 for O2 

After Step 14 40, O2 are put in the MAX VALUE table for job J2 

 
 



87 

MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O2 40 

 
After Step 15 O2 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1, O2 

 
After Step 16 Flag2 = 1 

After Step 17 i = 3 

After Step 5: WHILE (3 <= 4) 

After Step 6: V3 = {{15}-{15} - 0} = 0 

Step 7 IF statement is False since i = 3 

Step 12 IF statement is False since V3 = 0 

Step 18 Else statement is True 

After Step 19 H22 and O2 are deleted from the MAX VALUE table for job J2 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

 
After Step 20 O2 is deleted from the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1 

 
After Step 21 O2 is put in the USED APPLICANTS table for job J2 

 
 



88 

USED APPLICANTS table: 

 
Job Officer 

J1 O2 

J2 O2 

 
After Step 22 all J3 entries are deleted from the USED APPLICANTS table. In this case 

there is no entry for J3 

After Step 23 i = 2 

After Step 5: WHILE (2 <= 4) 

After Step 6: V2 = {{40, 35} - 0 -{40}} = 35 

Step 7 IF statement is False since i = 2 

Step 12 IF statement is True since V2 ? 0 

After Step 13: MAX(H2k) = H23 = 35 for O3 

After Step 14 35, O3 are put in the MAX VALUE table for job J2 

 

MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

 
After Step 15 O3 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1, O3 

 
After Step 16 Flag2 = 1 

After Step 17 i = 3 

After Step 5: WHILE (3 <= 4) 

After Step 6: V3 = {{15} - 0 - 0} = 15 

Step 7 IF statement is False since i = 3 



89 

Step 12 IF statement is True since V3 ? 0 

After Step 13: MAX(H3k) = H32 = 15 for O2 

After Step 14 15, O2 are put in the MAX VALUE table for job J3 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

J3 O2 15 

 
After Step 15 O2 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1, O3, O2 

 
After Step 16 Flag3 = 1 

After Step 17 i = 4 

After Step 5: WHILE (4 <= 4) 

After Step 6: V4 = {{40} - 0 - 0} = 40 

Step 7 IF statement is False since i = 4 

Step 12 IF statement is True since V4 ? 0 

After Step 13: MAX(H4k) = H45 = 40 for O5 

After Step 14 40, O5 are put in the MAX VALUE table for job J6 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

J3 O2 15 

J6 O5 40 



90 

After Step 15 O5 is put in the ASSIGNED APPLICANTS table 

 
ASSIGNED APPLICANTS table: 

 
Officer O1, O3, O2, O5 

 
After Step 16 Flag4 = 1 

 
The PRIORITY table becomes: 

 
Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 1 

J3 9 3 1 

J6 7 4 1 

 
After Step 17 i = 5 

After Step 5: WHILE (5 <= 4) is False 

 
…And this is the end of the algorithm. 

 

The results are: 
 

H table: 

 

 J1 J2 J3 J6 

O1 10    

O2 20 40 15  

O3  35   

O4     

O5    40 

 
 
 
 



91 

PRIORITY table: 

 
Job Detailer’s Priority Priority Flag 

J1 10 1 1 

J2 10 2 1 

J3 9 3 1 

J6 7 4 1 

 
USED APPLICANTS table: 

 
Job Officer 

J1 O2 

J2 O2 

 
ASSIGNED APPLICANTS table: 

 
Officer O1, O3, O2, O5 

 
DELETED JOBS table: 

 
Jobs J4, J5 

 
MAX VALUE table: 

 
Job Officer max value Hij 

J1 O1 10 

J2 O3 35 

J3 O2 15 

J6 O5 40 

 

The algorithm and all the supportive code are presented in the Appendices.  The 

code is written in Transact-SQL and is stored in stored procedures. 



92 

Before continuing to the description of the utility function, there is a problem that 

could occur and should be addressed.  Consider the following case of 3 jobs to be 

distributed to 3 officers: 

 
 J1 J2 J3 

O1 10 10 10 

O2 10 10 9 

O3 10 9 9 

 

The problem is that all the officers have the same maximum HValue (10 for this 

instance) for J1 job and 2 of them have the same maximum HValue (10 again) for J2 job.  

If the algorithm chooses O1 officer for J1 job, then the final distribution will be the 

following. 

 
Job Officer max value Hij 

J1 O1 10 

J2 O2 10 

J3 O3 9 

 

Apparently, the algorithm made a wrong decision when it picked up O1 officer for 

J1 job.  It should pick up O3 officer for J1 job first, then O2 officer for J2 job and finally O1 

officer for J3 job.  Any other combination does not give the desired outcome.  The final 

distribution will be the following. 

 
Job Officer max value Hij 

J1 O3 10 

J2 O2 10 

J3 O1 10 

 

So, there should be a way to address that problem. The following example will 

help towards that direction.  

 



93 

 J1 J2 J3 J4 

O1 10 10 7 10 

O2 10 10 9 8 

O3 10 9 8 7 

O4 10 8 10 10 

 

The following tables are constructed in order to help the algorithm to make the 

correct decision. 

a. Same Max Value 

This table stores the Officers that have the same max HValue.  For the 

above example it will store the O1, O2, O3 and O4 officers since they all have the same 

max HValue 10. 

b. Min Value Applicants 

Looking carefully at the above example, the O3 officer row for jobs J2, J3 

and J4, does not contain any max HValue like the rest rows have.  For example O2 officer 

row has 1 max HValue (10) under job J2, O1 officer row has 2 max HValues (10) under 

jobs J2 and J4, and finally O4 officer row has 2 max HValues (10) under jobs J3 and J4.  

This table stores the O3 officer and the HValue 9, which is the HValue of the same officer 

O3 for the job with the next lower priority (job J2).  

c. Multiple Max Values 

Again, looking at the above example job J2 has 2 max HValues (10) under 

it, for officers O1 and O2.  Also, job J4 has 2 max HValues (10) under it, for officers O1 

and O4.  This table stores these jobs that have multiple max HValues under them, with 

their corresponding officers.  For this instance it stores the J2, O1 pair, the J2, O2 pair, the 

J4, O1 pair and the J4, O4 pair. 

d. One Max Value  

Again, looking at the above example job J3 has 1 max HValue (10) under 

it, for the officer O4.  This table stores these jobs that have only one max HValue under 

them, with their corresponding officers.  For this instance it stores only the J3, O4 pair. 

The algorithm below, a sub-algorithm of the main one, is solving this 

problem taking into account the tables just described. 



94 

Assume that there are multiple max HValues on the Ji job.  The algorithm 

returns one of these officers (with the same max HValue) for the Ji job. 

Algorithm: 

Step 1:  Fill SAME MAX VALUE table 

Step 2:  For All officers ? SAME MAX VALUE  

  BEGIN 

Step 3:   Find Oj that has no max HValue for all jobs Jk with priorities Pk < 

Pi 

Step 4:   For this Oj select Hj, i+1, where Ji+1 is the job with the next lower 

priority of job Ji  

Step 5:   Input Hj, i+1 and Oj in MIN VALUE APPLICANTS table 

  END 

Step 6:  IF (MIN VALUE APPLICANTS ? 0) 

  BEGIN 

Step 7:   Select Om, with min (Hm, i+1) where Om and Hm,i+1 ? MIN VALUE 

APPLICANTS 

Step 8:   Return Om 

  END 

Step 9:  ELSE 

  BEGIN 

Step 10:  For All jobs Jk with priorities Pk < Pi 

   BEGIN 

Step 11:   Find Jp jobs that have one max HValue for all the rest 

officers 

Step 12:   Find correspondent officer Os 

Step 13:   Find Jq jobs that have multiple max HValues for all the rest 

officers 

Step 14:   Find correspondent officers Ot 

Step 15:   Input Jp, Os pair in ONE MAX VALUE table 

Step 16:   Input Jq, Ot pairs in MULTIPLE MAX VALUES table 

   END 



95 

Step 17:  IF (MULTIPLE MAX VALUES ? 0) 

   BEGIN 

Step 18:   IF rest jobs Jk with priorities Pk < Pi are more than 2 

    BEGIN 

Step 19:    Select Os with min (Hs, i+1), where Os ? MULTIPLE 

MAX VALUES 

Step 20:    IF (min (Hs, i+1) < max (Hj, i+1) for all Oj) 

     BEGIN 

Step 21:     Return Os 

     END 

Step 22:    ELSE 

     BEGIN 

Step 23:     Select officer Os ? MULTIPLE MAX 

VALUES with Hs, i+1 = max (Hj, i+1) that has the least number of max HValues beyond Ji+1 

AND the job that has one of these max HValues, has the lowest priority. 

Step 24:     Return Os 

     END 

    END 

Step 25:   ELSE IF rest jobs Jk with priorities Pk < Pi are 2 

    BEGIN 

Step 26:    Select Os with min (Hs, i+2), where Os ? MULTIPLE 

MAX VALUES 

Step 27:    Return Os 

    END 

Step 28:   ELSE IF rest jobs Jk with priorities Pk < Pi are 1 

    BEGIN 

Step 29:    Select Os with min (Hs, i+1), where Os ? MULTIPLE 

MAX VALUES 

Step 30:    Return Os 

    END 

   END 



96 

Step 31:  ELSE IF (MULTIPLE MAX VALUES = 0) AND (ONE MAX 

VALUE ? 0) 

   BEGIN 

    Select Os ? ONE MAX VALUE, where the correspondent 

Jk has priority Pk <  Pi-1 and Pk is minimum 

Step 32:   Return Os 

   END 

Step 33:  ELSE 

   BEGIN 

Step 34:   Choose Os randomly 

Step 35:   Return Os 

   END 

  END 

 

The following examples demonstrate the use of the algorithm. 

 
Example 1: 

 J1 J2 J3 J4 

O1 10 10 7 9 

O2 10 8 9 10 

O3 10 7 8 10 

O4 10 6 10 8 

 
After Step 1 the SAME MAX VALUE table becomes 

 
SAME MAX VALUE table: 

 
Officer O1, O2, O3, O4 

 
 
 
 
 
 



97 

Step 6 statement is False since beyond J1 job, O1 officer row has 1 max HValue (10) 

under job J2, O2 officer row has 1 max HValue (10) under job J4, O3 officer row has 1 

max HValue (10) under job J4 too, and finally O4 officer row has 1 max HValue (10) 

under job J3. 

 
After the loop from Step 10 to Step 16, we have: 

 
MULTIPLE MAX VALUES table: 

 
Job Officer 

J4 O2 

J4 O3 

 
ONE MAX VALUE table: 

 
Job Officer 

J2 O1 

J3 O4 

 

Step 17 is true (MULTIPLE MAX VALUES ? 0) 

Step 18 is true since the jobs Jk with priorities Pk < P1 are more than 2 (these are J2, J3, 

J4). 

After Step 19 the min (Hs, i+1) is H32 = 7 of O3, since for officers O2, O3 ? MULTIPLE 

MAX VALUES, H32 = 7 < 8 = H22. 

After Step 21 the algorithm is ended and officer O3 is returned. 

 
Example 2: 

 J1 J2 J3 J4 

O1 10 10 7 10 

O2 10 8 9 7 

O3 10 7 8 8 

O4 10 6 10 10 

 



98 

After Step 1 the SAME MAX VALUE table becomes 

 
SAME MAX VALUE table: 

 
Officer O1, O2, O3, O4 

 

After the loop from Step 2 to Step 5, we have: 

 
MIN VALUE APPLICANTS table: 

 
Officer HValue 

O2 8 

O3 7 

 
Step 6 statement is True 

After Step 7 officer O3 is selected since H32 = 7 < 8 = H22 

After Step 8 the algorithm is ended and officer O3 is returned.  

 
Example 3: 

 J1 J2 J3 J4 

O1 10 10 7 7 

O2 10 8 10 8 

O3 10 7 9 10 

O4 10 10 8 9 

 
After Step 1 the SAME MAX VALUE table becomes 

SAME MAX VALUE table: 
 

Officer O1, O2, O3, O4 

 
Step 6 statement is False since beyond J1 job, O1 officer row has 1 max HValue (10) 

under job J2, O2 officer row has 1 max HValue (10) under job J3, O3 officer row has 1 

max HValue (10) under job J4, and finally O4 officer row has 1 max HValue (10) under 

job J2. 



99 

After the loop from Step 10 to Step 16, we have: 

 
MULTIPLE MAX VALUES table: 

 
Job Officer 

J2 O1 

J2 O4 

 
ONE MAX VALUE table: 

 
Job Officer 

J3 O2 

J4 O3 

 

Step 17 is true (MULTIPLE MAX VALUES ? 0) 

Step 18 is true since the jobs Jk with priorities Pk < P1 are more than 2 (these are J2, J3, 

J4). 

After Step 19 the min (Hs, i+1) = 10, since for officers O1, O4 ? MULTIPLE MAX 

VALUES, H12 = H42 = 10. 

Step 20 is false since min (Hs, i+1) = 10 = max (Hj, i+1) 

Step 22 is true 

After Step 23 officers O1 and O4 have no max HValue beyond job J2 for each individual 

row.  

After Step 24 the algorithm is ended and officer O4 is returned.  

In the next section the Utility Function is described in full detail. 

C. UTILITY FUNCTION 

The Utility Function tries to capture the concept and philosophy of the algorithm 

and express it in a mathematical model.  The Utility Function helps the detailer to 

evaluate any changes he/she makes on the solution set and compare the change with the 

result of the algorithm. 

The Utility Function should be a summation of factors that will express both the 

priority of the Ji job and the Hij value that is selected for that job.  



100 

 ij

n
Utility Function Fa c tor

i 1

= ∑

=

 (1) 

and 

Factorij = Function (Pi, Hij)        (2) 
 

Factorij is a function of the priority Pi of the Ji job, Hij is the value of the selected 

pair of Ji job and Oj Officer, and n is the total number of the selected jobs that form the 

solution.  Intuitively this Factorij should be the multiplication of the Hij value with the Pi 

priority.  The priority Pi is like a coefficient (weight) that multiplied with the Hij value 

gives the degree of importance the Hij value is for the entire solution. 

Factorij = Pi x Hij         (3) 
 

The main idea is that the summation of the factors of two adjacent jobs of the 

algorithm’s solution should always be greater than the summation of the factors of the 

same adjacent jobs of the changed solution.  ‘Adjacent jobs’ are jobs that their priority 

has 1 value difference. 

In order to explain that better, consider the case of a 2 x 2 matrix of the H table. 

  
 J2 J1 

O1 H21 H11 

O2 H22 H12 

 

Job J2 has a priority P2, which is greater than the priority P1 of job J1. 

P2 > P1 => P1 = P2 – 1         (4) 
 

Suppose that all the Hij values are not NULL and that H21 value is greater than H22 

value and H11 value is greater than H12 value.  The algorithm will pick the H21 value first 

because it belongs to the job with higher priority P2, and then it will choose the remaining 

H12 value.  Below, the Hij values in bold are those that are selected by the algorithm. 

 
 
 



101 

 J2 J1 

O1 H21 H11 

O2 H22 H12 

 
H21 > H22, H11 > H12         (5) 

There is only one change that the detailer could make, and that is select the H22 

value first and then select the remaining H11 value (the values in italics in the table 

above).  The Utility Function should give a bigger result value for the algorithm solution, 

than for the change the detailer makes.  The Utility Function result for the two cases is 

shown below. 

Algorithm Solution:  

Utility Function = Factor21 + Factor12 = Function (P2, H21) + Function (P1, H12) (6) 

Detailer Change: 

Utility Function = Factor22 + Factor11 = Function (P2, H22) + Function (P1, H11) (7) 

It should be that: 

Utility Function Algorithm Solution > Utility Function Detailer Change => (8) 

Function (P2, H21) + Function (P1, H12) > Function (P2, H22) + Function (P1, H11) (9) 

Apparently, this is very hard to succeed since the value of each factor is relative to 

the Pi and Hij values.  There should be a way to benefit the factor with the higher priority. 

The factor of the higher priority should be bigger by t times the factor of the next lower 

priority in order for type (8) to be true. 

For the case above, the Utility Function should be the following.  

Utility Function = t x Factor2j + Factor1j      (10) 

Type (9) is changed into the following form. 

t x Function (P2, H21) + Function (P1, H12) > t x Function (P2, H22) + Function (P1, H11) (9a) 

Type (10) gives the Utility Function for 2 jobs.  The same concept is generalized 

for type (1) that gives the Utility Function for n jobs.  This is described below. 

For the first 2 jobs: 

t x Function (P2, H2j) + Function (P1, H1j) > t x Function (P2, H2j) + Function (P1, H1j) 



102 

For the subsequent 2 jobs: 

t2 x Function (P3, H3j) + t x Function (P2, H2j) > t2 x Function (P3, H3j) + t x Function (P2, H2j) 

For the subsequent 2 jobs: 

t3 x Function (P4, H4j) + t2 x Function (P3, H3j) > t3 x Function (P4, H4j) + t2 x Function (P3, H3j) 

The same procedure is done until the last 2 jobs: 

tn-1 x Function (Pn, Hnj) + tn-2 x Function (Pn-1, H(n-1)j) > tn-1 x Function (Pn, Hnj) + tn-2 x Function (Pn-1, H(n-1)j) 

Type (1a) gives the new form of the Utility Function. 

 i 1
ij

n

Utility Function t x Factor

i 1

−= ∑

=

 (1a) 

=> Utility Function = tn-1 x Factornj + tn-2 x Factor(n-1)j +...+ t x Factor2j + Factor1j  (1b) 

Taking type (3) into consideration we have that: 

Utility Function = tn-1 x Pn x Hni + tn-2 x Pn-1 x H(n-1)i +...+ t x P2 x H2i + P1 x H1i  (1c) 

Let’s go back to the case of the 2 jobs described above.  

 
 J2 J1 

O1 H21 H11 

O2 H22 H12 

 

Combining type (8) with type (1c) we have the following: 

Utility Function Algorithm Solution > Utility Function Detailer Change => 

t x P2 x H21 + P1 x H12 > t x P2 x H22 + P1 x H11      (11) 

The worst case scenario should be one of the following possibilities: 

• H21 value is the maximum value for the J2 job, H11 value is the maximum 
value for the J1 job, H22 value is the next maximum value for the J2 job and 
H12 value is the minimum value for the J1 job. 

• H22 value is the minimum value for the J2 job, H11 value is the maximum 
value for the J1 job, H21 value is the next minimum value for the J2 job and 
H12 value is the minimum value for the J1 job. 

Now it may be seen why it is important to have maximum and minimum values 

for the Hij variable.  Since the maximum and minimum value for the Hij values is 10 and 1 

respectively, the H tables for both possibilities are like the following. 



103 

For the first possibility we have: 

 
 J2 J1 

O1 10 10 

O2 H22 1 

 

Combining type (11) with type (4) we have the following. 

t x P2 x H21 + P1 x H12 > t x P2 x H22 + P1 x H11 => 

t x P2 x 10 + P1 x 1 > t x P2 x H22 + P1 x 10 =>     (11b) 

t > P1 x 9 / P2 x (10 – H22) => 

t > [P1 / P2] x [9 / (10 – H22)] => 

t > [(P2 – 1) / P2] x [9 / (10 – H22)]  

Since (P2 – 1) / P2 = 1 – 1/ P2, it is sufficient for t to be: 

t = 9 / (10 – H22)         (12) 

For the second possibility we have: 

 
 J2 J1 

O1 H21 10 

O2 1 1 

 

Combining type (11) with type (4) we have the following. 

t x P2 x H21 + P1 x H12 > t x P2 x H22 + P1 x H11 => 

t x P2 x H21 + P1 x 1 > t x P2 x 1 + P1 x 10 => 

t > P1 x 9 / P2 x (H21 – 1) => 

t > [P1 / P2] x [9 / (H21 – 1)] => 

t > [(P2 – 1) / P2] x [9 / (H21 – 1)]  

Since (P2 – 1) / P2 = 1 – 1/ P2, it is sufficient for t to be: 

t = 9 / (H21 – 1)         (12a) 

So, in both possibilities t is a function of the maximum value and the next most 

maximum value, or a function of the minimum value and the next most minimum value. 



104 

In order to have a unique t value, the maximum and the next most maximum 

value of all the Hij variables are computed, and are used for this project.  In the extreme 

case that the maximum value and the next most maximum value are the same, then there 

are several best solutions.  

t = 9 / (max (Hij) – next max (Hij))       (12b) 

It is obvious that as next max (Hij) approaches the max (Hij), the t value increases 

infinitely.  Things become worse, since t is to the power of (i – 1) and then multiplied by 

Pi and Hij as type (1c) shows.  This means that the result of the Utility Function would be 

too big for a computer to handle.  One solution would be to compute the logarithm of the 

factor ti-1 x Pi x Hij.  But the logarithm of each factor does not provide any solution.  Take 

type (12b), but with the use of logarithms instead. 

log10(t x P2 x 10) + log10(P1 x 1) > log10(t x P2 x H22) + log10(P1 x 10) => 

log10(t) + log10(P2) + log10(10) + log10(P1) > log10(t) + log10(P2) + log10(H22) + log10(P1) + 

log10(10) =>  

log10(H22) < 0 

The last is impossible since: 

H22 > 1 => log10(H22) > log10(1) = 0. 

In order to avoid this problem, the logarithm of the summation of every 2 

subsequent factors is used.  

For the first 2 jobs we have that t x P2 x H2j + P1 x H1j > t x P2 x H2j + P1 x H1j. 

Since both summations are numbers greater or equal to 1, logarithms can be put around 

them.  So we have that log10(t x P2 x H2j + P1 x H1j) > log10(t x P2 x H2j + P1 x H1j), which 

is true. 

It is true for the subsequent 2 jobs: 

t2 x P3 x H3j + t x P2 x H2j > t2 x P3 x H3j + t x P2 x H2j => 

log10(t2 x P3 x H3j + t x P2 x H2j) > log10(t2 x P3 x H3j + t x P2 x H2j) 

It is true for next the subsequent 2 jobs: 

t3 x P4 x H4j + t2 x P3 x H3j > t3 x P4 x H4j + t2 x P3 x H3j => 

log10(t3 x P4 x H4j + t2 x P3 x H3j) > log10(t3 x P4 x H4j + t2 x P3 x H3j) 



105 

It is true for the last 2 jobs too: 

tn-1 x Pn x Hnj + tn-2 x Pn-1 x H(n-1)j > tn-1 x Pn x Hnj + tn-2 x Pn-1 x H(n-1)j => 

log10(tn-1 x Pn x Hnj + tn-2 x Pn-1 x H(n-1)j) > log10(tn-1 x Pn x Hnj + tn-2 x Pn-1 x H(n-1)j) 

All these result to the final form of the Utility Function, which is: 

 
i-1 i-2 

10 i ij i-1 (i-1)j)

      n

Utility Function =  log (t  x P  x H  + t x P  x H

      i = 2

∑
, 

where t = 9 / (max (Hij) – next max (Hij)). 

The priorities Pi are stored in the COUNTER table, while the Hij values are stored 

in the H table.  The result of the Utility Function is stored in the ESTIMATE 

FUNCTION RESULT table.  The changes the detailer makes from the MAX VALUE 

table (the table that stores the algorithm’s solution), are stored in the MANIPULATE 

SOLUTION.  Any job and officer the detailer changes from the MANIPULATE 

SOLUTION table, is stored in the DELETED JOBS MANIPULATE and UNASSIGNED 

APPLICANTS MANIPULATE table respectively.  

Actually, the ESTIMATE FUNCTION RESULT table stores the difference of the 

Utility Function results from the MAX VALUE and MANIPULATE SOLUTION table. 

So, if for example the result of the Utility Function for the algorithm’s solution is 40 and 

the result of the Utility Function for the detailer’s change is 30, the value that is stored in 

the ESTIMATE FUNCTION RESULT table is 10. 

When the detailer is ready to make a decision, the MAX VALUE table’s data or 

the MANIPULATE SOLUTION table’s data are stored in the ASSIGNMENT table. 

The Transact-SQL code of the Utility Function and all the supportive sub-

procedures are presented in the Appendices.  

D. TEST RESULTS 

In order to test the algorithm and the Utility Function, tests have been planned and 

executed.  These tests are based on the following issues. 

• Estimation of the time length that the computer spends running the 
algorithm in order to find a distribution. 



106 

• Increases on the result that is stored in the ESTIMATE FUNCTION 
RESULT table, when changes are made on the algorithm’s solution. 

• Changes on the distribution of the algorithm, when different coefficient 
weights for the decision variables are given. 

A description of the tests is provided below, based on the issues above. 

1. Time Length Estimation 

The following test considers 22 jobs and 24 officers.  The algorithm takes 9 

seconds to run and give a distribution.  Below are the results. 

 

 
Figure 25.   Job-Platform Pairs to be Fulfilled-Manpower Database. 



107 

 
 
 
 
 
 
 

 
Figure 26.   Officers To Be Assigned to the Job-Platform Pairs Above-Manpower 

Database. 



108 

 
 
 
 
 
 
 

 
Figure 27.   H Table (Only the First 44 Out of 528 Records Are Shown)-Manpower 

Database. 
 



109 

 
Figure 28.   The Solution of the Algorithm-MAX VALUE Table of Manpower 

Database. 
 

This test takes the case of four officers to be distributed on four jobs.  The 

algorithm runs instantly.  Below are the results. 



110 

 
 
 
 
 
 
 

 
Figure 29.   Job-Platform Pairs to Be Fulfilled-Manpower Database. 



111 

 
 
 
 
 
 
 

 
Figure 30.   Officers To Be Assigned to the Job-Platform Pairs Above-Manpower 

Database. 



112 

 
 
 
 
 
 
 

 
Figure 31.   H Table-Manpower Database. 

 



113 

 
Figure 32.   The Solution of the Algorithm-MAX VALUE Table of Manpower 

Database. 
 

Apparently, for large loads of jobs the computational time will increase 

significantly.  Specifically, suppose that the set of jobs is n.  From the design of the 

algorithm the worst case computational time is O(n2).  The reason is that the algorithm 

may backtrack until it finds a path in order to fulfill all the jobs.  The worst case scenario 

will be that the algorithm backtracks for every officer, beginning from the highest priority 

job until the lowest priority job and then backtracks to highest priority job again.  This 

means that the algorithm goes back and forth for all n officers n times, which concludes 

to the O(n2) computational time. 

 

 



114 

The computational time for the average case scenario is expected to be O(n), since 

the algorithm won’t backtrack a lot.  Usually, it tracks back a couple of times for a couple 

of jobs.  So it will begin from the highest priority job and end to the lowest priority job 

for a total computational time of O(n). 

2. Increases on the Estimate Function Result When Changes Are Made 
on the Algorithm’s Solution 

In order to show the changes, the following scenario of available jobs and officers 

is put into the Manpower database. 

APPLICANT table: The same with figure 24. 

JOB PLACE table: The same with figure 23. 

JOB table: 

 
Figure 33.   JOB Table-Manpower Database. 

 
 



115 

EXPERIENCE table: 

 

 
Figure 34.   EXPERIENCE Table-Manpower Database. 



116 

 

JOB LANGUAGE table: 

 
Figure 35.   JOB LANGUAGE Table-Manpower Database. 



117 

 

APPLICANT LANGUAGE table: 

 

 
Figure 36.   APPLICANT LANGUAGE Table-Manpower Database. 



