

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

DEFENDING IEEE 802.11-BASED NETWORKS AGAINST
DENIAL OF SERVICE ATTACKS

by

Boon Hwee Tan

December 2003

 Thesis Advisor: William J. Ray
 Second Reader: Man-Tak Shing

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: DEFENDING IEEE 802.11-BASED
NETWORKS AGAINST DENIAL OF SERVICE ATTACKS
6. AUTHOR(S) Boon Hwee Tan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The convenience of IEEE 802.11-based wireless access networks has led to widespread deployment in the

consumer, industrial and military sectors. However, this use is predicated on an implicit assumption of confidentiality
and availability. In addition to widely publicized security flaws in IEEE 802.11’s basic confidentially mechanisms, the
threats to network availability presents any equal, if not greater danger to users of IEEE 802.11-based networks. It has
been successfully demonstrated that IEEE 802.11 is highly susceptible to malicious denial-of-service (DoS) attacks
targeting its management and media access protocols.

Computer simulation models have proven to be effective tools in the study of cause and effect in numerous

fields. This thesis involved the design and implementation of a IEEE 802.11-based simulation model using OMNeT++,
to investigate the effects of different types of DoS attacks on a IEEE 802.11 network, and the effectiveness of
corresponding countermeasures.

15. NUMBER OF
PAGES 133

14. SUBJECT TERMS
IEEE 802.11, WLAN, Wireless LAN, Protocol, Computer Security, Denial of Service, Simulation,
OMNeT
 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

DEFENDING IEEE 802.11-BASED NETWORKS AGAINST DENIAL OF
SERVICE ATTACKS

Boon Hwee Tan

Major, Republic of Singapore Navy
B.ENG(EE), Nanyang Technological University, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Boon Hwee Tan

Approved by: William J. Ray

Thesis Advisor

Man-Tak Shing
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The convenience of IEEE 802.11-based wireless access networks has led

to widespread deployment in the consumer, industrial and military sectors.

However, this use is predicated on an implicit assumption of confidentiality and

availability. In addition to widely publicized security flaws in IEEE 802.11’s basic

confidentially mechanisms, the threats to network availability presents any equal,

if not greater danger to users of IEEE 802.11-based networks. It has been

successfully demonstrated that IEEE 802.11 is highly susceptible to malicious

denial-of-service (DoS) attacks targeting its management and media access

protocols.

Computer simulation models have proven to be effective tools in the study

of cause and effect in numerous fields. This thesis involved the design and

implementation of a IEEE 802.11-based simulation model using OMNeT++, to

investigate the effects of different types of DoS attacks on a IEEE 802.11

network, and the effectiveness of corresponding countermeasures.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. BACKGROUND ... 1
B. OBJECTIVE ... 2

II. IEEE 802.11 STANDARD... 3
A. IEEE 802.11 ARCHITECTURE .. 3
B. DISTRIBUTION SYSTEM .. 5
C. SERVICES ... 5

1. Station Services... 6
2. Distribution Services... 6

D. INTERACTION BETWEEN SOME SERVICES 7
E. MEDIUM ACCESS CONTROL .. 9
F. INTERFRAME SPACE (IFS).. 10
G. DISTRIBUTED COORIDINATION FUNCTION.................................. 12
H. POINT COORDINATION FUNCTION.. 13

III. IEEE 802.11 MAC VULNERABILITIES.. 15
A. IDENTITY VULNERABILITIES .. 15

1. Deauthentication.. 15
2 Disassociation ... 16

B. MEDIA ACCESS VULNERABILITIES ... 18

IV. SIMULATION MODEL DEVELOPMENT.. 21
A. OMNET++ ENVIRONMENT... 21
B. MODEL DESCRIPTION... 22
C. KEY MAC FUNCTIONS... 23

V. ATTACK STRATEGIES AND SIMULATION FINDINGS.............................. 25
A. ATTACK GENERES .. 25

1. Deauthentication Attacks.. 25
2. Disassociation Attacks ... 26
3. RTS Attacks.. 26

B. SIMULATION RESULTS OF ATTACK SCENARIOS........................ 27
1. Baseline Scenario.. 27
2. Deauthentication Attack Scenario.. 28
3. Disassociation Attack Scenario ... 32
4. RTS Attack Scenario ... 35

C. SIMULATION RESULTS OF DEFENSE SCENARIOS 39
1. Defense Against Deauthentication and Disassociation

Attacks.. 39
2. Defense Against RTS Attacks... 44

D. SUMMARY OF EFFECTIVENESS OF IMPLEMENTED
DEFENSES .. 47

 viii

VI. CONCLUSION.. 49

APPENDIX A. SOURCE CODE LIST OF SIMULATION MODEL........................... 51

LIST OF REFERENCES.. 115

INITIAL DISTRIBUTION LIST ... 117

 ix

LIST OF FIGURES

Figure 1. Independent Basic Service Set (BSS) (After [4]) 4
Figure 2. Infrastructure BSS (After [4]) .. 4
Figure 3. Extended Service Set (ESS) (After [4])... 5
Figure 4. State Machine of Mobile Station (After [4]) ... 8
Figure 5. IEEE 802.11 MAC Architecture (After [4]) .. 10
Figure 6. IFS relationships (After [4])... 11
Figure 7. RTS / CTS / Data / ACK and NAV Setting (After [4]) 13
Figure 8. Graphical depiction of deauthentication attack (After [03]) 16
Figure 9. Graphical depiction of disassociation attack (After [3]) 17
Figure 10. Hierarchy of OMNeT++ Modules (After [6]) .. 21
Figure 11. Screen Shot of Implemented Model ... 22
Figure 12. RTS Attack ... 27
Figure 13. Simulation Results of Baseline Scenario .. 28
Figure 14. Simulation Results of Deauthentication Attack Scenario (Attack

Cycle 3333 frames/sec).. 29
Figure 15. Simulation Results of Deauthentication Attack Scenario (Attack

Cycle 3636 frame/sec).. 30
Figure 16. Simulation Results of Deauthentication Scenario (Attack Cycle

4000 frames/sec).. 31
Figure 17. Simulation Results of Disassociation Scenario (Attack Cycle 3636

frames/sec)... 33
Figure 18. Simulation Results of Disassociation Scenario (Attack Cycle 5000

frames/sec)... 34
Figure 19. Simulation Results of