118 

 

JOB CREDENTIALS table: 

 

 
Figure 37.   JOB CREDENTIALS Table-Manpower Database. 



119 

 

APPLICANT CREDENTIALS table: 

 

 
Figure 38.   APPLICANT CREDENTIALS Table-Manpower Database. 



120 

 

JOB QUALIFICATION table: 

 

 
Figure 39.   JOB QUALIFICATION Table-Manpower Database. 



121 

 

QUALIFICATION APPLICANT table: 

 
Figure 40.   QUALIFICATION APPLICANT Table-Manpower Database. 



122 

 

APPLICANT PREFERENCE table: 

 

 
Figure 41.   APPLICANT PREFERENCE Table-Manpower Database. 



123 

 

COMMAND PREFERENCE table: 

 

 
Figure 42.   COMMAND PREFERENCE Table-Manpower Database. 
 

After the algorithm is ran, the H table becomes as shown in the figure below. 

 



124 

 
Figure 43.   H Table-Manpower Database. 

 

The MAX Value table results are shown in the figure below. 

 



125 

 
Figure 44.   Solution (Screen 1)-Manpower Database. 



126 

 
Figure 45.   Solution (Screen 2)-Manpower Database. 

 

The detailer then makes the following change.  He/she assigns the Commanding 

Officer’s job of the ship Frigate 1 to the officer 3, and the Executive Officer’s job of the 

ship Frigate 1 to the officer 4. 

The following screenshots show the new results on the solution and the Estimate 

Function. 



127 

 
 
 
 
 
 
 

 
Figure 46.   Change on the Solution and Estimate Function (Screen 1)-Manpower 

Database. 



128 

 
Figure 47.   Change on the Solution and Estimate Function (Screen 2)-Manpower 

Database. 
 

Apparently, the detailer selected officers with worse HValues than the algorithm 

selected.  This resulted in an increase of the Estimate Function by 0.0485 units. 

3. Changes on the Algorithm’s Distribution, When Different Coefficient 
Weights for the Decision Variables Are Given 

For the case just described above, the solution of the algorithm presented in 

Figures 37 and 38 was made with coefficient weights equal to 1 for all the criteria as 

shown in the figure below. 



129 

 
Figure 48.   Coefficient Weights Per Criterion-Manpower Database. 
 

If the detailer changes the criteria weights, both the H table and the solution 

change.  Assume that the detailer would like to give more weight to the officers’ 

preference and the commands’ preference than to their Credentials, Experience and 

Language criteria.  He/she decides then to put weight 5 to the officers’ and commands’ 

preference criteria and leave the rest criteria as they are. 

 



130 

 
Figure 49.   Coefficient Weights Per Criterion After the Weights Change-Manpower 

Database. 
 

Now that the weights are changed, a different H table and a different solution will 

be produced.  The two figures below show that change on the H table. 



131 

 
 
 
 
 
 

 
Figure 50.   H Table Before the Weights Change and the Algorithm Runs-Manpower 

Database. 
 



132 

 
Figure 51.   H Table After the Weights Change and the Algorithm Runs-Manpower 

Database. 
 

In the two figures below, the new solution of the algorithm is shown. 



133 

 
 
 
 
 
 
 

 
Figure 52.   Solution (Screen 1)-Manpower Database. 

 



134 

 
Figure 53.   Solution (Screen 2)-Manpower Database. 

 

Again, below are the 2 H tables and highlighted is the algorithm’s choice of 

HValues for both cases. 

 

H table before: 

 CO EXO COMO NAVO 

1 9.608 8.615 10 10 

2 9.217 9.653 10 9.333 

3 9.217 10 10 10 

4 10 9.653 9.666 9.666 

 
 
 
 



135 

H table after: 

 CO EXO COMO NAVO 

1 10 8.641 10 10 

2 9.558 9.575 10 9.475 

3 9.205 10 9.663 10 

4 9.735 9.575 9.579 9.912 

 

Until now, both the Manpower database and the multi-criteria decision model are 

described.  What remains is the description of the user interface that helps the users, the 

officers, the commands and the detailer to access the database and manipulate data.  The 

next chapter describes the Manpower web site’s form and structure.  



136 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



137 

V. WEBSITE  

The previous sections described the database and the multi-criteria decision tool 

for the Greek Navy’s Manpower model.  This chapter discusses the website, which helps 

the officers and the commands to specify their preferences and the detailer to administer 

the database and make decisions by using the decision support environment. 

A. 3-TIER ARCHITECTURE 

Before discussing the web site structure and design, it is useful to describe the 3-

tier architecture model used for the implementation of this project.  The figure below 

describes the basic form of a 3-tier architecture.  The 3-tier architecture logically 

separates the functions of an application into a user interface component, a server 

business logic component, and a database component.  

Many application server products and middleware products provide support for 

building and deploying applications using the 3-tier architecture.  In most of these cases a 

primary role of the middle tier business logic components is to manipulate data stored in 

and accessed from the 3rd tier.  

 
 Client Computer 

Internet Web  
Server 

DB 
Server 

 
Figure 54.   3-Tier Architecture. 



138 

For this thesis, the middle-tier component is a web server running Windows IIS 

5.0.  The third-tier component is the Windows SQL Server 2000, which is the database 

server.  This is the place where the data and the stored procedures of the multi-criteria 

decision tool reside, as described in the previous chapters.  The first-tier component is the 

browser for the Manpower database users.  The figure below describes the 3-tier 

architecture for our prototype. 

 
 Client 

Internet 
Web  
Server running 
IIS 5.0  

DB 
Server running 
SQL Server 2000 

 
Figure 55.   3-Tier Architecture-Manpower Database. 

 

3-tier architecture meets the requirements of large-scale Internet or intranet 

client/server applications because they are scalable, robust and flexible.  They are easier 

to manage and deploy on the network, since most of the code runs on the servers. 

3-tier applications minimize network interchanges by creating abstract levels of 

service.  Instead of interacting with the database directly, the client calls business logic 

which resides on the server.  The business logic then accesses the database on the client’s 

behalf (middleware functionality). 

For the thesis model specifically, almost all the logic of the architecture is 

concentrated on the database server side.  This means that the network load is low since 

the only thing the web server does is to send commands to the database server on the 



139 

client’s behalf.  These commands activate stored procedures on the database server’s 

side, which do the entire job.  Only the results of these procedures are sent to the client.  

The web server functions as a go-between between the client and the database server. 

B. WEBSITE STRUCTURE 

The website structure is based on the tasks that three types of users (officer, 

command and detailer) want to perform.  The web design tool that is used for that 

purpose is the Macromedia Dreamweaver MX.  The website administration is managed 

through the Microsoft IIS 5.0 server. 

In order for the application to communicate with the database, an interface called 

Open Database Connectivity Driver (ODBC) must be installed first.  ASP applications 

are fluent ODBC speakers thanks to a built-in OLE DB/ODBC interpreter. 

The figure below shows the ODBC connectivity for the Manpower database.  The 

name of the connection is ‘LocalServer’ since the SQL Server 2000 resides in the same 

computer. 



140 

 
Figure 56.   ODBC connectivity-Manpower Website. 

 

The Manpower site is the place where all web pages are stored.  The figure below 

shows the configurations of the Manpower website. 



141 

 
Figure 57.   Manpower Website Configuration Wizard. 

 

In order for the website to connect to the database a Data Source Name (DSN) 

should be created.  A DSN is a one-word identifier that points to the database and 

contains all the information needed to connect to it.  A DSN can be used if the connection 

is made through an ODBC driver.  Below is the DSN for the Manpower website.  This 

DSN string contains not only the ODBC connection named ‘LocalServer’, but also the 

user name and password of the administrator who creates the connection.  After the 

connection is created successfully, then the web site administrator/creator has all the 

Manpower database components (tables, stored procedures etc.) available as shown at the 

right hand side of the figure. 



142 

 
Figure 58.   DSN Connection-Manpower Website. 

 

Dreamweaver allows the administrator to create a recordset from which to extract 

dynamic content.  A recordset is the result of a database query.  It extracts the specific 

information the user requests and allows the user to display that information within a 

specified page. 

Since almost all the functionality resides on the database server side, the 

administrator can use any stored procedures in order to define the kind of recordset the 

administrator wants for the webpage. 



143 

 
Figure 59.   Recordset Based on the ksergis.ShowCredentialsIdOnApplicantId Stored 

Procedure-Manpower Website. 
 

Dreamweaver allows the administrator to create interactive forms in order to 

allow the user to input his/her information in the webpage and store them in the database.  

For that purpose Dreamweaver has Form components collected in a bar (Form bar).  The 

administrator can choose any component by performing a simple click.  The most popular 

components are the following. 

• Form inserts a form in the document.  Dreamweaver inserts opening and 
closing form tags in the HTML source code.  Any additional form objects, 
such as text fields, buttons, and so on must be inserted between the form 
tags for the data to be processed correctly by all browsers.  

• Text Field inserts a text field in a form.  Text fields accept any type of 
alphanumeric entries.  The entered text can be displayed as a single line, 
as multiple lines, or as bullets or asterisks (for password protection).  

• Field inserts a field in the document in which user data can be stored.  
Hidden fields let the administrator store information entered by a user, 



144 

such as a name, e-mail address, or purchase preference, and then use that 
data when the user next visits the site.  

• Check Box inserts a check box in a form.  Check boxes allow multiple 
responses in a single group of options.  A user can select as many options 
as apply.  

• Radio Button inserts a radio button in a form.  Radio buttons represent 
exclusive choices.  Selecting a button within a group deselects all others in 
the group.  For example a user can select Yes or No.  

• Radio Group inserts a collection of radio buttons which share the same 
name.  

• List/Menus allows the administrator to create user choices in a list.  The 
List option displays the option values in a scrolling list and allows users to 
select multiple options in the list.  The Menu option displays the option 
values in a pop-up menu and allows users to select only a single choice.  

• Button inserts a text button within a form.  Buttons perform tasks when 
clicked, such as submitting or resetting forms.  The administrator can add 
a custom name or label to a button, or use one of the predefined “Submit” 
or “Reset” labels.  

The figure below shows a webpage of the Manpower website.  This webpage 

contains a Form, a List/Menu, two Hiddenfields and two buttons (one called Update and 

one called Reset). 



145 

 
Figure 60.   Webpage with a Form-Manpower Website. 

 

One feature of Dreamweaver is the ability to build master pages.  A master page 

is a page that lists records.  For that purpose, Dreamweaver provides the webpage 

designer with a special bar named ‘Application’.  The most popular components of the 

‘Application’ bar are the following. 

• Repeated Region displays more than one record at a time.  The repeated 
region is normally applied to the table row containing the dynamic 
content. 

• Dynamic Table creates the table row and the repeated region 
automatically.  

• Recordset Navigation Bar helps the user to navigate through all the 
records. 

The following figures display the ‘ViewCredentialInfo.asp’ page in both the 

Dreamweaver and Internet environment.  



146 

 
 
 
 
 
 
 

 
Figure 61.   Master Page-The Repeated Region and the Navigation Bar Are Displayed. 



147 

 
 
 
 
 
 
 

 
Figure 62.   Master Page (1st Screen)-How the Repeated Region and the Navigation 

Bar Are Displayed on the Internet. 
 



148 

 
Figure 63.   Master Page (2nd Screen)-How the Repeated Region and the Navigation 

Bar are Displayed on the Internet. 
 

C. MENU NAVIGATIONAL TREE 

The three categories of users determine the shape and structure of the Manpower 

website.  These categories of users are the officer, the command and the detailer.  The 

officer has to declare his preferences for the next assignment.  The command has to 

declare its preferences for the officers who wants to occupy one of their jobs.  The 

detailer has control of the website.  The detailer has to view all the records of the 

Manpower database, update them or delete them.  The detailer also has to solve the 

assignment problem and change the solution according to the Navy’s desires. 

The following lines present a description of the sequence of actions each one of 

the users has to perform in order to accomplish his/her role in the Manpower website.  

Each step has a corresponding number of stored procedures that are executed.  These are 

also presented in this section. 



149 

1. Officer 

Sign In 

Login 

Control 

View 
Current 

Assignment 1 

Select 
Platform / 

Base & 
Preferences 4 

Update 
Account 2 

Select New 
Job 3 

Change User 
Name - 

Password 7 

Delete 
Preferences 6 

View 
Preferences 5 

 
 

Stored Procedures for Officer 
# Name Variables Description 

1 ShowCurrentAssignment ApplicantId Returns the officer’s current 
assignment 

ShowApplicantAddressPhoneData ApplicantId Returns the officer’s address and phone 
information 

UpdateApplicantData 

ApplicantId, 
FirstName, LastName, 
MiddleName, 
EmailAddress 

Updates the officer’s First Name, Last 
Name, Middle Name, Email Address 

UpdateAddressData  
ApplicantId, 
CityOrTown, Street, 
Apartment, ZIP 

Updates the City or Town, Street, 
Apartment and ZIP code the officer 
lives in 

2 

UpdatePhoneData 

ApplicantId, 
HomePhoneNumber, 
CellPhoneNumber, 
OtherPhoneNumber 

Updates the officer’s Home Phone 
Number, Cell Phone Number and Other 
Phone Number 

ShowJobId  Returns all the jobs 
3 

CheckApplicantSuitable ApplicantId Returns the jobs the officer is suitable 
for 

ShowPlaceCodeOnJobId JobId Returns the Platform/Base data per job 

4 
CheckPreference 

ApplicantId, 
PreferenceApplicant, 
PlaceCode, JobId 

Checks if the officer has selected the 
same Preference number or 
Platform/Base 

CheckApplicantPreferenceExists ApplicantId Checks if the officer has at least one 
Preference 5 

ShowApplicantPreferences ApplicantId Returns all the officer’s Preferences 



150 

Stored Procedures for Officer 
# Name Variables Description 

ShowApplicantPreferences ApplicantId Returns all the officer’s Preferences 
6 

DeleteApplicantPreference ApplicantId, 
PreferenceApplicant Deletes an officer’s Preference 

CheckUserName UserName Checks if the User Name is unique 
7 

UpdateUserNamePassword ApplicantId, 
UserName, Password 

Updates the officer’s User Name and 
Password 

 
2. Command 

Sign In 

Login 

Control 

Select 
Officer 

View Command’s 
Preferences Per  
Platform/Base 4 

View Entire 
Preferences 5 

Delete 
Preferences 6 

Change User 
Name - 

Password 7 

Select 
Base/Platform 1 

Select 
Preference 2 

View Valid 
Officers 3 

 
 

 

 

 

 

 

 

 



151 

Stored Procedures for Command 
# Name Variables Description 

1 ShowPlaceCodeOnCommandCode CommandCode Returns the Platform/Base code per 
command 

ShowJobIdOnPlaceCode PlaceCode Returns the jobs per Platform/Base 

ShowApplicantLastNameFirstName  Returns the Officer’s First Name and 
Last Name 

2 

CheckPreferenceCommand 

CommandCode, 
ApplicantId, 

PreferenceCommand, 
PlaceCode, JobId 

Checks if the command has selected 
the same Preference number or the 

same officer and Platform/Base twice 

ShowJobIdOnPlaceCode PlaceCode Returns the jobs per Platform/Base 
3 

CheckSuitableApplicantsOnJob JobId Returns the officers that are eligible 
for a job 

ShowPlaceImage CommandCode Returns the Platform/Base jpeg files 
per command 4 

ShowCommandPreferencesOnPlaceCo
de 

CommandCode, 
PlaceCode 

Returns the command’s preferences 
per Platform/Base 

5 ShowCommandPreferences CommandCode Returns the command’s preferences 
ShowCommandsPreferencesForDelete CommandCode Returns the command’s preferences 

6 
DeleteCommandPreference 

PlaceCode, JobId, 
PreferenceCommand, 

ApplicantId 
Deletes a command’s preference 

CheckUserNameCommand UserName Checks if the User Name is unique 7 
 UpdateUserNamePasswordCommand CommandCode, 

UserName, Password 
Updates the command’s User Name 

and Password 
 
3. Detailer 

Sign In 

Login 

Control 

View 
Records 

Detailer 
Login 

Insert 
Records 

Update 
Records 

Delete 
Records  

Solve 
Model 

 
     



152 

a. View Records 

View 
Records 

All 
Jobs 

Experience 
Per 

Job/Officer 16 

Language 20 Select Job 1 

Experience 
Required  2 

Qualifications 6 

Credentials 
and 

Minimum 
Grades 7 

Specialties 5 Language 
and 

Minimum 
Grades 4 

Ranks 3 

Bases/Platforms 
that have this 

Job 8 

Assignments  17 Rank 19 Credentials 18 

 



153 

All 
Officers 

Specialty 21 

Qualifications 22 
 

Command’s 
Preference 
and Data 

Base/ 
Platform 26 

Criteria 
Weights 27 

Select Officer 9 

Officer’s 
Personal 

Information 
10 

Command’s 
Data 23 

 

Command’s 
Preferences 

 

Select 
Base/Platform 24 

 

Show 
Preferences 25 

 

Officer’s 
Credentials 
and Grades 

11 

Qualifications 
12 

Rank and 
Specialties 

13 

Languages 
and 

Grades 14 

Preferences 
15 

 
 

Stored Procedures for View Records 
# Name Variables Description 
1 ShowJobId  Returns all jobs 
2 ShowExperienceRequired JobId, JobName Returns the required experience per 

job 
3 ShowRankNameTimeSeaServiceOnJobId JobId Returns the rank and time of sea 

service per job 
4 ShowLanguageNameLanguageDegreeOn

JobId 
JobId Returns the language and its 

minimum grades per job 
5 ShowSpecialtyNameOnJobId JobId Returns the name of the specialty per 

job 
6 ShowQualificationNameOnJobId JobId Return the qualification’s name per 

job 
7 ShowCredentialsNameCredentialsGrade

OnJobId 
JobId Returns the credential and its 

minimum grades per job 
8 ShowPlaceNamePlaceImageCommandNa

meOnJobId 
JobId Returns the platforms’ name, jpeg file 

and command per job 
9 ShowApplicantIdLastNameFirstNameW

ORank 
 Returns the officer’s last name and 

first name 
10 ShowApplicantAddressPhoneData ApplicantId Returns the officer’s address and 

phone data 



154 

Stored Procedures for View Records 
# Name Variables Description 

ShowCredentialsIdOnApplicantId ApplicantId Returns the credentials and the 
corresponding grades per officer 

11 

ShowApplicantIdLastNameFirstNameOn
ApplicantId 

ApplicantId Returns the officer’s first and last 
name 

ShowApplicantIdLastNameFirstNameOn
ApplicantId 

ApplicantId Returns the officer’s first and last 
name 

12 

ShowQualificationCodeOnApplicantId ApplicantId Returns the qualifications per officer 
ShowApplicantIdLastNameFirstNameOn

ApplicantId 
ApplicantId Returns the officer’s first and last 

name 
13 

ShowRankCodeSpecialtyCodeSeaService
OnApplicantId 

ApplicantId Returns the officer’s rank, specialty 
and sea service 

ShowApplicantIdLastNameFirstNameOn
ApplicantId 

ApplicantId Returns the officer’s first and last 
name 

14 

ShowLanguageCodeOnApplicantId ApplicantId Returns the officer’s languages and 
the corresponding grades 

ShowApplicantIdLastNameFirstNameOn
ApplicantId 

ApplicantId Returns the officer’s first and last 
name 

15 

ShowApplicantPreferences ApplicantId Returns the officer’s preferences 
16 ShowExperiencePerJobOfficer  Returns the officer’s experience per 

job 
17 ShowAllAssignmentInfo  Returns all the assignments 
18 ShowCredentialsId  Returns all the credentials 
19 ShowRankData  Returns all the ranks 
20 ShowLanguageCode  Returns all the languages 
21 ShowSpecialtyCode  Returns all the specialties 
22 ShowQualificationCode  Returns all the qualifications 
23 ShowCommandsData  Returns all the commands 
24 ShowPlaceImage CommandCode Returns the jpeg files of all the 

platforms /bases per command 
25 ShowCommandsPreferencesOnPlaceCod

e 
CommandCode, 

PlaceCode 
Returns the command’s preferences 

per platform /base 
26 ShowPlaceData  Returns all the platforms /bases 
27 ShowCoefficients  Returns all the coefficients with their 

weights 
 



155 

 
b. Insert Records 

Insert 
Records 

Job Command 

Language 17 

Insert Job 1 

Qualifications 5 Ranks 2 

Bases/Platforms 
that have this 

Job 7 

Experience Per 
Job/Officer 

Rank 18 Credentials 13 

Credentials 
and 

Minimum 
Grades 6 

Specialties 4 Language 
and 

Minimum 
Grades 3 

Select Job 19

Select 
Officer 20 

Insert 
Experience 

Job, Officer 21 

 



156 

 

Insert 
Records 
(Cont’d) 

Officers Specialty 16 

Qualifications 15 
 

Report 
/Detach 

Date 

Base/ 
Platform 14 

Criteria 
Weights 24 

Select Officer 8 

Select Job 22 
 

Insert Dates 23 
 

Officer’s 
Credentials 

and Grades 12 

Qualifications 11 Rank and 
Specialties 9 

Languages 
and 

Grades 10 

 
 

Stored Procedures for Insert Records 
# Name Variables Description 

ShowJobId  Returns all jobs 
CheckJobId JobId Checks if the JobId is unique 1 

CheckJobName JobName Checks if the JobName is unique 
ShowRankCode  Returns all the ranks 2 

CheckJobIdRankCode JobId, RankCode Checks if the JobId, RankCode pair exists 
ShowLanguageCode  Returns all the languages 

3 
CheckJobIdLanguageCode JobId, 

LanguageCode 
Checks if the JobId, LanguageCode pair 

exists 
ShowSpecialtyCode  Returns all the specialties 

4 
CheckJobIdSpecialtyCode JobId, 

SpecialtyCode 
Checks if the JobId, SpecialtyCode pair 

exists 
ShowQualificationCode  Returns all the qualifications 

5 
CheckJobIdQualificationCode JobId, 

QualificationCode 
Checks if the JobId, QualificationCode pair 

exists 
6 ShowCredentialsId  Returns all the credentials 



157 

Stored Procedures for Insert Records 
# Name Variables Description 
 CheckJobIdCredentialsId JobId, 

CredentialsId Checks if the JobId, CredentialsId pair exists 

ShowPlaceCode  Returns all the Platforms/Bases 7 
CheckJobIdPlaceCode JobId, PlaceCode Checks if the JobId, PlaceCode pair exists 

8 ShowApplicantIdLastNameFir
stNameWORank  Returns the officer’s last name and first 

name 
ShowRankCode  Returns all the ranks 

ShowSpecialtyCode  Returns all the specialties 
ShowApplicantIdLastNameFir
stNameRankNameOnApplicant

Id 
ApplicantId Returns the last name, first name and rank 

per officer 9 

UpdateApplicantIdSpecialtyRa
nk 

ApplicantId, 
SpecialtyCode, 

RankCode, 
SeaTimeForRank 

Updates the specialty, rank and required sea 
time for the rank per officer 

ShowLanguageCode  Returns all the languages 
ShowApplicantIdLastNameFir
stNameRankNameOnApplicant

Id 
ApplicantId Returns the last name, first name and rank 

per officer 10 

CheckApplicantIdLanguageCo
de 

ApplicantId, 
LanguageCode 

Checks if the ApplicantId, LanguageCode 
pair exists 

ShowQualificationCode  Returns all the qualifications 
ShowApplicantIdLastNameFir
stNameRankNameOnApplicant

Id 
ApplicantId Returns the last name, first name and rank 

per officer 11 

CheckApplicantIdQualification
Code 

ApplicantId, 
QualificationCode 

Checks if the ApplicantId, 
QualificationCode pair exists 

ShowCredentialsId  Returns all the credentials 
ShowApplicantIdLastNameFir
stNameRankNameOnApplicant

Id 
ApplicantId Returns the last name, first name and rank 

per officer 12 

CheckApplicantIdCredentialsId ApplicantId, 
CredentialsId 

Checks if the ApplicantId, CredentialsId 
pair exists 

CheckCredentialsId CredentialsId Checks if the CredentialsId is unique 13 
CheckCredentialsName CredentialsName Checks if the CredentialsName is unique 

14 ShowCommandCode  Returns all Command Codes 
CheckQualificationCode QualificationCode Checks if the QualificationCode is unique 15 
CheckQualificationName QualificationName Checks if the QualificationName is unique 

CheckSpecialtyCode SpecialtyCode Checks if the SpecialtyCode is unique 16 
CheckSpecialtyName SpecialtyName Checks if the SpecialtyName is unique 
CheckLanguageCode LanguageCode Checks if the LanguageCode is unique 17 
CheckLanguageName LanguageName Checks if the LanguageName is unique 

CheckRankCode RankCode Checks if the RankCode is unique 18 
CheckRankName RankName Checks if the RankName is unique 

19 ShowJobId  Returns all jobs 

20 CheckSuitableApplicantsOnJo
bId JobId Checks if an officer is eligible for a job 

CheckExperienceExists JobId, ApplicantId Checks if an experience has been already 
inserted 21 

InsertExperience JobId, ApplicantId, 
Experience 

Inserts the experience the officer has for a 
job 

22 ShowJobIdPlaceCodeApplican  Returns all the assignments 



158 

Stored Procedures for Insert Records 
# Name Variables Description 

tIdFromASSIGNMENT 
ShowJobIdPlaceCodeApplican
tIdOnApplicantIdFromASSIG

NMENT 
ApplicantId Returns an officer’s assignment 

CheckDateExists ApplicantId Checks if the report or detach date exists 23 

InsertDate 
ApplicantId, 
ReportDate, 
DetachDate 

Inserts the Report and Detach Dates 

CheckCoefficientExists WeightName Checks if the coefficient exists 
24 

InsertCoefficient WeightName, 
WeightValue Inserts the coefficient and its value 

 



159 

c. Update Records 

Update 
Records 

Job 

Update JobId, 
JobName, 

Experience 2 

Qualifications 6 Ranks 3 

Bases/Platforms 
that have this 

Job 8 

Experience Per 
Job/Officer 

Credentials 
and 

Minimum 
Grades 7 

Specialties 5 Language 
and 

Minimum 
Grades 4 

Select Job 17

Select 
Officer 18 

Update 19 

Select Job 1 

 



160 

Update 
Records 
(Cont’d) 

Officers Report 
/Detach 

Date 

Criteria 
Weights 

Select Officer 9 

Select Job 20 
 

Insert Dates 21 
 

Select 
Weight 22 

 

Update 23 
 

Rank and 
Specialty 10 

Credentials 
and Grades 

Languages 
and 

Grades 

Select 
Language 11 

Enter New 
Grade 12 

Update 13 

Select 
Credential 14 

Enter New 
Grade 15 

Update 16 
 

 

 

 

 

 



161 

Stored Procedures for Update Records 
# Name Variables Description 
1 ShowJobId  Returns all jobs 

ShowJobId  Returns all jobs 
ShowExperienceRequired JobId, JobName Returns the job’s experience required 

CheckJobId JobIdNew Checks if the new JobId is unique 
CheckJobName JobNameNew Checks if the new JobName is unique 2 

UpdateJobIdJobNameExp
erienceRequired 

JobId, JobIdNew, 
JobNameNew, 

ExperienceRequired 

Updates the JobId, the JobName and the 
experience required 

ShowRankCode  Returns all the ranks 
3 

CheckJobIdRankCode JobId, RankCode Checks if the JobId, RankCode pair 
exists 

ShowLanguageCode  Returns all the languages 
4 

CheckJobIdLanguageCode JobId, LanguageCode Checks if the JobId, LanguageCode pair 
exists 

ShowSpecialtyCode  Returns all the specialties 
5 

CheckJobIdSpecialtyCode JobId, SpecialtyCode Checks if the JobId, SpecialtyCode pair 
exists 

ShowQualificationCode  Returns all the qualifications 
6 CheckJobIdQualificationC

ode JobId, QualificationCode Checks if the JobId, QualificationCode 
pair exists 

ShowCredentialsId  Returns all the credentials 
7 

CheckJobIdCredentialsId JobId, CredentialsId Checks if the JobId, CredentialsId pair 
exists 

ShowPlaceCode  Returns all the Platforms/Bases 
8 

CheckJobIdPlaceCode JobId, PlaceCode Checks if the JobId, PlaceCode pair 
exists 

9 ShowApplicantIdLastNam
eFirstNameWORank  Returns the officer’s last name and first 

name 
ShowRankCode  Returns all ranks 

ShowSpecialtyCode  Returns all specialties 
ShowApplicantRankSpeci

altySeaTimeForRank ApplicantId Returns the rank, specialty and sea time 
for rank per officer 

ShowApplicantIdLastNam
eFirstNameRankNameOn

ApplicantId 
ApplicantId Returns the officer’s last name, first 

name and rank 
10 

UpdateApplicantIdSpecialt
yRank 

ApplicantId, RankCode, 
SpecialtyCode, 

SeaTimeForRank 

Updates the officer’s rank, specialty, 
sea time for his/her rank 

ShowLanguageCodeOnAp
plicantId ApplicantId Returns the officer’s languages and 

grades 
11 ShowApplicantIdLastNam

eFirstNameRankNameOn
ApplicantId 

ApplicantId Returns the officer’s last name, first 
name and rank 

ShowLanguageDegree ApplicantId, 
LanguageCode 

Returns the officer’s language and 
grade 

12 ShowApplicantIdLastNam
eFirstNameRankNameOn

ApplicantId 
ApplicantId Returns the officer’s last name, first 

name and rank 

13 UpdateLanguageDegree 
ApplicantId, 

LanguageCode, 
LanguageDegree 

Updates the officer’s language grades 



162 

Stored Procedures for Update Records 
# Name Variables Description 

ShowCredentialsIdOnAppl
icantId ApplicantId Returns the  credential grades per 

officer 
14 ShowApplicantIdLastNam

eFirstNameRankNameOn
ApplicantId 

ApplicantId Returns the officer’s last name, first 
name and rank 

ShowCredentialsGrade ApplicantId, CredentialsId Returns the officer’s credential grade 

15 ShowApplicantIdLastNam
eFirstNameRankNameOn

ApplicantId 
ApplicantId Returns the officer’s last name, first 

name and rank 

16 UpdateCredentialsGrade ApplicantId, CredentialsId, 
CredentialsGrade Updates the officer’s credential grade 

17 ShowJobIdJobNameFrom
EXPERIENCE  Returns all jobs with their required 

experience 

18 ShowApplicantDataOnJob
FromEXPERIENCE JobId Returns the officers for a specific job 

19 ShowExperienceOnJobIdJ
obName JobId, ApplicantId Returns the officer’s experience for a 

specific job 

 UpdateExperience JobId, ApplicantId, 
Experience Updates the experience per job, officer 

20 
ShowJobIdPlaceCodeAppl
icantIdFromASSIGNMEN

TForUpdate 
 Returns all the assignments 

21 

ShowJobIdPlaceCodeAppl
icantIdOnApplicantIdFro

mASSIGNMENTForUpda
te 

 Returns an officer’s assignment 

 InsertDate ApplicantId, ReportDate, 
DetachDate 

Inserts the report and detach date for a 
specific officer 

22 ShowCoefficients  Returns all the coefficients and their 
values 

 UpdateCoefficient WeightName, 
WeightValue Updates the coefficients’ values 

 



163 

 
d. Delete Records 

Delete 
Records 

Job 
Data 

Select Job 2 

Qualification 6 Rank 3 

Bases/Platforms 
that have this 

Job 8 

Rank 20 Credentials 14 

Credential 
and 

Minimum 
Grade 7 

Specialty 5 Language 
and 

Minimum 
Grade 4 

Command 16 Job 1 Language 19 

 



164 

 

Delete 
Records 
(Cont’d) 

Officers 
Data 

Specialty 18 

Qualifications 17 
 

Officer 9 Base/ 
Platform 15 

Criteria 
Weights 21 

Select Officer 10 

Credential and 
Grade 12 

Language and 
Grade 11 

Qualification 13 

 
 

Stored Procedures for Delete Records 
# Name Variables Description 

ShowJobId  Returns all jobs 1 
DeleteJobs JobId Deletes a job 

2 ShowJobId  Returns all jobs 
ShowRankCodeOnJobId JobId Returns all the ranks for a specific job 

3 DeleteRankCodeOnJobRa
nk JobId, RankCode Deletes a specific rank 

ShowLanguageCodeOnJo
bId JobId Returns all the languages for a specific job 

4 
DeleteLanguageCodeOnJo

bLanguage 
JobId, 

LanguageCode Deletes a specific language 

ShowSpecialtyCodeOnJob
Id JobId Returns all the specialties for a specific job 

5 
DeleteSpecialtyCodeOnJo

bSpecialty 
JobId, 

SpecialtyCode Deletes a specific specialty 

6 ShowQualificationCodeOn
JobId JobId Returns all the qualifications for a specific job 



165 

Stored Procedures for Delete Records 
# Name Variables Description 
 DeleteQualificationCodeO

nJobSpecialty 
JobId, 

QualificationCode Deletes a specific qualification 

ShowCredentialsIdOnJobI
d JobId Returns all the credentials for a specific job 

7 
DeleteCredentialsIdOnJob

Credentials 
JobId, 

CredentialsId Deletes a specific credential 

ShowPlaceCodeOnJobId JobId Returns all the platforms/bases for a specific job 
8 DeletePlaceCodeOnJobPla

ce JobId, PlaceCode Deletes a specific base/platform 

ShowApplicantIdLastNam
eFirstName  Returns all officers’ last, first name and rank 9 

DeleteApplicants ApplicantId Deletes an officer 

10 ShowApplicantIdLastNam
eFirstNameWORank  Returns all officers’ last and first name 

ShowApplicantIdLastNam
eFirstNameRankNameOn

ApplicantId 
ApplicantId Returns an officer’s first name, last name and 

rank 

ShowLanguageCodeOnAp
plicantId ApplicantId Returns the languages and grades of a specific 

officer 
11 

DeleteApplicantIdOnAppli
cantLanguage 

ApplicantId, 
LanguageCode Deletes an officer’s language and grade 

ShowApplicantIdLastNam
eFirstNameRankNameOn

ApplicantId 
ApplicantId Returns an officer’s first name, last name and 

rank 

ShowCredentialsIdOnAppl
icantId ApplicantId Returns the credentials and grades of a specific 

officer 
12 

DeleteApplicantIdOnAppli
cantCredentials 

ApplicantId, 
CredentialsId Deletes an officer’s credential and grade 

ShowApplicantIdLastNam
eFirstNameRankNameOn

ApplicantId 
ApplicantId Returns an officer’s first name, last name and 

rank 

ShowQualificationCodeOn
ApplicantId ApplicantId Returns the qualifications and grades of a 

specific officer 
13 

DeleteApplicantIdOnQuali
ficationApplicant 

ApplicantId, 
QualificationCode Deletes an officer’s qualification and grade 

ShowCredentialsId  Returns all the credentials 14 
DeleteCredentials CredentialsId Deletes a credential 
ShowPlaceCode  Returns all the platforms /bases 15 

DeletePlaces PlaceCode Deletes a platform /base 
ShowCommandCode  Returns all the commands 16 

DeleteCommands CommandCode Deletes a command 
ShowQualificationCode  Returns all the qualifications 17 

DeleteQualifications QualificationCode Deletes a qualification 
ShowSpecialtyCode  Returns all the specialties 18 

DeleteSpecialties SpecialtyCode Deletes a specialty 
ShowLanguageCode  Returns all the languages 19 

DeleteLanguages LanguageCode Deletes a language 
ShowRankCode  Returns all the ranks 20 

DeleteRanks RankCode Deletes a rank 
ShowCoefficients  Returns all the coefficients 21 
DeleteCoefficient WeightName Deletes a coefficient 

 



166 

e. Solve Model 

Solve Model 

Solution 1 Manipulate 
Solution 2 

Assignment 3 

 
 

Stored Procedures for Solve Model 
# Name Variables 

dec_CheckHValueExists Counter 

dec_CheckHValueNotNull JobId, PlaceCode, 
ApplicantId 

dec_ComputeMaxValue Counter 
dec_ComputeMeanValue  

dec_COUNTER_Fill  
dec_CountPriorityRecords  

dec_Credentials JobId, ApplicantId 

dec_Credentials1 ApplicantId, 
CredentialsId 

dec_Credentials2 JobId, CredentialsId 
dec_Experience JobId, ApplicantId 

dec_H_Fill  

dec_H_Function JobId, ApplicantId, 
PlaceCode 

dec_H_Normalize  
dec_Language JobId, ApplicantId 

dec_Language1 ApplicantId, 
LanguageCode 

dec_Language2 JobId, LanguageCode 
dec_Main  

1 

dec_MAX_VALUE_Fill  



167 

Stored Procedures for Solve Model 
# Name Variables 

dec_PreferenceApplicantReturn JobId, ApplicantId, 
PlaceCode 

dec_PreferenceCommandReturn JobId, ApplicantId, 
PlaceCode 

dec_PRIORITY_Fill  

dec_QualificationExists1 ApplicantId, 
QualificationCode 

dec_QualificationExists2 JobId, 
QualificationCode 

dec_Qualifications JobId, ApplicantId 
dec_Rank JobId, ApplicantId 

dec_RankExists1 ApplicantId, RankCode 
dec_RankExists2 JobId, RankCode 

dec_SetMAXValueNull Counter 
dec_ShowDeletedJobs  

dec_ShowJobNameOnJobId JobId 
dec_ShowSolution  

dec_ShowUnassignedApplicants  
dec_Specialty JobId, ApplicantId 

dec_SpecialtyExists1 ApplicantId, 
SpecialtyCode 

dec_SpecialtyExists2 JobId, SpecialtyCode 

 

dec_UNASSIGNED_APPLICANTS_Fill  
dec_Delete_Job_Manipulate JobId, PlaceCode 

dec_DELETED_JOBS_MANIPULATE_DeleteRecord JobId, PlaceCode 
dec_DELETED_JOBS_MANIPULATE_Fill  

dec_DeleteEmptyJobs  
dec_DeleteJob  

dec_DeleteJobUsedValues Counter 
dec_EstimateFunction  

dec_FindMaxValue JobId, PlaceCode, 
MAXValue 

dec_MANIPULATE_SOLUTION_Fill  

dec_MANIPULATE_SOLUTION_InsertRecord JobId, PlaceCode, 
ApplicantId 

dec_MAX_VALUE_ALL_JOBS_Fill  
dec_ShowDeletedJobsManipulate  
dec_ShowEstimateFunctionResult  

dec_ShowJobNameOnJobId JobId 
dec_ShowManipulateSolution  

dec_ShowNotNullHValue  
dec_ShowPlaceNameOnPlaceCode PlaceCode 

dec_ShowUnassignedApplicantsManipulate  
dec_UNASSIGNED_APPLICANTS_MANIPULATE_DeleteRecord ApplicantId 

2 

dec_UNASSIGNED_APPLICANTS_MANIPULATE_Fill  
AcceptSolutionFromMAXTable  3 

AcceptSolutionFromManipulateSolutionTable  
 
 
 
 



168 

D. USE CASES 

This section describes examples of use cases.  Each of these use cases is a 

sequence of actions the three categories of users have to perform.  The following lines 

present a sequence of screens that each user goes through while the user performs his/her 

basic roles. 

1. Officer 

The basic functionalities the officer has to do are to delete a preference he has 

already selected and add a new preference. 

a. Delete a Preference 

(1) The Officer Logs In. 

 

 
Figure 64.   The Officer Selects the ‘Already Have a Password? Sign In’-Manpower 

Website. 



169 

 
 
 
 
 
 
 

 
Figure 65.   The Officer Types the User Name and Password-Manpower Website. 



170 

(2) The Officer Deletes a Preference 

 

 
Figure 66.   The Officer Selects ‘Delete A Preference’-Manpower Website. 



171 

 
 
 
 
 
 
 

 
Figure 67.   The Officer Selects Preference Number 2 to Delete-Manpower Website. 



172 

 
 
 
 
 
 
 

 
Figure 68.   Preference Number 2 is Selected-Manpower Website. 

 



173 

 
Figure 69.   Preference Number 2 is Deleted and the Officer Goes Back to the Control 

Page-Manpower Website. 
 

b. Add a Preference 

(1) The Officer Logs in the Same Manner As Described 

Above.   

(2) The Officer Adds a Preference 

 



174 

 
Figure 70.   The Officer Selects the ‘Select A New Assignment’ Option-Manpower 

Website. 
 



175 

 
Figure 71.   The Officer Selects the Communications Officer-Manpower Website. 

 



176 

 
Figure 72.   The Officer Selects the Frigate 1 and Preference 2-Manpower Website. 

 



177 

 
Figure 73.   The Officer Has Applied His/Her Preference-Manpower Website. 

 
2. Command 

The basic functionalities the command has to do are to delete a preference it has 

already selected and add a new preference. 

a. Delete a Preference 

(1) Log In.  The command logs in the same way the officer 

does but the command selects the ‘Would You Like To Select An Officer For Your 

Command? Please Click here!’ option instead.  

(2) Delete a Preference. 



178 

 
 
 
 
 
 
 

 
Figure 74.   The Command Selects ‘Delete A Preference’-Manpower Website. 



179 

 
 
 
 
 
 
 

 
Figure 75.   The Command Selects the job Commanding Officer for Frigate 1 with 

Preference Number 3-Manpower Website. 



180 

 
Figure 76.   The Preference Number 3 is Deleted-Manpower Website. 
 

b. Add a Preference 

(1) The Command Logs In As Described Above. 

(2) The Command Adds a Preference. 



181 

 
 
 
 
 
 
 

 
Figure 77.   The Command Selects the ‘Select An Officer’ Option-Manpower Website. 



182 

 
 
 
 
 
 
 

 
Figure 78.   The Command Selects Frigate 1-Manpower Website. 



183 

 
 
 
 
 
 
 

 
Figure 79.   The Command Selects the Commanding Officer Job and Officer 4 with 

Preference Number 3-Manpower Website. 
 



184 

 
Figure 80.   The Commanding Officer Job and Officer 4 with Preference Number 3 Is 

Selected-Manpower Website. 
 
3. Detailer 

The main job for the detailer is to solve the multi-criteria model and make any 

changes if the detailer wishes to. 

a. Solve the Model 

(1) The Detailer Has to Log In First. 



185 

 
 
 
 
 
 
 

 
Figure 81.   The Detailer Selects the ‘Already Have a Password? Sign In’-Manpower 

Website. 



186 

 
 
 
 
 
 
 

 
Figure 82.   The Detailer Types the User Name and Password-Manpower Website. 

 



187 

 
Figure 83.   The Detailer Types the Second Password the Detailer Has-Manpower 

Website. 



188 

(2) The Detailer Solves the Model. 

 
Figure 84.   The Detailer Selects the ‘Solve The Model’ Option-Manpower Website. 



189 

 
 
 
 
 
 
 

 
Figure 85.   The Algorithm Solution (Screen 1)-Manpower Website. 
 



190 

 
Figure 86.   The Algorithm Solution (Screen 2)-Manpower Website. 



191 

 
(3) The Detailer Makes Changes.  In Figure 37, the detailer 

selects the ‘Make Changes’ option.  The page that follows allows the detailer to wipe out 

a job and an officer from the solution set, by selecting the MAX Value link that 

corresponds to that job. 

 

 
Figure 87.   The Page the Detailer Can Change the Solution (Screen 1)-Manpower 

Website 
 



192 

 
Figure 88.   The Page on Which the Detailer Can Change the Solution (Screen 2). On 

That Page the Detailer Selects the MAX Value 10 Link That Corresponds to Job 
Commanding Officer and Officer 1-Manpower Website. 

 
As soon as the detailer selects a specific job, the job and the 

corresponding officer appear under the Deleted Jobs and Unassigned Officers lists 

accordingly.  At the same time the Estimate Function Result appears which shows how 

worse the detailers change is compared with the algorithms solution. 



193 

 
 
 
 
 
 
 

 
Figure 89.   The Job Commanding Officer and Officer 1 is Deleted from the Solution 

(Screen 1)-Manpower Website. 



194 

 
Figure 90.   The Job Commanding Officer and Officer 1 is Deleted from the Solution 

(Screen 2)-Manpower Website. 
 

By performing the same sequence of actions the detailer deletes the 

job Communications Officer and officer 2.  The job Communications Officer and officer 

2 appear under the Deleted Jobs and Unassigned Officers lists accordingly.  The Estimate 

Function Result changes again. 



195 

 
 
 
 
 
 
 

 
Figure 91.   The Job Communications Officer and Officer 2 is Deleted from the 

Solution (Screen 1)-Manpower Website. 
 



196 

 
Figure 92.   The Job Communications Officer and Officer 2 Is Deleted from the 

Solution (Screen 2)-Manpower Website. 
 

The detailer then assigns the job Commanding Officer to officer 2 

and the job Communications Officer to officer 1.  The detailer selects first the job and 

then the officer that the detailer would like to be assigned to that specific job. 



197 

 
 
 
 
 
 
 

 
Figure 93.   The Detailer Selects the CO Link Under the Deleted Jobs-Manpower 

Website. 



198 

 
 
 
 
 
 
 

 
Figure 94.   The CO Link is Selected Under ‘Selected Job’ (Screen 1)-Manpower 

Website. 
 



199 

 
 
 
 
 
 
 

 
Figure 95.   The CO Link Is Selected Under ‘Selected Job’. Notice the Available 

Officers Under ‘Add An Officer’ (screen 2)-Manpower Website. 
 



200 

 
Figure 96.   The Detailer Selects Officer 2 Under the ‘Add An Officer’ (Screen 2)-

Manpower Website. 
 

By performing all these changes, the Estimate Function Result 

changes accordingly, so that the detailer can estimate the ‘value’ of his/her changes. 



201 

 
 
 
 
 
 
 

 
Figure 97.   Officer 2 Is Selected. The Job Commanding Officer and Officer 2 Appear 

in the Solution Domain (Screen 1)-Manpower Website. 



202 

 
Figure 98.   Officer 2 is Selected. The Job Commanding Officer and Officer 2 Appear 

in the Solution Domain (Screen 2)-Manpower Website. 
 

Following the same sequence of actions, the job Communications 

Officer and officer 1 are selected.  They both appear in the solution domain. 



203 

 
 
 
 
 
 
 

 
Figure 99.   Job Communications Officer and Officer 1 Are Selected (Screen 1)-

Manpower Website. 
 



204 

 
Figure 100.   Job Communications Officer and Officer 1 Are Selected (Screen 2)-

Manpower Website. 
 

As soon as the detailer has made up his mind, he/she can accept the 

solution by selecting the ‘Accept Solution’ link.  The detailer can also return to the 

computed solution by selecting the ‘Go To Computed Solution’ link and then accept the 

solution. 



205 

 
 
 
 
 
 
 

 
Figure 101.   The Detailer Accepts the Solution. The ‘Accept Solution’ Link is 

Selected-Manpower Website. 
 



206 

 
Figure 102.   The Solution Is Accepted.  The Detailer Goes Back to the Detailer Control 

Page-Manpower Website. 
 

E. SYSTEM ARCHITECTURE 

In this section a description about Microsoft SQL Server, Microsoft IIS 5.0 

architecture is provided alongside with some features of the Windows XP Professional 

NTFS operating system, under the perspective of the Manpower Database and Website 

needs.  

1. Microsoft SQL Server 2000-Management 

Microsoft SQL Server 2000 provides many desirable features for the Manpower 

Database: 

a. Database Management 

The figure below shows the SQL Server Enterprise Manager.  It provides 

an easy-to-use interface that enables the manager to perform any desired tasks by using 

menus and dialog boxes rather than complex command line instructions. 



207 

 

 
Figure 103.   Microsoft SQL Server 2000 Enterprise Manager-Manpower Database. 

 
b. Stored Procedures 

Stored Procedures are predefined queries whose values are variables that 

are not defined until run time.  Stored procedures can be nested up to 32 levels deep.  In 

the Figure below, we see an example of the UpdatePhoneData stored procedure used in 

the Manpower database.  This procedure receives the ApplicantId, HomePhoneNumber, 

CellPhoneNumber and OtherPhoneNumber values from the web server, performs the 

UPDATE query based on these values and updates the PHONE table.  The sign @ 

characterizes a parameter as a variable and is put in front of that parameter. 

 



208 

 
Figure 104.   Use of Stored Procedure-Manpower Database. 

 

Moreover, Stored Procedures use a special script language, Transact-SQL, 

which helps the manager to create code in order to perform administrative tasks. 



209 

 
Figure 105.   Transact-SQL Code Example-Manpower Database. 

 
c. Database Diagrams   

SQL 2000 Server provides an easy to use interface for viewing the 

structure of the database and creating relationships among tables.  Relationships can be 

created by dragging and dropping primary keys from one table to the foreign key 

reference in another table.  For complex databases with hundreds of tables, multiple 

diagrams with differing configurations can be created. 

d. Multiple Ways to Construct Queries 

SQL 2000 Server provides also Query Builder Wizards, Query Design 

Grid similar to Access, and an “English Query” engine for defining queries through 

English phrases rather than SQL syntax.  It provides SQL Query Analyzer, which is a 

powerful tool that helps the manager check queries or even stored procedures. 



210 

 
Figure 106.   Use of SQL Query Analyzer-Manpower Database. 

 
2. Manpower Database and Website-Security Issues 

a. Security Modes-Manpower Database 

SQL Server 2000 has two security modes.  The first one is Windows 

Authentication Mode and the second one is Mixed Mode.  In the first mode, a user needs 

to login on the Windows domain only.  He is authenticated automatically as a valid SQL 

Server 2000 user.  In the Mixed mode the user has to be authenticated to both the 

Windows domain and the SQL Server 2000.  The Mixed mode is more secure and allows 

the users to work from different OS (Mac, Novell etc.), while the Windows 

Authentication mode does not require the user to have multiple passwords.  In the 

Manpower database the mixed mode is selected for the reasons mentioned above. 



211 

 
Figure 107.   SQL Server 2000 Authentication Mode-Manpower Database. 

 
b. Logins-Manpower Database 

A SQL Server 2000 login, gives the server users access to SQL Server as a 

whole but not to the resources, like the Manpower database, inside.  A Standard Login is 

necessary for the mixed security mode, since Mac or Novell clients need to be 

authenticated independently of the windows domain.  A Standard Login is created for the 

detailer for the Manpower database. 



212 

 
Figure 108.   Standard Login-Creation of Detailer Login for the Manpower Database. 

 
c. Manpower Website NTFS Permissions 

The Manpower Website files are organized in a manner based on the 

Manpower Website users, the officer, the command and the detailer.  For that purpose 

three groups are created, the officer group, the command group and the detailer group.  

Every officer belongs to the officer group, every command belongs to the command 

group and the detailer to the detailer group.  

The officer directory contains all the above groups.  The command 

directory contains the command and detailer group and finally the detailer directory 

contains only the detailer group.  The permissions are Full Control for every group in 

every directory. 



213 

 
Figure 109.   The Detailer ‘ksergis’ as a Member of the Detailer Group-Manpower 

Website NTFS Permissions. 
 

d. Manpower Website IIS Permissions 

The Manpower Website IIS permissions can be controlled from the 

Security tab of either the Manpower Website directory or the files belonging to it.  The 

account used for anonymous access can be set to IUSR_MYCOMPUTER or any account 

of the officer, command or detailer group. 

 



214 

 
Figure 110.   Anonymous Access-Manpower Website IIS Permissions. 

 
e. SQL Server Logs-Manpower Database 

SQL Server 2000 provides to the database manager the ability to view 

current or past logs in order to check any existing delinquencies.  



215 

 
Figure 111.   SQL Server Logs-Manpower Database. 

 
3. Microsoft SQL Server 2000-Backup and Maintenance Issues 

a. Maintenance Plan 

The database manager can arrange maintenance plans to either perform a 

simple backup, or set up log shipping to a standby server.  Below is the first screen shot 

of performing a maintenance plan. 



216 

 
Figure 112.   Database Maintenance Plan-Manpower Database. 

 
b. Backing Up 

The manager has several choices to back up data.  The manager can 

perform a Full backup to back up the entire database, a Transaction log backup to back 

up the transaction log records, a Differential backup to back up only the data that have 

changed since the last full backup and finally a Filegroup backup to back up different 

pieces of the database, based on the various files that make up the database.  Since the 

Manpower database backup mode is Full (instead of Simple), the manager can perform 

every kind of these four backup choices.  



217 

 
 
 
 
 
 
 

 
Figure 113.   Backup-Manpower Database. 



218 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



219 

VI. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSIONS 

The purpose of this thesis was to identify and analyze the requirements and 

develop a prototype web site for Manpower Database and Website.  This research 

combined with the author’s experience as a Greek Naval Officer provided the foundation 

for the detailed presentation of functional requirements and system architecture for the 

Manpower Database and Website.  Once the requirements and architecture were defined, 

an operational database and web site prototype were developed.  Having fulfilled the goal 

of the thesis, the purpose of this chapter is to present some conclusions, 

recommendations, and suggestions for further work regarding our analysis and the 

development and deployment of the Manpower Database and Website.    

Currently, the Department of Personnel is following a rather old fashioned 

procedure to select an officer for a specific job.  It is using proprietary systems like 

desktop computers, which have W2K Professional as their operating systems.  Based on 

the needs of the Navy the DoP examines the jobs and their requirements, including the 

qualifications and credentials of the officers.  It then assigns a job to an officer trying to 

find the best match between them.  In this thesis a detailed system and user functional 

requirements are defined, along with a multi-dimensional decision algorithm for 

matching jobs with officers.   

The final Manpower Website must be able to handle multi-step transactions.  The 

system architecture presented in this thesis should be scalable to an enterprise-wide 

solution.  Also, in order to develop a working prototype, specific software technologies 

had to be selected.  The assumption of a Windows NT/2000/XP network environment, 

the selection of the IIS-5 Web Server and SQL Server 2000 database and the selection of 

the Macromedia Dreamweaver MX as design toolS forced certain design decisions in the 

construction of the prototype.  Lastly, the programming used to develop the prototype 

was based on the efforts of a single, relatively inexperienced individual.  Due to the 

magnitude and impact of this program, a team of experienced web programmers should  



220 

develop the Manpower Database and Website.  This statement, however, should not 

cause the reader to discount the potential worth of the prototype, since it provides a 

substantial start in this direction.  

B. RECOMMENDATIONS 

In the course of the research for this thesis, some important aspects of the 

Manpower Database and Website development have been discovered.  These “lessons 

learned” should be carefully considered as of the Manpower Database and Website 

moves from concept to reality.   

1. Technology Selection 

A decision must be made regarding the specific software products to be used in 

the Manpower Database and Website.  Our prototype used Microsoft products, and 

Macromedia Dreamweaver MX, which provide the benefits of integrated user accounts 

and system interoperability.  Other systems may be more appropriate, however.  For 

example Oracle products can be used or even open source software like MySQL and 

Linux.  Whatever software products are selected, it is important to ensure that they are 

interoperable. 

2. Definition of User Requirements 

The User Requirements should be carefully defined in order to create the correct 

database schema and website functionality.  Any late changes on the requirements can 

cause big problems, because it will be hard to undo all the work and redo it accordingly 

to the new requirements. 

C.  FURTHER WORK  

This thesis has been developed in a single computer where a web server and 

database server have been installed.  But this should not be the case for the 

implementation of the Manpower Database and Website.  The following items describe 

some ideas for further work. 

1. Component Distribution  

It is preferable that the web server and the database server are not located in the 

same place for maintenance and security reasons.  Investigation should be conducted to 

resolve these issues.   

 



221 

2. Security Analysis 

This thesis addressed security issues in a rather general way, and incorporated 

standard web security methods such as Secure Socket Layer and access control through 

Windows permissions.  However, due to the scope of the entire Manpower Database and 

Website development program, a thorough security analysis is recommended.  Security 

personnel could conduct such an analysis, simulate attacks on the Manpower Database 

and Website prototype and recommend and/or construct programmatic security measures 

to incorporate into the Manpower Database and Website design. 

3. Systems Architecture 

A thorough analysis of the most appropriate system architecture for the entire 

Manpower Database and Website system is needed.  A cost benefit analysis should be 

conducted to include server load, response time, code maintenance and upgrade, 

equipment and software costs, facility and manning requirements, web site and database 

administration procedures, database synchronization, and customer service.  

4. Coefficient Weights and HValue Definition 

The multi-criteria decision model uses several criteria such as credentials, 

language proficiency and officers’ preference to determine the HValue as a number that 

expresses the suitability of an officer for a job.  Also, the weights of each criterion 

determine the importance of each criterion and cause different HValues as they change.  

A thorough analysis of the computation and definition of the weights of each criterion 

should be performed according to the needs of the Greek Navy. 

In summary, the prototype was developed virtually cost-free and can serve as a 

template for the development of a fully operational Manpower Database and Website; it 

can easily be scaled to the total solution.  It is hoped that this thesis work will provide 

detailed insight for efforts in that direction so that the Manpower Database and Website 

may progress beyond conceptual planning to become a reality in the Greek Navy. 



222 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



223 

APPENDIX A.  TABLES 

Table: ADDRESS 
Name Data Type Size Key 

CityOrTown Char 50 Yes 
Street Char 50 Yes 

Number Char 10 Yes 
Apartment Char 10 Yes 

ZIP Char 10 Yes 
ApplicantId Char 10 Yes 

 
 

Table: APPLICANT 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
FirstName Char 30  
LastName Char 30  

MiddleName Char 30  
SeaTimeForRank Float 8  

RankCode Char 10  
SpecialtyCode Char 10  

UserName Char 50  
Password Char 50  

EmailAddress Char 50  
DetailerCheck Bit 1  

DetailerPassword Char 50  
 
 

Table: APPLICANT CREDENTIALS 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
CredentialsId Char 10 Yes 

CredentialsGrade Int 4  
 
 

Table: APPLICANT LANGUAGE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
LanguageCode Char 10 Yes 

LanguageDegree Float 8  
 
 
 
 



224 

Table: APPLICANT PREFERENCE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
PreferenceApplicant Int 4  

 
 

Table: ASSIGNED APPLICANTS 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
 
 

Table: ASSIGNMENT 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10  

PlaceCode Char 10  
ReportDate Datetime 8  
DetachDate Datetime 8  

 
 

Table: COEFFICIENT 
Name Data Type Size Key 

CoefficientId Char 30 Yes 
CoefficientValue Int 4  

 
 

Table: COMMAND 
Name Data Type Size Key 

CommandCode Char 10 Yes 
CommandName Char 50  

UserName Char 50  
Password Char 50  

 
 

Table: COMMAND PREFERENCE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
CommandCode Char 10  

PreferenceCommand Int 4  
 
 



225 

Table: COUNTER 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
Counter Int 4  

 
 

Table: CREDENTIALS 
Name Data Type Size Key 

CredentialsId Char 10 Yes 
CredentialsName Char 30  

 
 

Table: DELETED JOBS 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
 
 

Table: DELETED JOBS MANIPULATE 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
 
 

Table: ESTIMATE FUNCTION RESULT 
Name Data Type Size Key 
Result Float 8 Yes 

 
 

Table: EXPERIENCE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10 Yes 

Experience Float 8  
 
 

Table: H 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
HValue Float 8  

 
 



226 

Table: JOB 
Name Data Type Size Key 
JobId Char 10 Yes 

JobName Char 30  
ExperienceRequired Float 8  

Priority Int 4  
 
 

Table: JOB CREDENTIALS 
Name Data Type Size Key 
JobId Char 10 Yes 

CredentialsId Char 10 Yes 
CredentialsGrade Int 4  

 
 

Table: JOB LANGUAGE 
Name Data Type Size Key 
JobId Char 10 Yes 

LanguageCode Char 10 Yes 
LanguageDegree Float 8  

 
 

Table: JOB PLACE 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
 
 

Table: JOB QUALIFICATION 
Name Data Type Size Key 
JobId Char 10 Yes 

QualificationCode Char 10 Yes 
 
 

Table: JOB RANK 
Name Data Type Size Key 
JobId Char 10 Yes 

RankCode Char 10 Yes 
 
 

Table: JOB SPECIALTY 
Name Data Type Size Key 
JobId Char 10 Yes 

SpecialtyCode Char 10 Yes 
 



227 

 
Table: LANGUAGE 

Name Data Type Size Key 
LanguageCode Char 10 Yes 
LanguageName Char 50  

 
 

Table: MANIPULATE SOLUTION 
Name Data Type Size Key 

ApplicantId Char 10  
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
MAXValue Float 8  

 
 

Table: MAX VALUE 
Name Data Type Size Key 

ApplicantId Char 10  
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
MAXValue Float 8  

 
 

Table: MAX VALUE ALL JOBS 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
MAXValue Float 8  

 
 

Table: MEAN VALUE 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
MeanValue Float 8  

 
 

Table: MEAN VALUE APPLICANTS 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
MINValue Float 8  

 
 
 
 



228 

Table: MULTIPLE MAX VALUES 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
Counter Int 4  

 
 

Table: ONE MAX VALUE 
Name Data Type Size Key 

ApplicantId Char 10  
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
Counter Int 4  

 
 

Table: PHONE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
HomePhoneNumber Char 30 Yes 
CellPhoneNumber Char 30 Yes 

OtherPhoneNumber Char 30 Yes 
 
 

Table: PLACE 
Name Data Type Size Key 

PlaceCode Char 10 Yes 
PlaceName Char 50  
PlaceImage Char 10  

CommandCode Char 10  
 
 

Table: PRIORITY 
Name Data Type Size Key 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
Priority Int 4  
Counter Int 4  

Flag Bit 1  
 
 

Table: QUALIFICATION 
Name Data Type Size Key 

QualificationCode Char 10 Yes 
QualificationName Char 50  



229 

 
 

Table: QUALIFICATION APPLICANT 
Name Data Type Size Key 

QualificationCode Char 10 Yes 
ApplicantId Char 10 Yes 

 
 

Table: RANK 
Name Data Type Size Key 

RankCode Char 10 Yes 
RankName Char 30  

TimeSeaService Float 8  
 
 

Table: SAME MAX VALUE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
 
 

Table: SPECIALTY 
Name Data Type Size Key 

SpecialtyCode Char 10 Yes 
SpecialtyName Char 50  

 
 

Table: UNASSIGNED APPLICANTS 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
 
 

Table: UNASSIGNED APPLICANTS MANIPULATE 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
 
 

Table: USED APPLICANTS 
Name Data Type Size Key 

ApplicantId Char 10 Yes 
JobId Char 10 Yes 

PlaceCode Char 10 Yes 
 
 
 



230 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



231 

APPENDIX B.  STORED PROCEDURES 

 
Name: AcceptSolutionFromManipulateSolutionTable 
CREATE PROCEDURE ksergis.AcceptSolutionFromManipulateSolutionTable AS 
 
DELETE FROM ASSIGNMENT 
 
INSERT INTO ASSIGNMENT 
SELECT JobId, PlaceCode, ApplicantId, NULL, NULL 
FROM MANIPULATE_SOLUTION 
GO 
 
 
Name: AcceptSolutionFromMAXTable 
CREATE PROCEDURE ksergis.AcceptSolutionFromMAXTable AS 
 
DELETE FROM ASSIGNMENT 
 
INSERT INTO ASSIGNMENT 
SELECT JobId, PlaceCode, ApplicantId, NULL, NULL 
FROM MAX_VALUE 
GO 
 
 
Name: CheckApplicantIdCredentialsId 
CREATE PROCEDURE ksergis.CheckApplicantIdCredentialsId (@ApplicantId 
char(10), @CredentialsId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_CREDENTIALS WHERE 
ApplicantId = @ApplicantId AND CredentialsId = @CredentialsId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantIdLanguageCode 
CREATE PROCEDURE ksergis.CheckApplicantIdLanguageCode (@ApplicantId 



232 

char(10), @LanguageCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_LANGUAGE WHERE ApplicantId = 
@ApplicantId AND LanguageCode = @LanguageCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantIdOnApplicantCredentials 
CREATE PROCEDURE ksergis.CheckApplicantIdOnApplicantCredentials 
(@ApplicantId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_CREDENTIALS WHERE 
ApplicantId = @ApplicantId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantIdOnApplicantLanguage 
CREATE PROCEDURE ksergis.CheckApplicantIdOnApplicantLanguage 
(@ApplicantId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_LANGUAGE WHERE ApplicantId = 
@ApplicantId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 



233 

  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantIdOnQualificationsApplicant 
CREATE PROCEDURE ksergis.CheckApplicantIdOnQualificationsApplicant 
(@ApplicantId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM QUALIFICATION_APPLICANT WHERE 
ApplicantId = @ApplicantId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantIdQualificationCode 
CREATE PROCEDURE ksergis.CheckApplicantIdQualificationCode (@ApplicantId 
char(10), @QualificationCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM QUALIFICATION_APPLICANT WHERE 
ApplicantId = @ApplicantId AND QualificationCode = @QualificationCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantPreferenceExists 
CREATE PROCEDURE ksergis.CheckApplicantPreferenceExists (@ApplicantId 
char(10)) 
AS 



234 

IF EXISTS(SELECT 'True' FROM APPLICANT_PREFERENCE WHERE ApplicantId 
= @ApplicantId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantsExist 
CREATE PROCEDURE ksergis.CheckApplicantsExist 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckApplicantSuitable 
CREATE PROCEDURE ksergis.CheckApplicantSuitable (@ApplicantId char(10)) AS 
 
DECLARE @Rank int 
DECLARE @Specialty int 
DECLARE @Qualifications int 
DECLARE @JobId char(10) 
DECLARE @JobName char(30) 
 
CREATE TABLE #SUITABLE_JOBS 
(  
  JobId char(10) PRIMARY KEY, 
  JobName char(30) 
) 
 
DECLARE JobCursor CURSOR FOR  



235 

SELECT JobId, JobName 
FROM JOB 
 
OPEN JobCursor 
FETCH NEXT FROM JobCursor  
INTO @JobId, @JobName 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @Rank = ksergis.dec_Rank @JobId, @ApplicantId 
  EXEC @Specialty = ksergis.dec_Specialty @JobId, @ApplicantId 
  EXEC @Qualifications = ksergis.dec_Qualifications @JobId, 
@ApplicantId 
 
  IF @Rank = 1 AND @Specialty =1 AND @Qualifications = 1 
  BEGIN 
   INSERT INTO #SUITABLE_JOBS 
   VALUES (@JobId, @JobName) 
  END 
 END 
 FETCH NEXT FROM JobCursor  
 INTO @JobId, @JobName 
END 
 
CLOSE JobCursor 
DEALLOCATE JobCursor 
 
SELECT * 
FROM #SUITABLE_JOBS 
GO 
 
 
Name: CheckCoeffitientExists 
CREATE PROCEDURE ksergis.CheckCoeffitientExists (@CoefficientId char(30)) 
AS 
IF EXISTS(SELECT 'True' FROM COEFFICIENT WHERE CoefficientId = 
@CoefficientId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 



236 

END 
GO 
 
 
Name: CheckCommandPreferenceExists 
CREATE PROCEDURE ksergis.CheckCommandPreferenceExists (@CommandCode 
char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM COMMAND_PREFERENCE WHERE 
CommandCode = @CommandCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckCommandsExist 
CREATE PROCEDURE ksergis.CheckCommandsExist 
AS 
IF EXISTS(SELECT 'True' FROM COMMAND) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckCredentialsExist 
CREATE PROCEDURE ksergis.CheckCredentialsExist 
AS 
IF EXISTS(SELECT 'True' FROM CREDENTIALS) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 



237 

ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckCredentialsId 
CREATE PROCEDURE ksergis.CheckCredentialsId (@CredentialsId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM CREDENTIALS WHERE CredentialsId = 
@CredentialsId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckCredentialsName 
CREATE PROCEDURE ksergis.CheckCredentialsName (@CredentialsName char(50)) 
AS 
IF EXISTS(SELECT 'True' FROM CREDENTIALS WHERE CredentialsName = 
@CredentialsName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckDateExist 
CREATE PROCEDURE ksergis.CheckDateExist (@ApplicantId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM ASSIGNMENT WHERE ApplicantId = 



238 

@ApplicantId AND ((ReportDate IS NOT NULL) OR (DetachDate IS NOT NULL))) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckDetailerPassword 
CREATE PROCEDURE ksergis.CheckDetailerPassword (@ApplicantId char(10),  
@DetailerPassword char(50)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT WHERE ApplicantId = @ApplicantId 
AND DetailerPassword = @DetailerPassword) 
BEGIN 
  --This means it is correct, return it to ASP and tell us 
  SELECT 'The Detailer is authenticated' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'The Detailer is not authenticated' 
END 
GO 
 
 
Name: CheckExperienceExist 
CREATE PROCEDURE ksergis.CheckExperienceExist (@JobId char(10), 
@ApplicantId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM EXPERIENCE WHERE JobId = @JobId AND 
ApplicantId = @ApplicantId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 



239 

GO 
 
 
Name: CheckJobId 
CREATE PROCEDURE ksergis.CheckJobId (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdCredentialsId 
CREATE PROCEDURE ksergis.CheckJobIdCredentialsId (@JobId char(10), 
@CredentialsId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_CREDENTIALS WHERE JobId = @JobId 
AND CredentialsId = @CredentialsId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdJobName 
CREATE PROCEDURE ksergis.CheckJobIdJobName (@JobId char(10), @JobName 
char(30)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB WHERE JobId = @JobId OR JobName = 
@JobName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 



240 

END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdLanguageCode 
CREATE PROCEDURE ksergis.CheckJobIdLanguageCode (@JobId char(10), 
@LanguageCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_LANGUAGE WHERE JobId = @JobId AND 
LanguageCode = @LanguageCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdOnApplicantPreference 
CREATE PROCEDURE ksergis.CheckJobIdOnApplicantPreference (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_PREFERENCE WHERE JobId = 
@JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdOnCommandPreference 
CREATE PROCEDURE ksergis.CheckJobIdOnCommandPreference (@JobId char(10)) 



241 

AS 
IF EXISTS(SELECT 'True' FROM COMMAND_PREFERENCE WHERE JobId = 
@JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdOnJobCredentials 
CREATE PROCEDURE ksergis.CheckJobIdOnJobCredentials (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_CREDENTIALS WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdOnJobLanguage 
CREATE PROCEDURE ksergis.CheckJobIdOnJobLanguage (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_LANGUAGE WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 



242 

 
Name: CheckJobIdOnJobPlace 
CREATE PROCEDURE ksergis.CheckJobIdOnJobPlace (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_PLACE WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdOnJobQualification 
CREATE PROCEDURE ksergis.CheckJobIdOnJobQualification (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_QUALIFICATION WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdOnJobRank 
CREATE PROCEDURE ksergis.CheckJobIdOnJobRank (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_RANK WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 



243 

GO 
 
 
Name: CheckJobIdOnJobSpecialty 
CREATE PROCEDURE ksergis.CheckJobIdOnJobSpecialty (@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_SPECIALTY WHERE JobId = @JobId) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdPlaceCode 
CREATE PROCEDURE ksergis.CheckJobIdPlaceCode (@JobId char(10), @PlaceCode 
char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_PLACE WHERE JobId = @JobId AND 
PlaceCode = @PlaceCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdPlaceCodeOnApplicantPreference 
CREATE PROCEDURE ksergis.CheckJobIdPlaceCodeOnApplicantPreference (@JobId 
char(10), @PlaceCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_PREFERENCE WHERE JobId = 
@JobId AND PlaceCode = @PlaceCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 



244 

END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdPlaceCodeOnCommandPreference 
CREATE PROCEDURE ksergis.CheckJobIdPlaceCodeOnCommandPreference (@JobId 
char(10), @PlaceCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM COMMAND_PREFERENCE WHERE JobId = 
@JobId AND PlaceCode = @PlaceCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdQualificationCode 
CREATE PROCEDURE ksergis.CheckJobIdQualificationCode (@JobId char(10), 
@QualificationCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_QUALIFICATION WHERE JobId = @JobId 
AND QualificationCode = @QualificationCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdRankCode 



245 

CREATE PROCEDURE ksergis.CheckJobIdRankCode (@JobId char(10), @RankCode 
char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_RANK WHERE JobId = @JobId AND 
RankCode = @RankCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobIdSpecialtyCode 
CREATE PROCEDURE ksergis.CheckJobIdSpecialtyCode (@JobId char(10), 
@SpecialtyCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB_SPECIALTY WHERE JobId = @JobId AND 
SpecialtyCode = @SpecialtyCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobName 
CREATE PROCEDURE ksergis.CheckJobName (@JobName char(30)) 
AS 
IF EXISTS(SELECT 'True' FROM JOB WHERE JobName = @JobName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 



246 

  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckJobsExist 
CREATE PROCEDURE ksergis.CheckJobsExist 
AS 
IF EXISTS(SELECT 'True' FROM JOB) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckLanguageCode 
CREATE PROCEDURE ksergis.CheckLanguageCode (@LanguageCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM LANGUAGE WHERE LanguageCode = 
@LanguageCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckLanguageName 
CREATE PROCEDURE ksergis.CheckLanguageName (@LanguageName char(50)) 
AS 
IF EXISTS(SELECT 'True' FROM LANGUAGE WHERE LanguageName = 
@LanguageName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 



247 

END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckLanguagesExist 
CREATE PROCEDURE ksergis.CheckLanguagesExist 
AS 
IF EXISTS(SELECT 'True' FROM LANGUAGE) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckPlacesExist 
CREATE PROCEDURE ksergis.CheckPlacesExist 
AS 
IF EXISTS(SELECT 'True' FROM PLACE) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckPreference 
CREATE PROCEDURE ksergis.CheckPreference (@ApplicantId varchar(10), 
@PreferenceApplicant varchar(4), @PlaceCode varchar(10), @JobId varchar(10)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT_PREFERENCE WHERE ApplicantId 



248 

= @ApplicantId AND (PreferenceApplicant = @PreferenceApplicant OR (JobId = 
@JobId AND PlaceCode = @PlaceCode))) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This preference already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This preference does not exist!' 
END 
GO 
 
 
Name: CheckPreferenceCommand 
CREATE PROCEDURE ksergis.CheckPreferenceCommand (@CommandCode 
char(10), @ApplicantId char(10), @PreferenceCommand char(4), @PlaceCode char(10), 
@JobId char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM COMMAND_PREFERENCE WHERE 
CommandCode = @CommandCode AND JobId = @JobId AND PlaceCode = 
@PlaceCode AND ( PreferenceCommand = @PreferenceCommand OR ApplicantId = 
@ApplicantId)) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This preference already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This preference does not exist!' 
END 
GO 
 
 
Name: CheckQualificationCode 
CREATE PROCEDURE ksergis.CheckQualificationCode (@QualificationCode 
char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM QUALIFICATION WHERE QualificationCode = 
@QualificationCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 



249 

BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckQualificationName 
CREATE PROCEDURE ksergis.CheckQualificationName (@QualificationName 
char(50)) 
AS 
IF EXISTS(SELECT 'True' FROM QUALIFICATION WHERE QualificationName = 
@QualificationName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckQualificationsExist 
CREATE PROCEDURE ksergis.CheckQualificationsExist 
AS 
IF EXISTS(SELECT 'True' FROM QUALIFICATION) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckRankCode 
CREATE PROCEDURE ksergis.CheckRankCode (@RankCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM RANK WHERE RankCode = @RankCode) 
BEGIN 



250 

  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckRankName 
CREATE PROCEDURE ksergis.CheckRankName (@RankName char(30)) 
AS 
IF EXISTS(SELECT 'True' FROM RANK WHERE RankName = @RankName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckRanksExist 
CREATE PROCEDURE ksergis.CheckRanksExist 
AS 
IF EXISTS(SELECT 'True' FROM RANK) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckSpecialtiesExist 
CREATE PROCEDURE ksergis.CheckSpecialtiesExist 
AS 



251 

IF EXISTS(SELECT 'True' FROM SPECIALTY) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckSpecialtyCode 
CREATE PROCEDURE ksergis.CheckSpecialtyCode (@SpecialtyCode char(10)) 
AS 
IF EXISTS(SELECT 'True' FROM SPECIALTY WHERE SpecialtyCode = 
@SpecialtyCode) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckSpecialtyName 
CREATE PROCEDURE ksergis.CheckSpecialtyName (@SpecialtyName char(50)) 
AS 
IF EXISTS(SELECT 'True' FROM SPECIALTY WHERE SpecialtyName = 
@SpecialtyName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 



252 

 
Name: CheckSuitableApplicantsOnJob 
CREATE PROCEDURE ksergis.CheckSuitableApplicantsOnJob (@JobId char(10)) AS 
 
DECLARE @Rank int 
DECLARE @Specialty int 
DECLARE @Qualifications int 
DECLARE @ApplicantId char(10) 
DECLARE @FirstName char(30) 
DECLARE @LastName char(30) 
 
CREATE TABLE #SUITABLE_APPLICANTS 
(  
  ApplicantId char(10) PRIMARY KEY, 
  FirstName char(30), 
  LastName char(30) 
) 
 
DECLARE ApplicantCursor CURSOR FOR  
SELECT  ApplicantId, FirstName, LastName 
FROM APPLICANT 
 
OPEN ApplicantCursor 
FETCH NEXT FROM ApplicantCursor  
INTO @ApplicantId, @FirstName, @LastName 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @Rank = ksergis.dec_Rank @JobId, @ApplicantId 
  EXEC @Specialty = ksergis.dec_Specialty @JobId, @ApplicantId 
  EXEC @Qualifications = ksergis.dec_Qualifications @JobId, 
@ApplicantId 
 
  IF @Rank = 1 AND @Specialty =1 AND @Qualifications = 1 
  BEGIN 
   INSERT INTO #SUITABLE_APPLICANTS 
   VALUES (@ApplicantId, @FirstName, @LastName) 
  END 
 END 
 FETCH NEXT FROM ApplicantCursor  
 INTO @ApplicantId, @FirstName, @LastName 
END 
 
CLOSE ApplicantCursor 
DEALLOCATE ApplicantCursor 



253 

 
SELECT * 
FROM #SUITABLE_APPLICANTS 
GO 
 
 
Name: CheckUserName 
CREATE PROCEDURE ksergis.CheckUserName (@UserName varchar(50)) 
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT WHERE UserName = @UserName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: CheckUserNameCommand 
CREATE PROCEDURE ksergis.CheckUserNameCommand (@UserName varchar(50)) 
AS 
IF EXISTS(SELECT 'True' FROM COMMAND WHERE UserName = @UserName) 
BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'This record already exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'This record does not exist!' 
END 
GO 
 
 
Name: dec_CheckHValueExists 
CREATE PROCEDURE ksergis.dec_CheckHValueExists (@Counter int) 
AS 
 
DECLARE @JobId char(10) 
DECLARE @JobId1 char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @PlaceCode1 char(10) 



254 

 
DECLARE PriorityCursor CURSOR FOR  
SELECT JobId, PlaceCode, Counter 
FROM PRIORITY 
WHERE Counter = @Counter 
 
OPEN PriorityCursor 
FETCH NEXT FROM PriorityCursor  
INTO @JobId, @PlaceCode, @Counter 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  SET @JobId1 = @JobId 
  SET @PlaceCode1 = @PlaceCode 
 END 
 FETCH NEXT FROM PriorityCursor  
 INTO @JobId, @PlaceCode, @Counter 
END 
 
CLOSE PriorityCursor 
DEALLOCATE PriorityCursor 
 
IF EXISTS(SELECT HValue FROM H WHERE JobId = @JobId1 AND PlaceCode = 
@PlaceCode1 AND HValue IS NOT NULL AND  
          ApplicantId NOT IN (SELECT ApplicantId 
FROM USED_APPLICANTS WHERE JobId = @JobId1 AND PlaceCode = 
@PlaceCode1) AND 
          ApplicantId NOT IN (SELECT ApplicantId 
FROM ASSIGNED_APPLICANTS)) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ CheckHValueNotNull 
CREATE PROCEDURE ksergis.dec_CheckHValueNotNull (@JobId char(10),  
@PlaceCode char(10), @ApplicantId  char(10)) AS 
 
DECLARE @HValue float 
 
SET @HValue = (SELECT HValue FROM H WHERE JobId = @JobId AND PlaceCode 
= @PlaceCode AND ApplicantId = @ApplicantId) 
 
IF @HValue IS NOT NULL 



255 

BEGIN 
  --This means it exists, return it to ASP and tell us 
  SELECT 'HValue exists!' 
END 
ELSE 
BEGIN 
  --This means it does not exist, return it to ASP and tell us 
  SELECT 'HValue does not exist!' 
END 
GO 
 
 
Name: dec_ ComputeMaxValue 
CREATE PROCEDURE ksergis.dec_ComputeMaxValue (@Counter int) 
AS 
 
DECLARE @JobId char(10) 
DECLARE @JobId1 char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @PlaceCode1 char(10) 
DECLARE @CountEqualMaxValues int 
 
DECLARE PriorityCursor CURSOR FOR 
SELECT JobId, PlaceCode, Counter 
FROM PRIORITY 
WHERE Counter = @Counter 
 
OPEN PriorityCursor 
FETCH NEXT FROM PriorityCursor  
INTO @JobId, @PlaceCode, @Counter 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  SET @JobId1 = @JobId 
  SET @PlaceCode1 = @PlaceCode 
 END 
 FETCH NEXT FROM PriorityCursor  
 INTO @JobId, @PlaceCode, @Counter 
END 
 
CLOSE PriorityCursor 
DEALLOCATE PriorityCursor 
 
DECLARE @MAXValue float 
DECLARE @ApplicantId char(10) 



256 

DECLARE @ApplicantId1 char(10) 
 
SET @MAXValue = (SELECT MAX(HValue) FROM H WHERE JobId = @JobId1 
AND PlaceCode = @PlaceCode1 AND HValue IS NOT NULL AND  
                  ApplicantId NOT IN (SELECT 
ApplicantId FROM USED_APPLICANTS WHERE JobId = @JobId1 AND PlaceCode 
= @PlaceCode1) AND 
                  ApplicantId NOT IN (SELECT 
ApplicantId FROM ASSIGNED_APPLICANTS)) 
 
SET @CountEqualMaxValues = ( SELECT count(ApplicantId) 
    FROM H 
    WHERE JobId = @JobId1 AND PlaceCode = 
@PlaceCode1 AND HValue = @MAXValue AND  
    ApplicantId NOT IN (SELECT ApplicantId FROM 
USED_APPLICANTS WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1) 
AND 
     ApplicantId NOT IN (SELECT ApplicantId FROM 
ASSIGNED_APPLICANTS)) 
 
IF @CountEqualMaxValues > 1 
 EXEC @ApplicantId1 = ksergis.dec_FindMaxValue @JobId1, @PlaceCode1, 
@MAXValue 
ELSE 
BEGIN 
 DECLARE HCursor CURSOR FOR  
 SELECT ApplicantId 
 FROM H 
 WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 AND HValue = 
@MAXValue AND  
   ApplicantId NOT IN (SELECT ApplicantId FROM 
USED_APPLICANTS WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1) 
AND 
   ApplicantId NOT IN (SELECT ApplicantId FROM 
ASSIGNED_APPLICANTS) 
  
 OPEN HCursor 
 FETCH NEXT FROM HCursor  
 INTO @ApplicantId 
 WHILE @@FETCH_STATUS <> -1  
 BEGIN 
  IF @@FETCH_STATUS <> -2 
  SET @ApplicantId1 = @ApplicantId 
  BREAK 
  FETCH NEXT FROM HCursor  
  INTO @ApplicantId 



257 

 END 
 
 CLOSE HCursor 
 DEALLOCATE HCursor 
END 
 
PRINT 'MAXValue' 
PRINT @MAXValue 
PRINT 'ApplicantId1' 
PRINT @ApplicantId1 
 
UPDATE MAX_VALUE 
SET ApplicantId = @ApplicantId1, MAXValue = @MAXValue 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 
 
INSERT INTO ASSIGNED_APPLICANTS 
SELECT ApplicantId 
FROM APPLICANT 
WHERE ApplicantId = @ApplicantId1 
GO 
 
 
Name: dec_ ComputeMeanValue 
CREATE PROCEDURE ksergis.dec_ComputeMeanValue  
AS 
 
DELETE FROM MEAN_VALUE 
 
INSERT INTO MEAN_VALUE 
SELECT JobId, PlaceCode, NULL 
FROM JOB_PLACE 
 
DECLARE @JobId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @MeanValue float 
 
DECLARE MeanValueCursor CURSOR FOR  
SELECT JobId, PlaceCode, MeanValue 
FROM MEAN_VALUE 
 
OPEN MeanValueCursor 
FETCH NEXT FROM MeanValueCursor  
INTO @JobId, @PlaceCode, @MeanValue 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 



258 

 BEGIN 
 
  DECLARE @ApplicantId char(10) 
  DECLARE @HValue float 
  DECLARE @SUM float 
  DECLARE @COUNT int 
 
  DECLARE HCursor CURSOR FOR  
  SELECT JobId, ApplicantId, PlaceCode, HValue 
  FROM H 
  WHERE JobId = @JobId AND PlaceCode = @PlaceCode 
 
  SET @SUM = 0 
  SET @COUNT = 0 
 
  OPEN HCursor 
  FETCH NEXT FROM HCursor  
  INTO @JobId, @ApplicantId, @PlaceCode, @HValue 
  WHILE @@FETCH_STATUS <> -1  
  BEGIN 
   IF @@FETCH_STATUS <> -2 
   BEGIN 
    IF @HValue IS NOT NULL 
    BEGIN 
     SET @SUM = @SUM + @HValue 
     SET @COUNT = @COUNT + 1 
    END 
   END 
   FETCH NEXT FROM HCursor  
   INTO @JobId, @ApplicantId, @PlaceCode, @HValue 
  END 
   
  CLOSE HCursor 
  DEALLOCATE HCursor  
 
  IF @SUM <> 0 
   UPDATE MEAN_VALUE 
   SET MeanValue = @SUM / @COUNT 
   WHERE JobId = @JobId AND PlaceCode= @PlaceCode 
 
 END 
 FETCH NEXT FROM MeanValueCursor  
 INTO @JobId, @PlaceCode, @MeanValue 
END 
 
CLOSE MeanValueCursor 



259 

DEALLOCATE MeanValueCursor 
GO 
 
 
Name: dec_COUNTER_Fill 
CREATE PROCEDURE ksergis.dec_COUNTER_Fill 
AS 
 
DELETE FROM COUNTER 
 
INSERT INTO COUNTER 
SELECT JobId, PlaceCode, Counter 
FROM PRIORITY 
GO 
 
 
Name: dec_ CountPriorityRecords 
CREATE PROCEDURE ksergis.dec_CountPriorityRecords 
AS 
DECLARE @Count int 
 
SET @Count = (SELECT Count (*) FROM PRIORITY) 
 
RETURN @Count 
GO 
 
 
Name: dec_ Credentials 
CREATE PROCEDURE ksergis.dec_Credentials (@JobId char(10), @ApplicantId 
char(10))  
AS 
DECLARE @CredentialsGrade1 float 
DECLARE @CredentialsGrade2 float 
DECLARE @CredentialsId char(10) 
DECLARE @SUM1 float 
DECLARE @SUM2 float 
DECLARE @ANS float 
DECLARE @Count int 
 
SET @SUM1 = 0 
SET @SUM2 = 0 
SET @Count = 0 
 
DECLARE CredentialsCursor CURSOR FOR  
SELECT JobId, CredentialsId  
FROM JOB_CREDENTIALS 



260 

WHERE JobId = @JobId 
 
OPEN CredentialsCursor 
FETCH NEXT FROM CredentialsCursor  
INTO @JobId, @CredentialsId 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @CredentialsGrade1 = ksergis.dec_Credentials1 @ApplicantId, 
@CredentialsId 
  EXEC @CredentialsGrade2 = ksergis.dec_Credentials2 @JobId, 
@CredentialsId 
  SET @SUM1 = @SUM1 +@CredentialsGrade1 
  SET @SUM2 = @SUM2 +@CredentialsGrade2  
  SET @Count = @Count +1  
 END 
 FETCH NEXT FROM CredentialsCursor  
 INTO @JobId, @CredentialsId 
END 
 
CLOSE CredentialsCursor 
DEALLOCATE CredentialsCursor 
 
IF @SUM1 < @SUM2 
 SET @ANS = 0 
ELSE 
BEGIN 
 IF @Count * 10 = @SUM2 
  SET @ANS = 1 
 ELSE 
  SET @ANS = ((@SUM1 - @SUM2) * 9 / ((@Count * 10) - @SUM2)) + 
1 
END 
 
RETURN @ANS 
GO 
 
 
Name: dec_ Credentials1 
CREATE PROCEDURE ksergis.dec_Credentials1 (@ApplicantId char(10), 
@CredentialsId char(10))  
AS 
DECLARE @CredentialsGrade int 
 
IF EXISTS (SELECT CredentialsGrade FROM APPLICANT_CREDENTIALS WHERE 



261 

ApplicantId = @ApplicantId AND CredentialsId = @CredentialsId) 
 SET @CredentialsGrade = (SELECT CredentialsGrade FROM 
APPLICANT_CREDENTIALS WHERE ApplicantId = @ApplicantId AND 
CredentialsId = @CredentialsId) 
ELSE 
 SET @CredentialsGrade = 0 
RETURN @CredentialsGrade 
GO 
 
 
Name: dec_ Credentials2 
CREATE PROCEDURE ksergis.dec_Credentials2 (@JobId char(10), @CredentialsId 
char(10))  
AS 
DECLARE @CredentialsGrade int 
SET @CredentialsGrade = (SELECT CredentialsGrade FROM JOB_CREDENTIALS 
WHERE JobId = @JobId AND CredentialsId = @CredentialsId) 
RETURN @CredentialsGrade 
GO 
 
 
Name: dec_ Delete_Job_Manipulate 
CREATE PROCEDURE ksergis.dec_Delete_Job_Manipulate (@JobId char(10), 
@PlaceCode char(10)) AS 
 
DECLARE @ApplicantId char(10) 
 
SET @ApplicantId = (SELECT ApplicantId FROM MANIPULATE_SOLUTION 
WHERE JobId = @JobId AND PlaceCode = @PlaceCode) 
 
DELETE FROM MANIPULATE_SOLUTION 
WHERE JobId = @JobId AND PlaceCode = @PlaceCode 
 
INSERT INTO UNASSIGNED_APPLICANTS_MANIPULATE 
VALUES (@ApplicantId) 
 
INSERT INTO DELETED_JOBS_MANIPULATE 
VALUES (@JobId, @PlaceCode) 
GO 
 
 
Name: dec_ DELETED_JOBS_MANIPULATE_DeleteRecord 
CREATE PROCEDURE ksergis.dec_DELETED_JOBS_MANIPULATE_DeleteRecord 
(@JobId char(10), @PlaceCode char(10)) AS 
DELETE FROM DELETED_JOBS_MANIPULATE 
WHERE JobId = @JobId AND PlaceCode = @PlaceCode 



262 

GO 
 
 
Name: dec_ DELETED_JOBS_MANIPULATE_Fill 
CREATE PROCEDURE ksergis.dec_DELETED_JOBS_MANIPULATE_Fill AS 
DELETE FROM DELETED_JOBS_MANIPULATE 
 
INSERT INTO DELETED_JOBS_MANIPULATE 
SELECT * 
FROM DELETED_JOBS 
GO 
 
 
Name: dec_ DeleteEmptyJobs 
CREATE PROCEDURE ksergis.dec_DeleteEmptyJobs  
AS 
 
DECLARE @JobId char(10) 
DECLARE @ApplicantId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @Counter int 
DECLARE @HValue float 
 
DECLARE PriorityCursor CURSOR FOR  
SELECT JobId, PlaceCode, Counter 
FROM PRIORITY 
 
OPEN PriorityCursor 
FETCH NEXT FROM PriorityCursor  
INTO @JobId, @PlaceCode, @Counter 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  IF NOT EXISTS (SELECT 'True' FROM H WHERE JobId = @JobId  
AND PlaceCode= @PlaceCode AND HValue IS NOT NULL) 
  BEGIN 
   INSERT INTO DELETED_JOBS 
   SELECT JobId, PlaceCode 
   FROM PRIORITY 
   WHERE JobId = @JobId  AND PlaceCode= @PlaceCode 
 
   DELETE FROM PRIORITY 
   WHERE JobId = @JobId  AND PlaceCode= @PlaceCode 
 
   UPDATE PRIORITY 



263 

   SET Counter = Counter - 1 
   WHERE Counter > @Counter 
  END   
 END 
 FETCH NEXT FROM PriorityCursor  
 INTO @JobId, @PlaceCode, @Counter 
END 
 
CLOSE PriorityCursor 
DEALLOCATE PriorityCursor 
GO 
 
 
Name: dec_ DeleteJob 
CREATE PROCEDURE ksergis.dec_DeleteJob  
AS 
DECLARE @Counter int 
 
SET @Counter = (SELECT MIN(Counter) FROM PRIORITY WHERE Flag = '0') 
 
INSERT INTO DELETED_JOBS 
SELECT JobId, PlaceCode 
FROM PRIORITY 
WHERE Counter = @Counter 
 
DELETE FROM PRIORITY 
WHERE Counter = @Counter 
 
UPDATE PRIORITY 
SET Counter = Counter - 1 
WHERE Counter > @Counter 
GO 
 
 
Name: dec_ DeleteJobUsedValues 
CREATE PROCEDURE ksergis.dec_DeleteJobUsedValues (@Counter int) 
AS 
 
DECLARE @JobId char(10) 
DECLARE @JobId1 char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @PlaceCode1 char(10) 
 
DECLARE PriorityCursor CURSOR FOR  
SELECT JobId, PlaceCode, Counter 
FROM PRIORITY 



264 

WHERE Counter = @Counter 
 
OPEN PriorityCursor 
FETCH NEXT FROM PriorityCursor  
INTO @JobId, @PlaceCode, @Counter 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  SET @JobId1 = @JobId 
  SET @PlaceCode1 = @PlaceCode 
 END 
 FETCH NEXT FROM PriorityCursor  
 INTO @JobId, @PlaceCode, @Counter 
END 
 
CLOSE PriorityCursor 
DEALLOCATE PriorityCursor 
 
DELETE FROM USED_APPLICANTS 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 
GO 
 
 
Name: dec_ EstimateFunction 
CREATE PROCEDURE ksergis.dec_EstimateFunction AS 
 
DECLARE @Priority1 int 
DECLARE @Priority2 int 
DECLARE @TotalValueMAXTable float 
DECLARE @TotalValueManipulateTable float 
DECLARE @Difference float 
DECLARE @n_MAXTable int 
DECLARE @n_ManipulateTable int 
DECLARE @n_CounterTable int 
DECLARE @SecondMaxValue float 
DECLARE @MinValue float 
DECLARE @MaxValue float 
DECLARE @Factor float 
DECLARE @Counter1 int 
DECLARE @Counter2 int 
 
DECLARE @JobId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @MAXValue1 float 
DECLARE @MAXValue2 float 



265 

 
DECLARE @JobId1 char(10) 
DECLARE @PlaceCode1 char(10) 
 
SET @TotalValueMAXTable = 0 
SET @TotalValueManipulateTable = 0 
 
SET @n_MAXTable = (SELECT Count (*) FROM MAX_VALUE) 
SET @n_ManipulateTable = (SELECT Count (*) FROM MANIPULATE_SOLUTION) 
SET @n_CounterTable = (SELECT Count (*) FROM COUNTER) 
 
SET @MaxValue = (SELECT max(HValue) FROM H WHERE HValue IS NOT NULL) 
SET @MinValue = (SELECT min(HValue) FROM H WHERE HValue IS NOT NULL) 
 
IF @MaxValue = @MinValue 
 SET @Difference = 0 
ELSE 
BEGIN   
 SET @SecondMaxValue = (SELECT max(HValue) FROM H WHERE HValue < 
@MaxValue AND HValue IS NOT NULL) 
 SET @Factor = 9/(@MaxValue - @SecondMaxValue) 
  
 DECLARE MaxValueCursor CURSOR FOR  
 SELECT JobId, PlaceCode, MAXValue 
 FROM MAX_VALUE 
  
 OPEN MaxValueCursor 
 FETCH NEXT FROM MaxValueCursor  
 INTO @JobId, @PlaceCode, @MAXValue1 
 WHILE @@FETCH_STATUS <> -1  
 BEGIN 
  IF @@FETCH_STATUS <> -2 
  BEGIN    
   SET @Priority1 = (SELECT Counter FROM COUNTER WHERE 
JobId = @JobId AND PlaceCode = @PlaceCode) 
 
   SET @Counter1 = @Priority1 + 1 
   WHILE @Counter1 <= @n_CounterTable 
   BEGIN 
    SET @JobId1 = (SELECT JobId FROM COUNTER 
WHERE Counter = @Counter1) 
    SET @PlaceCode1 = (SELECT PlaceCode FROM 
COUNTER WHERE Counter = @Counter1) 
    IF EXISTS (SELECT 'True' FROM MAX_VALUE 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1) 
    BEGIN 



266 

     SET @MAXValue2 = (SELECT MAXValue 
FROM MAX_VALUE WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1) 
     SET @Priority2 = @Counter1 
     SET @TotalValueMAXTable = 
@TotalValueMAXTable + log10((POWER(@Factor, (@n_CounterTable - @Priority1)) 
* @Priority1 * @MAXValue1) + (POWER(@Factor, (@n_CounterTable - @Priority2)) 
* @Priority2 * @MAXValue2)) 
     BREAK 
    END 
    SET @Counter1 = @Counter1 + 1 
   END 
  END 
  FETCH NEXT FROM MaxValueCursor  
  INTO @JobId, @PlaceCode, @MAXValue1 
 END 
  
 CLOSE MaxValueCursor 
 DEALLOCATE MaxValueCursor 
 
 DECLARE ManipulateTableCursor CURSOR FOR  
 SELECT JobId, PlaceCode, MAXValue 
 FROM MANIPULATE_SOLUTION 
  
 OPEN ManipulateTableCursor 
 FETCH NEXT FROM ManipulateTableCursor  
 INTO @JobId, @PlaceCode, @MAXValue1 
 WHILE @@FETCH_STATUS <> -1  
 BEGIN 
  IF @@FETCH_STATUS <> -2 
  BEGIN 
   SET @Priority1 = (SELECT Counter FROM COUNTER WHERE 
JobId = @JobId AND PlaceCode = @PlaceCode) 
 
   SET @Counter1 = @Priority1 + 1 
   WHILE @Counter1 <= @n_CounterTable 
   BEGIN 
    SET @JobId1 = (SELECT JobId FROM COUNTER 
WHERE Counter = @Counter1) 
    SET @PlaceCode1 = (SELECT PlaceCode FROM 
COUNTER WHERE Counter = @Counter1) 
    IF EXISTS (SELECT 'True' FROM 
MANIPULATE_SOLUTION WHERE JobId = @JobId1 AND PlaceCode = 
@PlaceCode1) 
    BEGIN 
     SET @MAXValue2 = (SELECT MAXValue 
FROM MANIPULATE_SOLUTION WHERE JobId = @JobId1 AND PlaceCode = 



267 

@PlaceCode1) 
     SET @Priority2 = @Counter1 
     SET @TotalValueManipulateTable = 
@TotalValueManipulateTable + log10((POWER(@Factor, (@n_CounterTable - 
@Priority1)) * @Priority1 * @MAXValue1) + (POWER(@Factor, (@n_CounterTable - 
@Priority2)) * @Priority2 * @MAXValue2)) 
     BREAK 
    END 
    SET @Counter1 = @Counter1 + 1 
   END 
  END 
  FETCH NEXT FROM ManipulateTableCursor  
  INTO @JobId, @PlaceCode, @MAXValue1 
 END 
  
 CLOSE ManipulateTableCursor 
 DEALLOCATE ManipulateTableCursor 
 
 SET @Difference = @TotalValueMAXTable - @TotalValueManipulateTable 
 
print @TotalValueMAXTable 
print @TotalValueManipulateTable 
END 
 
DELETE FROM ESTIMATE_FUNCTION_RESULT 
 
INSERT INTO ESTIMATE_FUNCTION_RESULT 
VALUES (@Difference) 
GO 
 
 
Name: dec_ Experience 
CREATE PROCEDURE ksergis.dec_Experience (@JobId char(10), @ApplicantId 
char(10))  
AS 
DECLARE @ExperienceRequired float 
DECLARE @ExperienceYears float 
 
SET @ExperienceYears = 0 
 
SET @ExperienceRequired = (SELECT ExperienceRequired FROM JOB WHERE JobId 
= @JobId) 
IF (SELECT distinct(Experience) FROM EXPERIENCE WHERE ApplicantId = 
@ApplicantId AND JobId = @JobId) IS NOT NULL 
 SET @ExperienceYears = (SELECT distinct(Experience) FROM EXPERIENCE 
WHERE ApplicantId = @ApplicantId AND JobId = @JobId) 



268 

 
IF @ExperienceYears < @ExperienceRequired 
 RETURN 0 
ELSE 
 RETURN ((@ExperienceYears - @ExperienceRequired) * 9 / (15 - 
@ExperienceRequired)) + 1 
GO 
 
 
Name: dec_ FindMaxValue 
CREATE PROCEDURE ksergis.dec_FindMaxValue (@JobId  char(10), @PlaceCode 
char(10), @MAXValue float) 
AS 
print 'inside findmaxvalue' 
DECLARE @JobId1 char(10) 
DECLARE @PlaceCode1 char(10) 
DECLARE @JobId2 char(10) 
DECLARE @PlaceCode2 char(10) 
DECLARE @ApplicantId1 char(10) 
DECLARE @ApplicantId2 char(10) 
DECLARE @ApplicantId char(10) 
DECLARE @Counter int 
DECLARE @Counter1 int 
DECLARE @Counter2 int 
DECLARE @MinCount int 
DECLARE @Temp int 
DECLARE @Temp1 int 
DECLARE @Temp2 int 
DECLARE @C int 
DECLARE @C1 int 
DECLARE @C2 int 
DECLARE @MultipleMaxValues int 
DECLARE @Spot int 
DECLARE @Length int 
DECLARE @MAX float 
DECLARE @MIN float 
DECLARE @MAX1 float 
DECLARE @MAX2 float 
DECLARE @MIN1 float 
DECLARE @HValue1 float 
DECLARE @Eurika int 
DECLARE @Flag int 
DECLARE @MIN_VALUE_APPLICANTS_Length int 
DECLARE @MULTIPLE_MAX_VALUES_Length int 
DECLARE @ONE_MAX_VALUE_Length int 
 



269 

DELETE FROM SAME_MAX_VALUE 
DELETE FROM MIN_VALUE_APPLICANTS 
DELETE FROM MULTIPLE_MAX_VALUES 
DELETE FROM ONE_MAX_VALUE 
 
SET @Counter = (SELECT Counter FROM PRIORITY WHERE JobId = @JobId AND 
PlaceCode = @PlaceCode) 
 
DECLARE HCursor CURSOR FOR  
SELECT ApplicantId 
FROM H 
WHERE JobId = @JobId AND PlaceCode = @PlaceCode AND HValue = @MAXValue 
AND  
  ApplicantId NOT IN (SELECT ApplicantId FROM USED_APPLICANTS 
WHERE JobId = @JobId AND PlaceCode = @PlaceCode) AND 
  ApplicantId NOT IN (SELECT ApplicantId FROM 
ASSIGNED_APPLICANTS) 
  
OPEN HCursor 
FETCH NEXT FROM HCursor  
INTO @ApplicantId 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 INSERT INTO SAME_MAX_VALUE 
 VALUES (@ApplicantId) 
 FETCH NEXT FROM HCursor  
 INTO @ApplicantId 
END 
 
CLOSE HCursor 
DEALLOCATE HCursor 
 
EXEC @Length = ksergis.dec_CountPriorityRecords 
 
SET @Eurika = 0 
SET @Spot = 0 
 
DECLARE SameMaxValueCursor CURSOR FOR  
SELECT ApplicantId 
FROM SAME_MAX_VALUE 
 
OPEN SameMaxValueCursor 
FETCH NEXT FROM SameMaxValueCursor  
INTO @ApplicantId 
WHILE @@FETCH_STATUS <> -1  



270 

BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  SET @Flag = 0 
  SET @Counter1 = @Counter + 1 
  WHILE @Counter1 <= @Length 
  BEGIN 
   SET @JobId1 = (SELECT JobId FROM PRIORITY WHERE 
Counter = @Counter1) 
   SET @PlaceCode1 = (SELECT PlaceCode FROM PRIORITY 
WHERE Counter = @Counter1) 
   SET @MAX1 = (SELECT max(HValue) FROM H WHERE JobId 
= @JobId1 AND PlaceCode = @PlaceCode1 AND HValue IS NOT NULL AND  
      ApplicantId NOT IN (SELECT ApplicantId FROM 
USED_APPLICANTS WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1) 
AND 
      ApplicantId NOT IN (SELECT ApplicantId FROM 
ASSIGNED_APPLICANTS)) 
   SET @HValue1 = (SELECT HValue FROM H WHERE JobId = 
@JobId1 AND PlaceCode = @PlaceCode1 AND ApplicantId = @ApplicantId) 
   IF @HValue1 = @MAX1 
    SET @Flag = 1 
   SET @Counter1 = @Counter1 + 1 
  END 
   
  IF @Flag = 0 
  BEGIN 
   SET @JobId2 = (SELECT JobId FROM PRIORITY WHERE 
Counter = @Counter + 1) 
   SET @PlaceCode2 = (SELECT PlaceCode FROM PRIORITY 
WHERE Counter = @Counter + 1) 
   SET @MIN1 = (SELECT HValue FROM H WHERE JobId = 
@JobId2 AND PlaceCode = @PlaceCode2 AND ApplicantId = @ApplicantId) 
   INSERT INTO MIN_VALUE_APPLICANTS 
   VALUES (@ApplicantId, @MIN1) 
  END 
 END 
 FETCH NEXT FROM SameMaxValueCursor 
 INTO @ApplicantId 
END 
 
CLOSE SameMaxValueCursor 
DEALLOCATE SameMaxValueCursor 
 
SET @MIN_VALUE_APPLICANTS_Length = (SELECT count(*) FROM 
MIN_VALUE_APPLICANTS) 



271 

 
IF @MIN_VALUE_APPLICANTS_Length > 0 
BEGIN 
 SET @Eurika = 1 
 SET @MIN1 = (SELECT min(MINValue) FROM 
MIN_VALUE_APPLICANTS) 
 SET @ApplicantId1 = (SELECT distinct(ApplicantId) FROM 
MIN_VALUE_APPLICANTS WHERE MINValue = @MIN1) 
END 
ELSE 
BEGIN 
 SET @Counter1 = @Counter + 1 
 WHILE @Counter1 <= @Length 
 BEGIN 
  SET @JobId2 = (SELECT JobId FROM PRIORITY WHERE Counter = 
@Counter1) 
  SET @PlaceCode2 = (SELECT PlaceCode FROM PRIORITY WHERE 
Counter = @Counter1) 
  print @JobId2 
  print @PlaceCode2 
  SET @MAX1 = (SELECT max(HValue) FROM H WHERE JobId = 
@JobId2 AND PlaceCode = @PlaceCode2 AND ApplicantId IN (SELECT ApplicantId 
FROM SAME_MAX_VALUE)) 
  SET @MultipleMaxValues = (SELECT count(HValue) FROM H 
WHERE JobId = @JobId2 AND PlaceCode = @PlaceCode2 AND HValue = @MAX1 
AND ApplicantId IN (SELECT ApplicantId FROM SAME_MAX_VALUE)) 
  PRINT '@MultipleMaxValues = ' 
  PRINT @MultipleMaxValues 
  IF @MultipleMaxValues = 1 
  BEGIN 
   SET @ApplicantId2 = (SELECT ApplicantId FROM H WHERE 
HValue = @MAX1 AND JobId = @JobId2 AND PlaceCode = @PlaceCode2 AND 
ApplicantId IN (SELECT ApplicantId FROM SAME_MAX_VALUE)) 
   INSERT INTO ONE_MAX_VALUE 
   VALUES (@JobId2, @PlaceCode2, @ApplicantId2, @Counter1) 
  END 
  ELSE 
  BEGIN 
   DECLARE SameMaxValueCursor1 CURSOR FOR  
   SELECT ApplicantId 
   FROM SAME_MAX_VALUE 
 
   OPEN SameMaxValueCursor1 
   FETCH NEXT FROM SameMaxValueCursor1  
   INTO @ApplicantId 
   WHILE @@FETCH_STATUS <> -1  



272 

   BEGIN 
    IF @@FETCH_STATUS <> -2 
    BEGIN 
     SET @HValue1 = (SELECT HValue FROM H 
WHERE JobId = @JobId2 AND PlaceCode = @PlaceCode2 AND ApplicantId = 
@ApplicantId) 
     IF @HValue1 = @MAX1 
     BEGIN 
      INSERT INTO 
MULTIPLE_MAX_VALUES 
      VALUES (@JobId2, @PlaceCode2, 
@ApplicantId, @Counter1) 
     END 
    END 
    FETCH NEXT FROM SameMaxValueCursor1 
    INTO @ApplicantId 
   END 
 
   CLOSE SameMaxValueCursor1 
   DEALLOCATE SameMaxValueCursor1 
  END 
  SET @Counter1 = @Counter1 + 1 
 END 
  
 IF @Length > @Counter + 2 
 BEGIN 
  --SET @MULTIPLE_MAX_VALUES_Length = (SELECT 
max(Counter) FROM MULTIPLE_MAX_VALUES WHERE Counter > @Counter + 1) 
  --IF @MULTIPLE_MAX_VALUES_Length > @Counter + 1 
  --BEGIN 
   SET @JobId1 = (SELECT JobId FROM PRIORITY WHERE 
Counter = @Counter + 1) 
   SET @PlaceCode1 = (SELECT PlaceCode FROM PRIORITY 
WHERE Counter = @Counter + 1) 
   SET @MIN1 = (SELECT min(HValue) FROM H WHERE JobId 
= @JobId1 AND PlaceCode = @PlaceCode1 AND ApplicantId IN (SELECT 
ApplicantId FROM MULTIPLE_MAX_VALUES)) 
   SET @MAX2 = (SELECT max(HValue) FROM H WHERE JobId 
= @JobId1 AND PlaceCode = @PlaceCode1 AND HValue IS NOT NULL AND  
      ApplicantId NOT IN (SELECT ApplicantId FROM 
USED_APPLICANTS WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1) 
AND 
      ApplicantId NOT IN (SELECT ApplicantId FROM 
ASSIGNED_APPLICANTS))  
 
   IF @MIN1 < @MAX2 



273 

   BEGIN 
    SET @Eurika = 1 
    SET @ApplicantId1 = (SELECT ApplicantId FROM H 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 AND HValue = @MIN1) 
   END 
   ELSE 
   BEGIN 
    SET @MinCount = @Length 
    SET @C = 0 
    DECLARE MultipleMaxValueCursor CURSOR FOR  
    SELECT ApplicantId 
    FROM MULTIPLE_MAX_VALUES 
    WHERE Counter = @Counter + 1 
     
    OPEN MultipleMaxValueCursor 
    FETCH NEXT FROM MultipleMaxValueCursor  
    INTO @ApplicantId 
    WHILE @@FETCH_STATUS <> -1  
    BEGIN 
     IF @@FETCH_STATUS <> -2 
     BEGIN 
      SET @Temp1 = (SELECT 
count(ApplicantId) FROM MULTIPLE_MAX_VALUES WHERE ApplicantId = 
@ApplicantId) 
      SET @Temp2 = (SELECT 
count(ApplicantId) FROM ONE_MAX_VALUE WHERE ApplicantId = @ApplicantId) 
      SET @Temp = @Temp1 + @Temp2 
      SET @C1 = (SELECT max(Counter) 
FROM MULTIPLE_MAX_VALUES WHERE ApplicantId = @ApplicantId) 
      SET @C2 = (SELECT max(Counter) 
FROM ONE_MAX_VALUE WHERE ApplicantId = @ApplicantId) 
      IF @C2 > @C1 
       SET @C1 = @C2 
      IF (@Temp <= @MinCount) AND (@C1 
>= @C) 
      BEGIN 
       SET @Eurika = 1 
       SET @MinCount = @Temp 
       SET @C = @C1 
       SET @ApplicantId1 = @ApplicantId 
      END 
     END 
     FETCH NEXT FROM MultipleMaxValueCursor 
     INTO @ApplicantId 
    END 
  



274 

    CLOSE MultipleMaxValueCursor 
    DEALLOCATE MultipleMaxValueCursor   
  
   END 
  --END 
 END 
 ELSE IF @Length = @Counter + 1 
 BEGIN 
  IF EXISTS(SELECT 'True' FROM MULTIPLE_MAX_VALUES 
WHERE Counter = @Counter) 
  BEGIN 
   SET @Eurika = 1 
   SET @JobId1 = (SELECT JobId FROM PRIORITY WHERE 
Counter = @Counter+ 1) 
   SET @PlaceCode1 = (SELECT PlaceCode FROM PRIORITY 
WHERE Counter = @Counter + 1) 
   SET @MIN1 = (SELECT min(HValue) FROM H WHERE JobId 
= @JobId1 AND PlaceCode = @PlaceCode1 AND ApplicantId IN (SELECT 
ApplicantId FROM MULTIPLE_MAX_VALUES WHERE Counter = @Counter)) 
    
   DECLARE MultipleMaxValueCursor1 CURSOR FOR  
   SELECT ApplicantId, Counter 
   FROM MULTIPLE_MAX_VALUES 
    
   OPEN MultipleMaxValueCursor1 
   FETCH NEXT FROM MultipleMaxValueCursor1  
   INTO @ApplicantId, @Counter2 
   WHILE @@FETCH_STATUS <> -1  
   BEGIN 
    IF @@FETCH_STATUS <> -2 
    BEGIN 
     SET @HValue1 = (SELECT HValue FROM H 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 AND ApplicantId = 
@ApplicantId) 
     IF @HValue1 = @MIN1 
      SET @ApplicantId1 = @ApplicantId 
    END 
    FETCH NEXT FROM MultipleMaxValueCursor1 
    INTO @ApplicantId, @Counter2 
   END 
 
   CLOSE MultipleMaxValueCursor1 
   DEALLOCATE MultipleMaxValueCursor1 
  END 
 END 
 ELSE IF @Length = @Counter + 2 



275 

 BEGIN 
  IF EXISTS(SELECT 'True' FROM MULTIPLE_MAX_VALUES 
WHERE Counter = @Counter + 1) 
  BEGIN 
   SET @Eurika = 1 
   SET @JobId1 = (SELECT JobId FROM PRIORITY WHERE 
Counter = @Counter+ 2) 
   SET @PlaceCode1 = (SELECT PlaceCode FROM PRIORITY 
WHERE Counter = @Counter + 2) 
   SET @MIN1 = (SELECT min(HValue) FROM H WHERE JobId 
= @JobId1 AND PlaceCode = @PlaceCode1 AND ApplicantId IN (SELECT 
ApplicantId FROM MULTIPLE_MAX_VALUES WHERE Counter = @Counter + 1)) 
    
   DECLARE MultipleMaxValueCursor1 CURSOR FOR  
   SELECT ApplicantId, Counter 
   FROM MULTIPLE_MAX_VALUES 
    
   OPEN MultipleMaxValueCursor1 
   FETCH NEXT FROM MultipleMaxValueCursor1  
   INTO @ApplicantId, @Counter2 
   WHILE @@FETCH_STATUS <> -1  
   BEGIN 
    IF @@FETCH_STATUS <> -2 
    BEGIN 
     SET @HValue1 = (SELECT HValue FROM H 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 AND ApplicantId = 
@ApplicantId) 
     IF @HValue1 = @MIN1 
      SET @ApplicantId1 = @ApplicantId 
    END 
    FETCH NEXT FROM MultipleMaxValueCursor1 
    INTO @ApplicantId, @Counter2 
   END 
 
   CLOSE MultipleMaxValueCursor1 
   DEALLOCATE MultipleMaxValueCursor1 
  END 
 END 
 
 IF @Eurika = 0 
 BEGIN 
  SET @ONE_MAX_VALUE_Length = (SELECT max(Counter) FROM 
ONE_MAX_VALUE WHERE Counter > @Counter + 1) 
  IF @ONE_MAX_VALUE_Length > @Counter + 1 
  BEGIN 
   SET @Eurika = 1 



276 

   SET @Spot = (SELECT max(Counter) FROM 
ONE_MAX_VALUE) 
   SET @ApplicantId1 = (SELECT ApplicantId FROM 
ONE_MAX_VALUE WHERE Counter = @Spot) 
  END 
 END 
 
END 
 
IF @Eurika = 0 
BEGIN 
 DECLARE HCursor1 CURSOR FOR  
 SELECT ApplicantId 
 FROM H 
 WHERE JobId = @JobId AND PlaceCode = @PlaceCode AND HValue = 
@MAXValue AND  
   ApplicantId IN (SELECT ApplicantId FROM SAME_MAX_VALUE) 
  
 OPEN HCursor1 
 FETCH NEXT FROM HCursor1  
 INTO @ApplicantId 
 WHILE @@FETCH_STATUS <> -1  
 BEGIN 
  IF @@FETCH_STATUS <> -2 
  SET @ApplicantId1 = @ApplicantId 
  BREAK 
  FETCH NEXT FROM HCursor  
  INTO @ApplicantId 
 END 
 
 CLOSE HCursor1 
 DEALLOCATE HCursor1 
END 
 
RETURN @ApplicantId1 
GO 
 
 
Name: dec_ H_Fill 
CREATE PROCEDURE ksergis.dec_H_Fill 
AS 
 
DELETE FROM H 
 
INSERT INTO H 
SELECT JobId, ApplicantId, PlaceCode, NULL 



277 

FROM JOB_PLACE, APPLICANT 
 
DECLARE @JobId char(10) 
DECLARE @ApplicantId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @HValue float 
 
DECLARE @Rank int 
DECLARE @Specialty int 
DECLARE @Qualifications int 
 
DECLARE HCursor CURSOR FOR  
SELECT JobId, ApplicantId, PlaceCode 
FROM H 
 
OPEN HCursor 
FETCH NEXT FROM HCursor  
INTO @JobId, @ApplicantId, @PlaceCode 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @Rank = ksergis.dec_Rank @JobId, @ApplicantId 
  EXEC @Specialty = ksergis.dec_Specialty @JobId, @ApplicantId 
  EXEC @Qualifications = ksergis.dec_Qualifications @JobId, 
@ApplicantId 
 
  IF @Rank = 1 AND @Specialty =1 AND @Qualifications = 1 
  BEGIN 
   EXEC @HValue = ksergis.dec_H_Function @JobId, 
@ApplicantId, @PlaceCode 
   UPDATE H 
   SET HValue = @HValue 
   WHERE JobId = @JobId AND ApplicantId = @ApplicantId AND 
PlaceCode= @PlaceCode 
  END 
 END 
 FETCH NEXT FROM HCursor  
 INTO @JobId, @ApplicantId, @PlaceCode 
END 
 
CLOSE HCursor 
DEALLOCATE HCursor 
GO 
 
 



278 

Name: dec_ H_ Function 
CREATE PROCEDURE ksergis.dec_H_Function (@JobId char(10), @ApplicantId 
char(10), @PlaceCode char (10)) 
AS 
DECLARE @PreferenceCommand int 
DECLARE @PreferenceApplicant int 
DECLARE @Language float 
DECLARE @Credentials float 
DECLARE @Experience float 
DECLARE @H float 
 
DECLARE @PreferenceCommandCo int 
DECLARE @PreferenceApplicantCo int 
DECLARE @LanguageCo int 
DECLARE @CredentialsCo int 
DECLARE @ExperienceCo int 
 
EXEC @PreferenceCommand = ksergis.dec_PreferenceCommandReturn @JobId, 
@ApplicantId, @PlaceCode 
EXEC @PreferenceApplicant = ksergis.dec_PreferenceApplicantReturn @JobId, 
@ApplicantId, @PlaceCode 
EXEC @Language = ksergis.dec_Language @JobId, @ApplicantId 
EXEC @Credentials = ksergis.dec_Credentials @JobId, @ApplicantId 
EXEC @Experience = ksergis.dec_Experience @JobId, @ApplicantId 
 
SET @PreferenceCommandCo = (SELECT CoefficientValue FROM COEFFICIENT 
WHERE CoefficientId = 'CommandPreferenceCo') 
SET @PreferenceApplicantCo = (SELECT CoefficientValue FROM COEFFICIENT 
WHERE CoefficientId = 'ApplicantPreferenceCo') 
SET @LanguageCo = (SELECT CoefficientValue FROM COEFFICIENT WHERE 
CoefficientId = 'LanguageCo') 
SET @CredentialsCo = (SELECT CoefficientValue FROM COEFFICIENT WHERE 
CoefficientId = 'CredentialsCo') 
SET @ExperienceCo = (SELECT CoefficientValue FROM COEFFICIENT WHERE 
CoefficientId = 'ExperienceCo') 
 
SET @H = (@PreferenceCommandCo * @PreferenceCommand) + 
(@PreferenceApplicantCo * @PreferenceApplicant) + (@LanguageCo * @Language) + 
(@CredentialsCo * @Credentials) + (@ExperienceCo * @Experience) + 1 
 
RETURN @H 
GO 
 
 
Name: dec_ H_ Normalize 
CREATE PROCEDURE ksergis.dec_H_Normalize 



279 

AS 
 
EXEC ksergis.dec_MAX_VALUE_ALL_JOBS_Fill 
 
DECLARE @JobId char(10) 
DECLARE @ApplicantId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @HValue float 
DECLARE @MaxValue float 
 
DECLARE HCursor CURSOR FOR  
SELECT JobId, ApplicantId, PlaceCode, HValue 
FROM H 
 
OPEN HCursor 
FETCH NEXT FROM HCursor  
INTO @JobId, @ApplicantId, @PlaceCode, @HValue 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  IF @HValue IS NOT NULL 
  BEGIN 
   SET @MaxValue = (SELECT MAXValue FROM 
MAX_VALUE_ALL_JOBS WHERE JobId = @JobId AND PlaceCode = @PlaceCode) 
   UPDATE H 
   SET HValue = (@HValue * 9 / @MaxValue) + 1 
   WHERE JobId = @JobId AND ApplicantId = @ApplicantId AND 
PlaceCode= @PlaceCode 
  END 
 END 
 FETCH NEXT FROM HCursor  
 INTO @JobId, @ApplicantId, @PlaceCode, @HValue 
END 
 
CLOSE HCursor 
DEALLOCATE HCursor 
GO 
 
 
Name: dec_ Language 
CREATE PROCEDURE ksergis.dec_Language (@JobId char(10), @ApplicantId 
char(10))  
AS 
DECLARE @LanguageDegree1 float 
DECLARE @LanguageDegree2 float 



280 

DECLARE @LanguageCode char(10) 
DECLARE @SUM1 float 
DECLARE @SUM2 float 
DECLARE @ANS float 
DECLARE @Count int 
 
SET @SUM1 = 0 
SET @SUM2 = 0 
SET @Count = 0 
 
DECLARE LanguageCursor CURSOR FOR  
SELECT JobId, LanguageCode  
FROM JOB_LANGUAGE 
WHERE JobId = @JobId 
 
OPEN LanguageCursor 
FETCH NEXT FROM LanguageCursor  
INTO @JobId, @LanguageCode 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @LanguageDegree1 = ksergis.dec_Language1 @ApplicantId, 
@LanguageCode 
  EXEC @LanguageDegree2 = ksergis.dec_Language2 @JobId, 
@LanguageCode 
  SET @SUM1 = @SUM1 +@LanguageDegree1 
  SET @SUM2 = @SUM2 +@LanguageDegree2  
  SET @Count = @Count +1  
 END 
 FETCH NEXT FROM LanguageCursor  
 INTO @JobId, @LanguageCode 
END 
 
CLOSE LanguageCursor 
DEALLOCATE LanguageCursor 
 
IF @SUM1 < @SUM2 
 SET @ANS = 0 
ELSE 
BEGIN 
 IF @Count * 200 = @SUM2 
  SET @ANS = 1 
 ELSE 
  SET @ANS = ((@SUM1 - @SUM2) * 9 / ((@Count * 200) - @SUM2)) 
+ 1 



281 

END 
 
RETURN @ANS 
GO 
 
 
Name: dec_ Language1 
CREATE PROCEDURE ksergis.dec_Language1 (@ApplicantId char(10), 
@LanguageCode char(10))  
AS 
DECLARE @LanguageDegree float 
 
IF EXISTS (SELECT LanguageDegree FROM APPLICANT_LANGUAGE WHERE 
ApplicantId = @ApplicantId AND LanguageCode = @LanguageCode) 
 SET @LanguageDegree = (SELECT LanguageDegree FROM 
APPLICANT_LANGUAGE WHERE ApplicantId = @ApplicantId AND LanguageCode 
= @LanguageCode) 
ELSE 
 SET @LanguageDegree = 0 
RETURN @LanguageDegree 
GO 
 
 
Name: dec_ Language2 
CREATE PROCEDURE ksergis.dec_Language2 (@JobId char(10), @LanguageCode 
char(10))  
AS 
DECLARE @LanguageDegree float 
SET @LanguageDegree = (SELECT LanguageDegree FROM JOB_LANGUAGE 
WHERE JobId = @JobId AND LanguageCode = @LanguageCode) 
RETURN @LanguageDegree 
GO 
 
 
Name: dec_ Main 
CREATE PROCEDURE ksergis.dec_Main AS 
 
DELETE FROM DELETED_JOBS 
DELETE FROM USED_APPLICANTS 
DELETE FROM ASSIGNED_APPLICANTS 
 
EXEC ksergis.dec_H_Fill 
EXEC ksergis.dec_H_Normalize 
EXEC ksergis.dec_PRIORITY_Fill 
EXEC ksergis.dec_COUNTER_Fill 
EXEC ksergis.dec_MAX_VALUE_Fill 



282 

EXEC ksergis.dec_DeleteEmptyJobs 
 
DECLARE @Length int 
DECLARE @Count int 
DECLARE @PriorCount int 
DECLARE @Flag bit 
DECLARE @CheckHValueExists int 
 
EXEC @Length = ksergis.dec_CountPriorityRecords 
 
SET @Count = 1 
 
WHILE @Count <= @Length 
BEGIN 
 PRINT @Count 
 EXEC @CheckHValueExists = ksergis.dec_CheckHValueExists @Count 
 
 IF @Count = 1  
 BEGIN 
  SET @Flag = (SELECT Flag FROM PRIORITY WHERE Counter =  
@Count) 
  IF @CheckHValueExists = 0 AND @Flag = 1 
  BEGIN 
   EXEC ksergis.dec_DeleteJob 
   EXEC @Length = ksergis.dec_CountPriorityRecords 
   EXEC ksergis.dec_DeleteJobUsedValues @Count 
   EXEC @CheckHValueExists = ksergis.dec_CheckHValueExists 
@Count 
  END 
 END 
 
 IF @CheckHValueExists = 1 
 BEGIN 
  EXEC ksergis.dec_ComputeMaxValue @Count 
  UPDATE PRIORITY 
  SET Flag = 1 
  WHERE Counter = @Count 
  SET @Count = @Count + 1 
 END 
 ELSE 
 BEGIN 
  SET @PriorCount = @Count - 1 
  EXEC ksergis.dec_SetMAXValueNull @PriorCount 
  EXEC ksergis.dec_DeleteJobUsedValues @Count 
  SET @Count = @PriorCount 
 END 



283 

END 
 
EXEC ksergis.dec_UNASSIGNED_APPLICANTS_Fill 
EXEC ksergis.dec_MANIPULATE_SOLUTION_Fill 
EXEC ksergis.dec_UNASSIGNED_APPLICANTS_MANIPULATE_Fill 
EXEC ksergis.dec_DELETED_JOBS_MANIPULATE_Fill 
EXEC ksergis.dec_EstimateFunction 
GO 
 
 
Name: dec_ MANIPULATE_SOLUTION_Fill 
CREATE PROCEDURE ksergis.dec_MANIPULATE_SOLUTION_Fill AS 
DELETE FROM MANIPULATE_SOLUTION 
 
INSERT INTO MANIPULATE_SOLUTION 
SELECT JobId, PlaceCode, ApplicantId, MAXValue 
FROM MAX_VALUE 
GO 
 
 
Name: dec_ MANIPULATE_SOLUTION_ InsertRecord 
CREATE PROCEDURE ksergis.dec_MANIPULATE_SOLUTION_InsertRecord 
(@JobId char(10),  @PlaceCode char(10), @ApplicantId  char(10)) AS 
DECLARE @HValue float 
 
SET @HValue = (SELECT HValue FROM H WHERE JobId = @JobId AND PlaceCode 
= @PlaceCode AND ApplicantId = @ApplicantId) 
 
INSERT INTO MANIPULATE_SOLUTION 
VALUES (@JobId, @PlaceCode, @ApplicantId, @HValue) 
GO 
 
 
Name: dec_MAX_VALUE_ALL_JOBS_Fill 
CREATE PROCEDURE ksergis.dec_MAX_VALUE_ALL_JOBS_Fill 
AS 
 
DELETE FROM MAX_VALUE_ALL_JOBS 
 
INSERT INTO MAX_VALUE_ALL_JOBS 
SELECT JobId, PlaceCode, NULL 
FROM JOB_PLACE 
 
DECLARE @JobId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @MValue float 



284 

 
 
 
DECLARE MAX_VALUE_ALL_JOBS_Cursor CURSOR FOR  
SELECT JobId, PlaceCode 
FROM MAX_VALUE_ALL_JOBS 
 
OPEN MAX_VALUE_ALL_JOBS_Cursor 
FETCH NEXT FROM MAX_VALUE_ALL_JOBS_Cursor  
INTO @JobId, @PlaceCode 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  SET @MValue = (SELECT MAX(HValue) FROM H WHERE  JobId = 
@JobId AND PlaceCode= @PlaceCode) 
  UPDATE MAX_VALUE_ALL_JOBS 
  SET MaxValue = @MValue 
  WHERE JobId = @JobId AND PlaceCode= @PlaceCode 
 END 
 FETCH NEXT FROM MAX_VALUE_ALL_JOBS_Cursor  
 INTO @JobId, @PlaceCode 
END 
 
CLOSE MAX_VALUE_ALL_JOBS_Cursor 
DEALLOCATE MAX_VALUE_ALL_JOBS_Cursor 
GO 
 
 
Name: dec_MAX_VALUE_Fill 
CREATE PROCEDURE ksergis.dec_MAX_VALUE_Fill 
AS 
 
DELETE FROM MAX_VALUE 
 
INSERT INTO MAX_VALUE 
SELECT JobId, PlaceCode, NULL, NULL 
FROM PRIORITY 
GO 
 
 
Name: dec_ PreferenceApplicantReturn 
CREATE PROCEDURE ksergis.dec_PreferenceApplicantReturn (@JobId char (10), 
@ApplicantId char(10), @PlaceCode char(10))  
AS 
DECLARE @PreferenceApplicant int 



285 

IF EXISTS(SELECT PreferenceApplicant FROM APPLICANT_PREFERENCE 
WHERE JobId = @JobId AND ApplicantId = @ApplicantId AND PlaceCode = 
@PlaceCode) 
BEGIN 
 SET @PreferenceApplicant = (SELECT PreferenceApplicant FROM 
APPLICANT_PREFERENCE WHERE JobId = @JobId AND ApplicantId = 
@ApplicantId AND PlaceCode = @PlaceCode) 
 IF @PreferenceApplicant IS NOT NULL 
  RETURN 11 - @PreferenceApplicant 
 ELSE 
  RETURN 0 
END 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ PreferenceCommandReturn 
CREATE PROCEDURE ksergis.dec_PreferenceCommandReturn (@JobId char (10), 
@ApplicantId char(10), @PlaceCode char(10))  
AS 
DECLARE @Ans int 
IF EXISTS(SELECT PreferenceCommand FROM COMMAND_PREFERENCE 
WHERE JobId = @JobId AND ApplicantId = @ApplicantId AND PlaceCode = 
@PlaceCode) 
BEGIN 
 SET @Ans = (SELECT PreferenceCommand FROM 
COMMAND_PREFERENCE WHERE JobId = @JobId AND ApplicantId = 
@ApplicantId AND PlaceCode = @PlaceCode) 
 IF @Ans IS NOT NULL 
  RETURN 11 - @Ans 
 ELSE 
  RETURN 0 
END 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ PRIORITY_Fill 
CREATE PROCEDURE ksergis.dec_PRIORITY_Fill 
AS 
 
DELETE FROM PRIORITY 
 
INSERT INTO PRIORITY 



286 

SELECT JOB_PLACE.JobId, PlaceCode, Priority, NULL, '0' 
FROM JOB_PLACE, JOB 
WHERE JOB_PLACE.JobId = JOB.JobId 
 
DECLARE @JobId char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @Priority int 
DECLARE @Priority1 int 
DECLARE @Counter int 
DECLARE @Counter1 int 
 
SET @Counter1 = 1 
SET @Priority1 = 10 
 
WHILE @Priority1 > 0 
BEGIN 
 
DECLARE PriorityCursor CURSOR FOR  
SELECT JobId, PlaceCode, Priority, Counter 
FROM PRIORITY 
 
OPEN PriorityCursor 
FETCH NEXT FROM PriorityCursor  
INTO @JobId, @PlaceCode, @Priority, @Counter 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  IF @Priority1 = (SELECT Priority FROM PRIORITY WHERE JobId = 
@JobId AND PlaceCode = @PlaceCode) 
  BEGIN 
   UPDATE PRIORITY 
   SET Counter = @Counter1 
   WHERE JobId = @JobId AND PlaceCode = @PlaceCode AND 
Priority= @Priority1 
   SET @Counter1 = @Counter1 + 1 
  END 
 END 
 FETCH NEXT FROM PriorityCursor  
 INTO @JobId, @PlaceCode, @Priority, @Counter 
END 
 
CLOSE PriorityCursor 
DEALLOCATE PriorityCursor 
 
SET @Priority1 = @Priority1 - 1 



287 

END 
GO 
 
 
Name: dec_ QualificationExists1 
CREATE PROCEDURE ksergis.dec_QualificationExists1 (@ApplicantId char(10), 
@QualificationCode char(10))  
AS 
IF EXISTS(SELECT 'True' FROM QUALIFICATION_APPLICANT WHERE 
ApplicantId = @ApplicantId AND QualificationCode = @QualificationCode) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ QualificationExists2 
CREATE PROCEDURE ksergis.dec_QualificationExists2 (@JobId char(10), 
@QualificationCode char(10))  
AS 
IF EXISTS(SELECT 'True' FROM JOB_QUALIFICATION WHERE JobId = @JobId 
AND QualificationCode = @QualificationCode) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ Qualifications 
CREATE PROCEDURE ksergis.dec_Qualifications (@JobId char(10), @ApplicantId 
char(10))  
AS 
DECLARE @QualificationCode char(10) 
DECLARE @QualificationResult1 int 
DECLARE @QualificationResult2 int 
DECLARE @Ans int 
 
SET @Ans = 0 
 
DECLARE QualificationsCursor CURSOR FOR  
SELECT JobId, QualificationCode  
FROM JOB_QUALIFICATION 
WHERE JobId = @JobId 
 
OPEN QualificationsCursor 
FETCH NEXT FROM QualificationsCursor  



288 

INTO @JobId, @QualificationCode 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @QualificationResult1 = ksergis.dec_QualificationExists1 
@ApplicantId, @QualificationCode 
  EXEC @QualificationResult2 = ksergis.dec_QualificationExists2 
@JobId, @QualificationCode 
  IF @QualificationResult1 = @QualificationResult2 AND 
@QualificationResult1 <> 0 
   SET @Ans = 1 
 END 
 FETCH NEXT FROM QualificationsCursor  
 INTO @JobId, @QualificationCode 
END 
 
CLOSE QualificationsCursor 
DEALLOCATE QualificationsCursor 
 
RETURN @Ans 
GO 
 
 
Name: dec_ Rank 
CREATE PROCEDURE ksergis.dec_Rank (@JobId char(10), @ApplicantId char(10))  
AS 
DECLARE @RankCode char(10) 
DECLARE @RankResult1 int 
DECLARE @RankResult2 int 
DECLARE @Ans int 
 
SET @Ans = 0 
 
DECLARE RankCursor CURSOR FOR  
SELECT JobId, RankCode  
FROM JOB_RANK 
WHERE JobId = @JobId 
 
OPEN RankCursor 
FETCH NEXT FROM RankCursor  
INTO @JobId, @RankCode 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 



289 

  EXEC @RankResult1 = ksergis.dec_RankExists1 @ApplicantId, 
@RankCode 
  EXEC @RankResult2 = ksergis.dec_RankExists2 @JobId, @RankCode 
  IF @RankResult1 = @RankResult2 AND @RankResult1 <> 0 
   SET @Ans = 1 
 END 
 FETCH NEXT FROM RankCursor  
 INTO @JobId, @RankCode 
END 
 
CLOSE RankCursor 
DEALLOCATE RankCursor 
 
RETURN @Ans 
GO 
 
 
Name: dec_ RankExists1 
CREATE PROCEDURE ksergis.dec_RankExists1 (@ApplicantId char (10), 
@RankCode char(10))  
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT WHERE ApplicantId = @ApplicantId 
AND RankCode = @RankCode) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ RankExists2 
CREATE PROCEDURE ksergis.dec_RankExists2 (@JobId char (10), @RankCode 
char(10))  
AS 
IF EXISTS(SELECT 'True' FROM JOB_RANK WHERE JobId = @JobId AND 
RankCode = @RankCode) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ SetMAXValueNull 
CREATE PROCEDURE ksergis.dec_SetMAXValueNull (@Counter int)  
AS 
 
DECLARE @ApplicantId1 char(10) 



290 

DECLARE @JobId char(10) 
DECLARE @JobId1 char(10) 
DECLARE @PlaceCode char(10) 
DECLARE @PlaceCode1 char(10) 
 
DECLARE PriorityCursor CURSOR FOR  
SELECT JobId, PlaceCode, Counter 
FROM PRIORITY 
WHERE Counter = @Counter 
 
OPEN PriorityCursor 
FETCH NEXT FROM PriorityCursor  
INTO @JobId, @PlaceCode, @Counter 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  SET @JobId1 = @JobId 
  SET @PlaceCode1 = @PlaceCode 
 END 
 FETCH NEXT FROM PriorityCursor  
 INTO @JobId, @PlaceCode, @Counter 
END 
 
CLOSE PriorityCursor 
DEALLOCATE PriorityCursor 
 
SET @ApplicantId1 = (SELECT ApplicantId FROM MAX_VALUE WHERE JobId = 
@JobId1 AND PlaceCode = @PlaceCode1)  
 
PRINT @ApplicantId1 
PRINT @JobId1 
PRINT @PlaceCode1 
 
DELETE FROM ASSIGNED_APPLICANTS 
WHERE ApplicantId = @ApplicantId1 
 
INSERT INTO USED_APPLICANTS 
VALUES (@JobId1, @PlaceCode1, @ApplicantId1) 
 
UPDATE MAX_VALUE 
SET ApplicantId = NULL, MAXValue = NULL 
WHERE JobId = @JobId1 AND PlaceCode = @PlaceCode1 
GO 
 
 



291 

Name: dec_ ShowDeletedJobs 
CREATE PROCEDURE ksergis.dec_ShowDeletedJobs AS 
SELECT JobName, PlaceName 
FROM DELETED_JOBS, JOB, PLACE 
WHERE DELETED_JOBS.JobId = JOB.JobId AND DELETED_JOBS.PlaceCode = 
PLACE.PlaceCode 
GO 
 
 
Name: dec_ ShowDeletedJobsManipulate 
CREATE PROCEDURE ksergis.dec_ShowDeletedJobsManipulate AS 
SELECT JOB.JobId, JobName, PLACE.PlaceCode, PlaceName 
FROM DELETED_JOBS_MANIPULATE, JOB, PLACE 
WHERE DELETED_JOBS_MANIPULATE.JobId = JOB.JobId AND 
DELETED_JOBS_MANIPULATE.PlaceCode = PLACE.PlaceCode 
GO 
 
 
Name: dec_ ShowEstimateFunctionResult 
CREATE PROCEDURE ksergis.dec_ShowEstimateFunctionResult AS 
SELECT Result 
FROM ESTIMATE_FUNCTION_RESULT 
GO 
 
 
Name: dec_ ShowJobNameOnJobId 
CREATE PROCEDURE ksergis.dec_ShowJobNameOnJobId (@JobId char(10)) AS 
SELECT JobName 
FROM JOB 
WHERE JobId = @JobId 
GO 
 
 
Name: dec_ ShowManipulateSolution 
CREATE PROCEDURE ksergis.dec_ShowManipulateSolution AS 
SELECT JOB.JobId, JobName, PLACE.PlaceCode, PlaceName, 
APPLICANT.ApplicantId, FirstName, LastName, MAXValue 
FROM MANIPULATE_SOLUTION, JOB, PLACE, APPLICANT 
WHERE MANIPULATE_SOLUTION.JobId = JOB.JobId AND 
MANIPULATE_SOLUTION.PlaceCode = PLACE.PlaceCode AND 
        MANIPULATE_SOLUTION.ApplicantId = APPLICANT.ApplicantId 
GO 
 
 
Name: dec_ ShowNotNullHValue 
CREATE PROCEDURE ksergis.dec_ShowNotNullHValue AS 



292 

SELECT *  
FROM H 
WHERE HValue IS NOT NULL 
GO 
 
 
Name: dec_ ShowPlaceNameOnPlaceCode 
CREATE PROCEDURE ksergis.dec_ShowPlaceNameOnPlaceCode (@PlaceCode 
char(10)) AS 
SELECT PlaceName 
FROM PLACE 
WHERE PlaceCode = @PlaceCode 
GO 
 
 
Name: dec_ ShowSolution 
CREATE PROCEDURE ksergis.dec_ShowSolution AS 
SELECT JobName, PlaceName, APPLICANT.ApplicantId, FirstName, LastName, 
MAXValue 
FROM MAX_VALUE, JOB, PLACE, APPLICANT 
WHERE MAX_VALUE.JobId = JOB.JobId AND MAX_VALUE.PlaceCode = 
PLACE.PlaceCode AND 
       MAX_VALUE.ApplicantId = APPLICANT.ApplicantId 
GO 
 
 
Name: dec_ ShowUnassignedApplicants 
CREATE PROCEDURE ksergis.dec_ShowUnassignedApplicants AS 
 
SELECT APPLICANT.ApplicantId, FirstName, LastName 
FROM APPLICANT, UNASSIGNED_APPLICANTS 
WHERE APPLICANT.ApplicantId = UNASSIGNED_APPLICANTS.ApplicantId 
GO 
 
 
Name: dec_ ShowUnassignedApplicantsManipulate 
CREATE PROCEDURE ksergis.dec_ShowUnassignedApplicantsManipulate AS 
 
SELECT APPLICANT.ApplicantId, FirstName, LastName 
FROM APPLICANT, UNASSIGNED_APPLICANTS_MANIPULATE 
WHERE APPLICANT.ApplicantId = 
UNASSIGNED_APPLICANTS_MANIPULATE.ApplicantId 
GO 
 
 
Name: dec_ Specialty 



293 

CREATE PROCEDURE ksergis.dec_Specialty (@JobId char(10), @ApplicantId 
char(10))  
AS 
DECLARE @SpecialtyCode char(10) 
DECLARE @SpecialtyResult1 int 
DECLARE @SpecialtyResult2 int 
DECLARE @Ans int 
 
SET @Ans = 0 
 
DECLARE SpecialtyCursor CURSOR FOR  
SELECT JobId, SpecialtyCode  
FROM JOB_SPECIALTY 
WHERE JobId = @JobId 
 
OPEN SpecialtyCursor 
FETCH NEXT FROM SpecialtyCursor  
INTO @JobId, @SpecialtyCode 
WHILE @@FETCH_STATUS <> -1  
BEGIN 
 IF @@FETCH_STATUS <> -2 
 BEGIN 
  EXEC @SpecialtyResult1 = ksergis.dec_SpecialtyExists1 @ApplicantId, 
@SpecialtyCode 
  EXEC @SpecialtyResult2 = ksergis.dec_SpecialtyExists2 @JobId, 
@SpecialtyCode 
  IF @SpecialtyResult1 = @SpecialtyResult2 AND @SpecialtyResult1 <> 
0 
   SET @Ans = 1 
 END 
 FETCH NEXT FROM SpecialtyCursor  
 INTO @JobId, @SpecialtyCode 
END 
 
CLOSE SpecialtyCursor 
DEALLOCATE SpecialtyCursor 
 
RETURN @Ans 
GO 
 
 
Name: dec_ SpecialtyExists1 
CREATE PROCEDURE ksergis.dec_SpecialtyExists1 (@ApplicantId char (10), 
@SpecialtyCode char(10))  
AS 
IF EXISTS(SELECT 'True' FROM APPLICANT WHERE ApplicantId = @ApplicantId 



294 

AND SpecialtyCode = @SpecialtyCode) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_ SpecialtyExists2 
CREATE PROCEDURE ksergis.dec_SpecialtyExists2 (@JobId char (10), 
@SpecialtyCode char(10))  
AS 
IF EXISTS(SELECT 'True' FROM JOB_SPECIALTY WHERE JobId = @JobId AND 
SpecialtyCode = @SpecialtyCode) 
 RETURN 1 
ELSE 
 RETURN 0 
GO 
 
 
Name: dec_UNASSIGNED_APPLICANTS_Fill 
CREATE PROCEDURE ksergis.dec_UNASSIGNED_APPLICANTS_Fill AS 
DELETE FROM UNASSIGNED_APPLICANTS 
 
INSERT INTO UNASSIGNED_APPLICANTS 
SELECT ApplicantId 
FROM APPLICANT 
WHERE ApplicantId NOT IN (SELECT ApplicantId FROM 
ASSIGNED_APPLICANTS) 
GO 
 
 
Name: dec_UNASSIGNED_APPLICANTS_MANIPULATE_DeleteRecord 
CREATE PROCEDURE 
ksergis.dec_UNASSIGNED_APPLICANTS_MANIPULATE_DeleteRecord 
(@ApplicantId char(10)) AS 
DELETE FROM UNASSIGNED_APPLICANTS_MANIPULATE 
WHERE ApplicantId = @ApplicantId 
GO 
 
 
Name: dec_UNASSIGNED_APPLICANTS_MANIPULATE_ Fill 
CREATE PROCEDURE 
ksergis.dec_UNASSIGNED_APPLICANTS_MANIPULATE_Fill AS 
DELETE FROM UNASSIGNED_APPLICANTS_MANIPULATE 
 
INSERT INTO UNASSIGNED_APPLICANTS_MANIPULATE 



295 

SELECT * 
FROM UNASSIGNED_APPLICANTS 
GO 
 
 
Name: DeleteApplicantIdOnApplicantCredentials 
CREATE PROCEDURE ksergis.DeleteApplicantIdOnApplicantCredentials 
(@ApplicantId char(10), @CredentialsId char(10)) 
AS 
DELETE FROM APPLICANT_CREDENTIALS 
WHERE ApplicantId = @ApplicantId AND CredentialsId = @CredentialsId 
GO 
 
 
Name: DeleteApplicantIdOnApplicantLanguage 
CREATE PROCEDURE ksergis.DeleteApplicantIdOnApplicantLanguage 
(@ApplicantId char(10), @LanguageCode char(10)) 
AS 
DELETE FROM APPLICANT_LANGUAGE 
WHERE ApplicantId = @ApplicantId AND LanguageCode = @LanguageCode 
GO 
 
 
Name: DeleteApplicantIdOnQualificationApplicant 
CREATE PROCEDURE ksergis.DeleteApplicantIdOnQualificationApplicant 
(@ApplicantId char(10), @QualificationCode char(10)) 
AS 
DELETE FROM QUALIFICATION_APPLICANT 
WHERE ApplicantId = @ApplicantId AND QualificationCode = @QualificationCode 
GO 
 
 
Name: DeleteApplicantPreference 
CREATE PROCEDURE ksergis.DeleteApplicantPreference (@ApplicantId char(10), 
@PreferenceApplicant char(10)) 
AS 
DELETE FROM APPLICANT_PREFERENCE 
WHERE ApplicantId = @ApplicantId AND PreferenceApplicant = 
@PreferenceApplicant 
GO 
 
 
Name: DeleteApplicants 
CREATE PROCEDURE ksergis.DeleteApplicants (@ApplicantId char(10)) 
AS 
DELETE FROM APPLICANT 



296 

WHERE  ApplicantId = @ApplicantId 
GO 
 
 
Name: DeleteCoefficient 
CREATE PROCEDURE ksergis.DeleteCoefficient (@CoefficientId char(30)) 
AS 
DELETE FROM COEFFICIENT 
WHERE  CoefficientId = @CoefficientId 
GO 
 
 
Name: DeleteCommandPreference 
CREATE PROCEDURE ksergis.DeleteCommandPreference (@PlaceCode char(10), 
@JobId char(10), @PreferenceCommand char(10), @ApplicantId char(10)) 
AS 
DELETE FROM COMMAND_PREFERENCE 
WHERE PlaceCode = @PlaceCode AND JobId = @JobId  AND PreferenceCommand = 
@PreferenceCommand AND ApplicantId = @ApplicantId 
GO 
 
 
Name: DeleteCommands 
CREATE PROCEDURE ksergis.DeleteCommands (@CommandCode char(10)) 
AS 
DELETE FROM COMMAND 
WHERE  CommandCode = @CommandCode 
GO 
 
 
Name: DeleteCredentials 
CREATE PROCEDURE ksergis.DeleteCredentials (@CredentialsId char(10)) 
AS 
DELETE FROM CREDENTIALS 
WHERE  CredentialsId = @CredentialsId 
GO 
 
 
Name: DeleteCredentialsIdOnJobCredentials 
CREATE PROCEDURE ksergis.DeleteCredentialsIdOnJobCredentials (@JobId 
char(10), @CredentialsId char(10)) 
AS 
DELETE FROM JOB_CREDENTIALS 
WHERE JobId = @JobId AND CredentialsId = @CredentialsId 
GO 
 



297 

 
Name: DeleteJobs 
CREATE PROCEDURE ksergis.DeleteJobs (@JobId char(10)) 
AS 
DELETE FROM JOB 
WHERE  JobId = @JobId 
GO 
 
 
Name: DeleteLanguageCodeOnJobLanguage 
CREATE PROCEDURE ksergis.DeleteLanguageCodeOnJobLanguage (@JobId 
char(10), @LanguageCode char(10)) 
AS 
DELETE FROM JOB_LANGUAGE 
WHERE JobId = @JobId AND LanguageCode = @LanguageCode 
GO 
 
 
Name: DeleteLanguages 
CREATE PROCEDURE ksergis.DeleteLanguages (@LanguageCode char(10)) 
AS 
DELETE FROM LANGUAGE 
WHERE  LanguageCode = @LanguageCode 
GO 
 
 
Name: DeletePlaceCodeOnJobPlace 
CREATE PROCEDURE ksergis.DeletePlaceCodeOnJobPlace (@JobId char(10), 
@PlaceCode char(10)) 
AS 
DELETE FROM JOB_PLACE 
WHERE JobId = @JobId AND PlaceCode = @PlaceCode 
GO 
 
 
Name: DeletePlaces 
CREATE PROCEDURE ksergis.DeletePlaces (@PlaceCode char(10)) 
AS 
DELETE FROM PLACE 
WHERE PlaceCode = @PlaceCode 
GO 
 
 
Name: DeleteQualificationCodeOnJobQualification 
CREATE PROCEDURE ksergis.DeleteQualificationCodeOnJobQualification (@JobId 
char(10), @QualificationCode char(10)) 



298 

AS 
DELETE FROM JOB_QUALIFICATION 
WHERE JobId = @JobId AND QualificationCode = @QualificationCode 
GO 
 
 
Name: DeleteQualifications 
CREATE PROCEDURE ksergis.DeleteQualifications (@QualificationCode char(10)) 
AS 
DELETE FROM QUALIFICATION 
WHERE  QualificationCode = @QualificationCode 
GO 
 
 
Name: DeleteRankCodeOnJobRank 
CREATE PROCEDURE ksergis.DeleteRankCodeOnJobRank (@JobId char(10), 
@RankCode char(10)) 
AS 
DELETE FROM JOB_RANK 
WHERE JobId = @JobId AND RankCode = @RankCode 
GO 
 
 
Name: DeleteRanks 
CREATE PROCEDURE ksergis.DeleteRanks (@RankCode char(10)) 
AS 
DELETE FROM RANK 
WHERE RankCode = @RankCode 
GO 
 
 
Name: DeleteSpecialties 
CREATE PROCEDURE ksergis.DeleteSpecialties (@SpecialtyCode char(10)) 
AS 
DELETE FROM SPECIALTY 
WHERE  SpecialtyCode = @SpecialtyCode 
GO 
 
 
Name: DeleteSpecialtyCodeOnJobSpecialty 
CREATE PROCEDURE ksergis.DeleteSpecialtyCodeOnJobSpecialty (@JobId char(10), 
@SpecialtyCode char(10)) 
AS 
DELETE FROM JOB_SPECIALTY 
WHERE JobId = @JobId AND SpecialtyCode = @SpecialtyCode 
GO 



299 

 
 
Name: FindPlaceCodeJobId 
CREATE PROCEDURE ksergis.FindPlaceCodeJobId (@CommandCode char(10), 
@JobName char(30), @PlaceName char(50), @PreferenceCommand int) 
AS 
SELECT PLACE.PlaceCode, JOB.JobId 
FROM EXPERIENCE_PREFERENCE, JOB, PLACE 
WHERE EXPERIENCE_PREFERENCE.CommandCode=@CommandCode AND 
JobName = @JobName AND PlaceName = @PlaceName AND JOB.JobId = 
EXPERIENCE_PREFERENCE.JobId AND PLACE.PlaceCode = 
EXPERIENCE_PREFERENCE.PlaceCode AND PreferenceCommand = 
@PreferenceCommand 
GO 
 
 
Name: InsertCoefficient 
CREATE PROCEDURE ksergis.InsertCoefficient (@CoefficientId char(30), 
@CoefficientValue int) AS 
INSERT INTO COEFFICIENT 
VALUES (@CoefficientId, @CoefficientValue) 
GO 
 
 
Name: InsertDate 
CREATE PROCEDURE ksergis.InsertDate (@ApplicantId char(10), @ReportDate 
varchar(10), @DetachDate varchar(10)) AS 
 
DECLARE @d_ReportDate datetime 
DECLARE @d_DetachDate datetime 
 
SET @d_ReportDate = @ReportDate 
SET @d_DetachDate = @DetachDate 
 
UPDATE ASSIGNMENT 
SET ReportDate =  @d_ReportDate, DetachDate = @DetachDate 
WHERE ApplicantId = @ApplicantId 
GO 
 
 
Name: InsertExperience 
CREATE PROCEDURE ksergis.InsertExperience (@JobId char(10), @ApplicantId 
char(10), @Experience float) AS 
INSERT INTO EXPERIENCE 
VALUES (@JobId, @ApplicantId, @Experience) 
GO 



300 

 
 
Name: SearchCommandName 
CREATE PROCEDURE ksergis.SearchCommandName (@UserName varchar(50)) 
AS 
SELECT CommandName, CommandCode 
FROM COMMAND 
WHERE UserName=@UserName 
GO 
 
 
Name: SearchLastName 
CREATE PROCEDURE ksergis.SearchLastName (@UserName varchar(50)) 
AS 
SELECT LastName, ApplicantId, DetailerCheck 
FROM APPLICANT 
WHERE UserName=@UserName 
GO 
 
 
Name: ShowAllAssignmentInfo 
CREATE PROCEDURE ksergis.ShowAllAssignmentInfo AS 
SELECT ASSIGNMENT.JobId, JobName, ASSIGNMENT.PlaceCode, PlaceName, 
ASSIGNMENT.ApplicantId, FirstName, LastName, ReportDate, DetachDate 
FROM ASSIGNMENT, JOB, PLACE, APPLICANT 
WHERE ASSIGNMENT.JobId = JOB.JobId AND ASSIGNMENT.PlaceCode = 
PLACE.PlaceCode AND ASSIGNMENT.ApplicantId = APPLICANT.ApplicantId 
GO 
 
 
Name: ShowAllJobIdRelatedData 
CREATE PROCEDURE ksergis.ShowAllJobIdRelatedData (@JobId char(10)) 
AS 
SELECT JOB.JobId, JobName, ExperienceRequired, RankName, LanguageName, 
LanguageDegree, SpecialtyName, QualificationName, PlaceName, CredentialsName, 
CredentialsGrade 
FROM JOB, JOB_RANK, RANK, JOB_LANGUAGE, LANGUAGE, SPECIALTY, 
JOB_SPECIALTY, QUALIFICATION, JOB_QUALIFICATION, PLACE, 
JOB_PLACE, CREDENTIALS, JOB_CREDENTIALS 
WHERE JOB.JobId = @JobId AND JOB.JobId = JOB_RANK.JobId AND 
JOB_RANK.RankCode = RANK.RankCode AND JOB_LANGUAGE.LanguageCode = 
LANGUAGE.LanguageCode AND JOB_LANGUAGE.JobId = JOB.JobId 
  AND JOB_SPECIALTY.SpecialtyCode = SPECIALTY.SpecialtyCode AND 
JOB_SPECIALTY.JobId = JOB.JobId 
  AND JOB_QUALIFICATION.QualificationCode = 
QUALIFICATION.QualificationCode AND JOB_QUALIFICATION.JobId = JOB.JobId 



301 

  AND JOB_PLACE.PlaceCode = PLACE.PlaceCode AND JOB_PLACE.JobId = 
JOB.JobId 
  AND JOB_CREDENTIALS.CredentialsId = CREDENTIALS.CredentialsId 
AND JOB_CREDENTIALS.JobId = JOB.JobId 
GO 
 
 
Name: ShowApplicantAddressPhoneData 
CREATE PROCEDURE ksergis.ShowApplicantAddressPhoneData (@ApplicantId 
char(10))  
AS 
SELECT FirstName, LastName, MiddleName, UserName, Password, EmailAddress, 
CityOrTown, Street, Appartment, ZIP, HomePhoneNumber, CellPhoneNumber, 
OtherPhoneNumber 
FROM APPLICANT, ADDRESS, PHONE 
WHERE APPLICANT.ApplicantId = @ApplicantId AND ADDRESS.ApplicantId = 
@ApplicantId AND  PHONE.ApplicantId = @ApplicantId 
GO 
 
 
Name: ShowApplicantData 
CREATE PROCEDURE ksergis.ShowApplicantData AS 
SELECT FirstName, LastName, MiddleName, CityOrTown, Street, Appartment 
FROM dbo.APPLICANT, dbo.ADDRESS 
WHERE UserName = Request.Form(“UserName”) AND Password = 
Request.Form(“Password”) 
GO 
 
 
Name: ShowApplicantDataOnJobIdFromEXPERIENCE 
CREATE PROCEDURE ksergis.ShowApplicantDataOnJobIdFromEXPERIENCE 
(@JobId char(10)) AS 
SELECT APPLICANT.ApplicantId, FirstName, LastName 
FROM APPLICANT, EXPERIENCE 
WHERE APPLICANT.ApplicantId = EXPERIENCE.ApplicantId AND 
EXPERIENCE.JobId = @JobId 
GO 
 
 
Name: ShowApplicantId 
CREATE PROCEDURE ksergis.ShowApplicantId AS 
SELECT ApplicantId 
FROM APPLICANT 
GO 
 
 



302 

Name: ShowApplicantIdFromUserName 
CREATE PROCEDURE ksergis.ShowApplicantIdFromUserName (@UserName 
char(50))  
AS 
SELECT ApplicantId 
FROM dbo.APPLICANT 
WHERE UserName = @UserName 
GO 
 
 
Name: ShowApplicantIdLastNameFirstName 
CREATE PROCEDURE ksergis.ShowApplicantIdLastNameFirstName AS 
SELECT ApplicantId, FirstName, LastName, RankName 
FROM APPLICANT, RANK 
WHERE APPLICANT.RankCode = RANK.RankCode 
GO 
 
 
Name: ShowApplicantIdLastNameFirstNameOnApplicantId 
CREATE PROCEDURE ksergis.ShowApplicantIdLastNameFirstNameOnApplicantId 
(@ApplicantId char(10)) AS 
SELECT ApplicantId, FirstName, LastName 
FROM APPLICANT 
WHERE ApplicantId = @ApplicantId 
GO 
 
 
Name: ShowApplicantIdLastNameFirstNameRankNameOnApplicantId 
CREATE PROCEDURE 
ksergis.ShowApplicantIdLastNameFirstNameRankNameOnApplicantId (@ApplicantId 
char(10)) AS 
SELECT ApplicantId, FirstName, LastName, RankName 
FROM APPLICANT, RANK 
WHERE APPLICANT.RankCode = RANK.RankCode AND ApplicantId = 
@ApplicantId 
GO 
 
 
Name: ShowApplicantIdLastNameFirstNameWORank 
CREATE PROCEDURE ksergis.ShowApplicantIdLastNameFirstNameWORank AS 
SELECT ApplicantId, FirstName, LastName 
FROM APPLICANT 
GO 
 
 
Name: ShowApplicantPreferences 



303 

CREATE PROCEDURE ksergis.ShowApplicantPreferences (@ApplicantId varchar(10)) 
AS 
SELECT PreferenceApplicant, JOB.JobName, PlaceName 
FROM APPLICANT_PREFERENCE, JOB, PLACE 
WHERE ApplicantId=@ApplicantId AND JOB.JobId = 
APPLICANT_PREFERENCE.JobId AND PLACE.PlaceCode = 
APPLICANT_PREFERENCE.PlaceCode 
ORDER BY PreferenceApplicant, PlaceName, JOB.JobName 
GO 
 
 
Name: ShowApplicantRankSpecialtySeaTimeForRank 
CREATE PROCEDURE ksergis.ShowApplicantRankSpecialtySeaTimeForRank 
(@ApplicantId char (10)) 
AS 
SELECT RankName, SpecialtyName, SeaTimeForRank 
FROM APPLICANT, SPECIALTY, RANK 
WHERE ApplicantId = @ApplicantId AND APPLICANT.RankCode = 
RANK.RankCode AND APPLICANT.SpecialtyCode = SPECIALTY.SpecialtyCode 
GO 
 
 
Name: ShowCoefficients 
CREATE PROCEDURE ksergis.ShowCoefficients AS 
SELECT * 
FROM COEFFICIENT 
GO 
 
 
Name: ShowCommandCode 
CREATE PROCEDURE ksergis.ShowCommandCode AS 
SELECT CommandCode, CommandName 
FROM COMMAND 
GO 
 
 
Name: ShowCommandsData 
CREATE PROCEDURE ksergis.ShowCommandsData AS 
SELECT * 
FROM COMMAND 
GO 
 
 
Name: ShowCommandsPreferences 
CREATE PROCEDURE ksergis.ShowCommandsPreferences (@CommandCode 
char(50)) 



304 

AS 
SELECT JOB.JobName, PlaceName, PreferenceCommand, LastName, FirstName, 
RankName 
FROM COMMAND_PREFERENCE, JOB, PLACE, APPLICANT, RANK 
WHERE COMMAND_PREFERENCE.CommandCode=@CommandCode AND 
COMMAND_PREFERENCE.ApplicantId = APPLICANT.ApplicantId AND 
APPLICANT.RankCode = RANK.RankCode AND JOB.JobId = 
COMMAND_PREFERENCE.JobId AND PLACE.PlaceCode = 
COMMAND_PREFERENCE.PlaceCode 
ORDER BY PlaceName, JOB.JobName, PreferenceCommand, RankName, LastName, 
FirstName 
GO 
 
 
Name: ShowCommandsPreferencesForDelete 
CREATE PROCEDURE ksergis.ShowCommandsPreferencesForDelete 
(@CommandCode char(50)) 
AS 
SELECT PlaceName, JOB.JobName, PreferenceCommand, APPLICANT.ApplicantId, 
LastName, FirstName, RankName, JOB.JobId, PLACE.PlaceCode 
FROM COMMAND_PREFERENCE, JOB, PLACE, APPLICANT, RANK 
WHERE COMMAND_PREFERENCE.CommandCode=@CommandCode AND 
COMMAND_PREFERENCE.ApplicantId = APPLICANT.ApplicantId AND 
APPLICANT.RankCode = RANK.RankCode AND JOB.JobId = 
COMMAND_PREFERENCE.JobId AND PLACE.PlaceCode = 
COMMAND_PREFERENCE.PlaceCode 
ORDER BY PlaceName, JOB.JobName, PreferenceCommand, RankName, LastName, 
FirstName 
GO 
 
 
Name: ShowCommandsPreferencesOnPlaceCode 
CREATE PROCEDURE ksergis.ShowCommandsPreferencesOnPlaceCode 
(@CommandCode char(50), @PlaceCode char(10)) 
AS 
SELECT JOB.JobName, PreferenceCommand, LastName, FirstName, RankName 
FROM COMMAND_PREFERENCE, JOB, APPLICANT, RANK 
WHERE COMMAND_PREFERENCE.CommandCode=@CommandCode AND 
COMMAND_PREFERENCE.ApplicantId = APPLICANT.ApplicantId AND 
APPLICANT.RankCode = RANK.RankCode AND JOB.JobId = 
COMMAND_PREFERENCE.JobId AND COMMAND_PREFERENCE.PlaceCode = 
@PlaceCode 
ORDER BY JOB.JobName, PreferenceCommand, RankName, LastName, FirstName 
GO 
 
 



305 

Name: ShowCredentialsGrade 
CREATE PROCEDURE ksergis.ShowCredentialsGrade (@ApplicantId char(10), 
@CredentialsId char(10))AS 
SELECT CredentialsGrade 
FROM APPLICANT_CREDENTIALS 
WHERE ApplicantId = @ApplicantId  
      AND CredentialsId = @CredentialsId 
GO 
 
 
Name: ShowCredentialsId 
CREATE PROCEDURE ksergis.ShowCredentialsId AS 
SELECT CredentialsId, CredentialsName 
FROM CREDENTIALS 
GO 
 
 
Name: ShowCredentialsIdOnApplicantId 
CREATE PROCEDURE ksergis.ShowCredentialsIdOnApplicantId (@ApplicantId 
char(10))AS 
SELECT CREDENTIALS.CredentialsId, CredentialsName, CredentialsGrade 
FROM CREDENTIALS, APPLICANT, APPLICANT_CREDENTIALS 
WHERE APPLICANT.ApplicantId = @ApplicantId  
      AND APPLICANT.ApplicantId = APPLICANT_CREDENTIALS.ApplicantId 
      AND APPLICANT_CREDENTIALS.CredentialsId = CREDENTIALS.CredentialsId 
GO 
 
 
Name: ShowCredentialsIdOnJobId 
CREATE PROCEDURE ksergis.ShowCredentialsIdOnJobId (@JobId char(10)) 
AS 
SELECT distinct(JOB_CREDENTIALS.CredentialsId), CredentialsName 
FROM CREDENTIALS, JOB_CREDENTIALS 
WHERE CREDENTIALS.CredentialsId =  JOB_CREDENTIALS.CredentialsId AND 
JobId = @JobId 
GO 
 
 
Name: ShowCredentialsNameCredentialsGradeOnJobId 
CREATE PROCEDURE ksergis.ShowCredentialsNameCredentialsGradeOnJobId 
(@JobId char(10)) 
AS 
SELECT CredentialsName, CredentialsGrade 
FROM JOB_CREDENTIALS, CREDENTIALS 
WHERE JobId = @JobId AND JOB_CREDENTIALS.CredentialsId = 
CREDENTIALS.CredentialsId 



306 

GO 
 
 
Name: ShowCurrentAssignment 
CREATE PROCEDURE ksergis.ShowCurrentAssignment (@ApplicantId char(10)) AS 
 
SELECT LastName, FirstName, PlaceName, PlaceImage, JobName, ReportDate, 
DetachDate 
FROM ASSIGNMENT, JOB, PLACE, APPLICANT 
WHERE ASSIGNMENT.ApplicantId = @ApplicantId AND 
ASSIGNMENT.ApplicantId = APPLICANT.ApplicantId 
  AND PLACE.PlaceCode = ASSIGNMENT.PlaceCode AND JOB.JobId = 
ASSIGNMENT.JobId 
GO 
 
 
Name: ShowExperienceOnJobIdJobName 
CREATE PROCEDURE ksergis.ShowExperienceOnJobIdJobName (@JobId char(10), 
@ApplicantId char(10))AS 
SELECT Experience 
FROM EXPERIENCE 
WHERE JobId = @JobId AND ApplicantId= @ApplicantId 
GO 
 
 
Name: ShowExperiencePerJobOfficer 
CREATE PROCEDURE ksergis.ShowExperiencePerJobOfficer AS 
SELECT EXPERIENCE.JobId, JobName, APPLICANT.ApplicantId, LastName, 
FirstName, Experience 
FROM EXPERIENCE, JOB, APPLICANT 
WHERE EXPERIENCE.JobId = JOB.JobId AND EXPERIENCE.ApplicantId = 
APPLICANT.ApplicantId 
GO 
 
 
Name: ShowExperienceRequired 
CREATE PROCEDURE ksergis.ShowExperienceRequired (@JobId char(10), 
@JobName char(30)) 
AS 
SELECT ExperienceRequired 
FROM Job 
WHERE JobId = @JobId AND JobName = @JobName 
GO 
 
 
Name: ShowJobId 



307 

CREATE PROCEDURE ksergis.ShowJobId AS 
SELECT JobId, JobName 
FROM JOB 
GO 
 
 
Name: ShowJobIdJobNameFromEXPERIENCE 
CREATE PROCEDURE ksergis.ShowJobIdJobNameFromEXPERIENCE AS 
SELECT distinct (JOB.JobId), JobName 
FROM EXPERIENCE, JOB 
WHERE EXPERIENCE.JobId = JOB.JobId 
GO 
 
 
Name: ShowJobIdOnPlaceCode 
CREATE PROCEDURE ksergis.ShowJobIdOnPlaceCode (@PlaceCode char(10)) 
AS 
SELECT JOB_PLACE.JobId, JobName 
FROM JOB_PLACE, JOB 
WHERE PlaceCode = @PlaceCode AND JOB_PLACE.JobId =  JOB.JobId 
GO 
 
 
Name: ShowJobIdPlaceCodeApplicantIdFromASSIGNMENT 
CREATE PROCEDURE ksergis.ShowJobIdPlaceCodeApplicantIdFromASSIGNMENT 
AS 
SELECT ASSIGNMENT.JobId, JobName, ASSIGNMENT.PlaceCode, PlaceName, 
ASSIGNMENT.ApplicantId, FirstName, LastName 
FROM ASSIGNMENT, JOB, PLACE, APPLICANT 
WHERE ASSIGNMENT.JobId = JOB.JobId AND ASSIGNMENT.PlaceCode = 
PLACE.PlaceCode AND ASSIGNMENT.ApplicantId = APPLICANT.ApplicantId 
GO 
 
 
Name: ShowJobIdPlaceCodeApplicantIdFromASSIGNMENTForUpdate 
CREATE PROCEDURE 
ksergis.ShowJobIdPlaceCodeApplicantIdFromASSIGNMENTForUpdate AS 
SELECT ASSIGNMENT.JobId, JobName, ASSIGNMENT.PlaceCode, PlaceName, 
ASSIGNMENT.ApplicantId, FirstName, LastName, ReportDate, DetachDate 
FROM ASSIGNMENT, JOB, PLACE, APPLICANT 
WHERE ASSIGNMENT.JobId = JOB.JobId AND ASSIGNMENT.PlaceCode = 
PLACE.PlaceCode AND ASSIGNMENT.ApplicantId = APPLICANT.ApplicantId 
  AND (ReportDate IS NOT NULL OR DetachDate IS NOT NULL) 
GO 
 
 



308 

Name: ShowJobIdPlaceCodeApplicantIdOnApplicantIdFromASSIGNMENT 
CREATE PROCEDURE 
ksergis.ShowJobIdPlaceCodeApplicantIdOnApplicantIdFromASSIGNMENT 
(@ApplicantId char(10)) AS 
SELECT ASSIGNMENT.JobId, JobName, ASSIGNMENT.PlaceCode, PlaceName, 
ASSIGNMENT.ApplicantId, FirstName, LastName 
FROM ASSIGNMENT, JOB, PLACE, APPLICANT 
WHERE ASSIGNMENT.JobId = JOB.JobId AND ASSIGNMENT.PlaceCode = 
PLACE.PlaceCode AND ASSIGNMENT.ApplicantId = APPLICANT.ApplicantId 
  AND ASSIGNMENT.ApplicantId = @ApplicantId 
GO 
 
 
Name: ShowJobIdPlaceCodeApplicantIdOnApplicantIdFromASSIGNMENTForUpdate 
CREATE PROCEDURE 
ksergis.ShowJobIdPlaceCodeApplicantIdOnApplicantIdFromASSIGNMENTForUpdate 
(@ApplicantId char(10)) AS 
SELECT ASSIGNMENT.JobId, JobName, ASSIGNMENT.PlaceCode, PlaceName, 
ASSIGNMENT.ApplicantId, FirstName, LastName, ReportDate, DetachDate 
FROM ASSIGNMENT, JOB, PLACE, APPLICANT 
WHERE ASSIGNMENT.JobId = JOB.JobId AND ASSIGNMENT.PlaceCode = 
PLACE.PlaceCode AND ASSIGNMENT.ApplicantId = APPLICANT.ApplicantId 
  AND ASSIGNMENT.ApplicantId = @ApplicantId 
GO 
 
 
Name: ShowLanguageCode 
CREATE PROCEDURE ksergis.ShowLanguageCode AS 
SELECT LanguageCode, LanguageName 
FROM LANGUAGE 
GO 
 
 
Name: ShowLanguageCodeOnApplicantId 
CREATE PROCEDURE ksergis.ShowLanguageCodeOnApplicantId (@ApplicantId 
char(10))AS 
SELECT LANGUAGE.LanguageCode, LanguageName, LanguageDegree 
FROM LANGUAGE, APPLICANT, APPLICANT_LANGUAGE 
WHERE APPLICANT.ApplicantId = @ApplicantId  
      AND APPLICANT.ApplicantId = APPLICANT_LANGUAGE.ApplicantId 
      AND APPLICANT_LANGUAGE.LanguageCode = LANGUAGE.LanguageCode 
GO 
 
 
Name: ShowLanguageCodeOnJobId 
CREATE PROCEDURE ksergis.ShowLanguageCodeOnJobId (@JobId char(10))  



309 

AS 
SELECT LANGUAGE.LanguageCode, LanguageName 
FROM LANGUAGE, JOB_LANGUAGE 
WHERE LANGUAGE.LanguageCode = JOB_LANGUAGE.LanguageCode AND 
JOB_LANGUAGE.JobId = @JobId 
GO 
 
 
Name: ShowLanguageDegree 
CREATE PROCEDURE ksergis.ShowLanguageDegree (@ApplicantId char(10), 
@LanguageCode char(10))AS 
SELECT LanguageDegree 
FROM APPLICANT_LANGUAGE 
WHERE ApplicantId = @ApplicantId  
      AND LanguageCode = @LanguageCode 
GO 
 
 
Name: ShowLanguageNameLanguageDegreeOnJobId 
CREATE PROCEDURE ksergis.ShowLanguageNameLanguageDegreeOnJobId 
(@JobId char(10)) 
AS 
SELECT LanguageName, LanguageDegree 
FROM JOB_LANGUAGE, LANGUAGE 
WHERE JobId = @JobId AND JOB_LANGUAGE.LanguageCode = 
LANGUAGE.LanguageCode 
GO 
 
 
Name: ShowPlaceCode 
CREATE PROCEDURE ksergis.ShowPlaceCode AS 
SELECT PlaceCode, PlaceName 
FROM PLACE 
GO 
 
 
Name: ShowPlaceCodeOnCommandCode 
CREATE PROCEDURE ksergis.ShowPlaceCodeOnCommandCode (@CommandCode 
char(10))AS 
SELECT PlaceCode, PlaceName 
FROM PLACE 
WHERE CommandCode = @CommandCode 
GO 
 
 
Name: ShowPlaceCodeOnJobId 



310 

CREATE PROCEDURE ksergis.ShowPlaceCodeOnJobId (@JobId varchar(10)) 
AS 
SELECT JOB_PLACE.PlaceCode, PlaceName 
FROM JOB_PLACE, PLACE 
WHERE JobId = @JobId AND JOB_PLACE.PlaceCode = PLACE.PlaceCode 
GO 
 
 
Name: ShowPlaceData 
CREATE PROCEDURE ksergis.ShowPlaceData AS 
SELECT PlaceImage, PlaceCode, PlaceName, PLACE.CommandCode, CommandName 
FROM PLACE, COMMAND 
WHERE PLACE.CommandCode = COMMAND.CommandCode 
GO 
 
 
Name: ShowPlaceImage 
CREATE PROCEDURE ksergis.ShowPlaceImage (@CommandCode char(50)) 
AS 
SELECT DISTINCT (PlaceName), PlaceImage, 
COMMAND_PREFERENCE.PlaceCode 
FROM COMMAND_PREFERENCE, JOB, PLACE 
WHERE COMMAND_PREFERENCE.CommandCode=@CommandCode AND 
PLACE.PlaceCode = COMMAND_PREFERENCE.PlaceCode 
ORDER BY PlaceName 
GO 
 
 
Name: ShowPlaceNamePlaceImageCommandNameOnJobId 
CREATE PROCEDURE ksergis.ShowPlaceNamePlaceImageCommandNameOnJobId 
(@JobId char(10)) 
AS 
SELECT PlaceImage, PlaceName, CommandName 
FROM JOB_PLACE, PLACE, COMMAND 
WHERE JobId = @JobId AND JOB_PLACE.PlaceCode = PLACE.PlaceCode AND 
PLACE.CommandCode = COMMAND.CommandCode 
GO 
 
 
Name: ShowQualificationCode 
CREATE PROCEDURE ksergis.ShowQualificationCode AS 
SELECT QualificationCode, QualificationName 
FROM QUALIFICATION 
GO 
 
 



311 

Name: ShowQualificationCodeOnApplicantId 
CREATE PROCEDURE ksergis.ShowQualificationCodeOnApplicantId (@ApplicantId 
char(10))  
AS 
SELECT QUALIFICATION.QualificationCode, QualificationName 
FROM QUALIFICATION_APPLICANT, QUALIFICATION 
WHERE QUALIFICATION.QualificationCode = 
QUALIFICATION_APPLICANT.QualificationCode AND ApplicantId = @ApplicantId 
GO 
 
 
Name: ShowQualificationCodeOnJobId 
CREATE PROCEDURE ksergis.ShowQualificationCodeOnJobId (@JobId char(10)) 
AS 
SELECT distinct(JOB_QUALIFICATION.QualificationCode), QualificationName 
FROM QUALIFICATION, JOB_QUALIFICATION 
WHERE QUALIFICATION.QualificationCode =  
JOB_QUALIFICATION.QualificationCode AND JobId = @JobId 
GO 
 
 
Name: ShowQualificationNameOnJobId 
CREATE PROCEDURE ksergis.ShowQualificationNameOnJobId (@JobId char(10)) 
AS 
SELECT QualificationName 
FROM JOB_QUALIFICATION, QUALIFICATION 
WHERE JobId = @JobId AND JOB_QUALIFICATION.QualificationCode = 
QUALIFICATION.QualificationCode 
GO 
 
 
Name: ShowRankCode 
CREATE PROCEDURE ksergis.ShowRankCode AS 
SELECT RankCode, RankName 
FROM RANK 
GO 
 
 
Name: ShowRankCodeOnJobId 
CREATE PROCEDURE ksergis.ShowRankCodeOnJobId (@JobId char(10)) 
AS 
SELECT distinct(JOB_RANK.RankCode), RankName 
FROM RANK, JOB_RANK 
WHERE RANK.RankCode =  JOB_RANK.RankCode AND JobId = @JobId 
GO 
 



312 

 
Name: ShowRankCodeSpecialtyCodeSeaServiceOnApplicantId 
CREATE PROCEDURE 
ksergis.ShowRankCodeSpecialtyCodeSeaServiceOnApplicantId (@ApplicantId 
char(10)) AS 
 
SELECT RankCode, SpecialtyCode, SeaTimeForRank 
FROM APPLICANT 
WHERE APPLICANT.ApplicantId = @ApplicantId 
GO 
 
 
Name: ShowRankData 
CREATE PROCEDURE ksergis.ShowRankData AS  
SELECT * 
FROM RANK 
GO 
 
 
Name: ShowRankNameTimeSeaServiceOnJobId 
CREATE PROCEDURE ksergis.ShowRankNameTimeSeaServiceOnJobId (@JobId 
char(10)) 
AS 
SELECT RankName, TimeSeaService 
FROM JOB_RANK, RANK 
WHERE JobId = @JobId AND JOB_RANK.RankCode = RANK.RankCode 
GO 
 
 
Name: ShowRankOnApplicantId 
CREATE PROCEDURE ksergis.ShowRankOnApplicantId (@ApplicantId char(10)) AS 
SELECT APPLICANT.RankCode, RankName 
FROM APPLICANT, RANK 
WHERE ApplicantId = @ApplicantId AND APPLICANT.RankCode = 
RANK.RankCode 
GO 
 
 
Name: ShowRankSpecialtySeaServiceOnApplicantId 
CREATE PROCEDURE ksergis.ShowRankSpecialtySeaServiceOnApplicantId 
(@ApplicantId char(10)) AS 
 
SELECT RankName, SpecialtyName, SeaTimeForRank 
FROM APPLICANT, RANK, SPECIALTY 
WHERE APPLICANT.ApplicantId = @ApplicantId AND APPLICANT.RankCode = 
RANK.RankCode AND APPLICANT.SpecialtyCode = SPECIALTY.SpecialtyCode 



313 

GO 
 
 
Name: ShowSeaTimeForRankOnApplicantId 
CREATE PROCEDURE ksergis.ShowSeaTimeForRankOnApplicantId (@ApplicantId 
char(10)) AS 
 
SELECT ApplicantId, SeaTimeForRank 
FROM APPLICANT 
WHERE ApplicantId = @ApplicantId  
GO 
 
 
Name: ShowSpecialtyCode 
CREATE PROCEDURE ksergis.ShowSpecialtyCode AS 
SELECT SpecialtyCode, SpecialtyName 
FROM SPECIALTY 
GO 
 
 
Name: ShowSpecialtyCodeOnJobId 
CREATE PROCEDURE ksergis.ShowSpecialtyCodeOnJobId (@JobId char(10)) 
AS 
SELECT distinct(JOB_SPECIALTY.SpecialtyCode), SpecialtyName 
FROM SPECIALTY, JOB_SPECIALTY 
WHERE SPECIALTY.SpecialtyCode =  JOB_SPECIALTY.SpecialtyCode AND JobId 
= @JobId 
GO 
 
 
Name: ShowSpecialtyNameOnJobId 
CREATE PROCEDURE ksergis.ShowSpecialtyNameOnJobId (@JobId char(10)) 
AS 
SELECT SpecialtyName 
FROM JOB_SPECIALTY, SPECIALTY 
WHERE JobId = @JobId AND JOB_SPECIALTY.SpecialtyCode = 
SPECIALTY.SpecialtyCode 
GO 
 
 
Name: ShowSpecialtyOnApplicantId 
CREATE PROCEDURE ksergis.ShowSpecialtyOnApplicantId (@ApplicantId char(10)) 
AS 
 
SELECT SPECIALTY.SpecialtyCode, SpecialtyName 
FROM APPLICANT, SPECIALTY 



314 

WHERE ApplicantId = @ApplicantId AND APPLICANT.SpecialtyCode = 
SPECIALTY.SpecialtyCode 
GO 
 
 
Name: UpdateAddressData 
CREATE PROCEDURE ksergis.UpdateAddressData (@ApplicantId char(10), 
@CityOrTown char(50), @Street char(50), @Appartment char(10), @ZIP char(10))  
AS 
UPDATE dbo.ADDRESS 
SET CityOrTown = @CityOrTown, Street = @Street, Appartment = @Appartment, ZIP 
= @ZIP  
WHERE ApplicantId = @ApplicantId 
GO 
 
 
Name: UpdateApplicantData 
CREATE PROCEDURE ksergis.UpdateApplicantData (@ApplicantId char(10), 
@FirstName char(30), @LastName char(30), @MiddleName char(30), @EmailAddress 
char(50))  
AS 
UPDATE dbo.APPLICANT 
SET FirstName = @FirstName, LastName = @LastName, MiddleName = 
@MiddleName, EmailAddress = @EmailAddress  
WHERE ApplicantId = @ApplicantId 
GO 
 
 
Name: UpdateApplicantId 
CREATE PROCEDURE ksergis.UpdateApplicantId (@ApplicantId char(10),  
@UserName char(50))  
AS 
UPDATE dbo.APPLICANT 
SET ApplicantId = @ApplicantId 
WHERE UserName = @UserName 
GO 
 
 
Name: UpdateApplicantIdSpecialtyRank 
CREATE PROCEDURE ksergis.UpdateApplicantIdSpecialtyRank (@ApplicantId 
char(10),  @RankCode char(10), @SpecialtyCode char(10), @SeaTimeForRank float)  
AS 
UPDATE dbo.APPLICANT 
SET RankCode = @RankCode, SpecialtyCode = @SpecialtyCode, SeaTimeForRank = 
@SeaTimeForRank 
WHERE ApplicantId = @ApplicantId 



315 

GO 
 
 
Name: UpdateCoefficient 
CREATE PROCEDURE ksergis.UpdateCoefficient (@CoefficientId char(30), 
@CoefficientValue int) AS 
 
UPDATE COEFFICIENT 
SET CoefficientValue = @CoefficientValue 
WHERE CoefficientId = @CoefficientId 
GO 
 
 
Name: UpdateCredentialsGrade 
CREATE PROCEDURE ksergis.UpdateCredentialsGrade (@ApplicantId char(10),  
@CredentialsId char(10), @CredentialsGrade float)  
AS 
UPDATE dbo.APPLICANT_CREDENTIALS 
SET CredentialsGrade = @CredentialsGrade 
WHERE ApplicantId = @ApplicantId AND CredentialsId = @CredentialsId 
GO 
 
 
Name: UpdateExperience 
CREATE PROCEDURE ksergis.UpdateExperience (@JobId char(10), @ApplicantId 
char(10), @Experience float) AS 
UPDATE EXPERIENCE 
SET Experience = @Experience 
WHERE JobId = @JobId AND ApplicantId = @ApplicantId 
GO 
 
 
Name: UpdateJobIdJobNameExperienceRequired 
CREATE PROCEDURE ksergis.UpdateJobIdJobNameExperienceRequired (@JobId 
char(10), @JobIdNew char(10), @JobName char(30), @ExperienceRequired float)  
AS 
UPDATE dbo.JOB 
SET JobId = @JobIdNew, JobName = @JobName, ExperienceRequired = 
@ExperienceRequired 
WHERE JobId = @JobId 
GO 
 
 
Name: UpdateJobNameExperienceRequired 
CREATE PROCEDURE ksergis.UpdateJobNameExperienceRequired (@JobId char(10), 
@JobName char(30), @ExperienceRequired float)  



316 

AS 
UPDATE dbo.JOB 
SET JobName = @JobName, ExperienceRequired = @ExperienceRequired 
WHERE JobId = @JobId 
GO 
 
 
Name: UpdateLanguageDegree 
CREATE PROCEDURE ksergis.UpdateLanguageDegree (@ApplicantId char(10),  
@LanguageCode char(10), @LanguageDegree float)  
AS 
UPDATE dbo.APPLICANT_LANGUAGE 
SET LanguageDegree = @LanguageDegree 
WHERE ApplicantId = @ApplicantId AND LanguageCode = @LanguageCode 
GO 
 
 
Name: UpdatePhoneData 
CREATE PROCEDURE ksergis.UpdatePhoneData (@ApplicantId char(10), 
@HomePhoneNumber char(30), @CellPhoneNumber char(30), @OtherPhoneNumber 
char(30))  
AS 
UPDATE PHONE 
SET HomePhoneNumber = @HomePhoneNumber, CellPhoneNumber = 
@CellPhoneNumber, OtherPhoneNumber = @OtherPhoneNumber  
WHERE ApplicantId = @ApplicantId 
GO 
 
 
Name: UpdateUserNamePassword 
CREATE PROCEDURE ksergis.UpdateUserNamePassword (@ApplicantId char(10),  
@UserName char(50), @Password char(50))  
AS 
UPDATE dbo.APPLICANT 
SET UserName = @UserName, Password = @Password  
WHERE ApplicantId = @ApplicantId 
GO 
 
 
 
 
 
 
 
 
 



317 

Name: UpdateUserNamePasswordCommand 
CREATE PROCEDURE ksergis.UpdateUserNamePasswordCommand 
(@CommandCode char(10),  @UserName char(50), @Password char(50))  
AS 
UPDATE dbo.COMMAND 
SET UserName = @UserName, Password = @Password  
WHERE CommandCode = @CommandCode 
GO 

 



318 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



319 

LIST OF REFERENCES 

1. William R. Gates and Mark E. Nissen: Two Sided Matching Agents for Electronic 
Employment Market Design: Social Welfare Implications, December 2002 

2. Hemant K. Bhargava and Kevin J. Snoap: Reengineering Recruit Distribution in 
the U.S. Marine Corps, October 28, 1999. 



320 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



321 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Fort Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California  
 
3. Dr. Daniel R. Dolk 
 Department of Information Sciences 
 Naval Postgraduate School 
 Monterey, California  
 
4. Dr. Rudy Darken 
 Department of Computer Science 
 Monterey, California  
 


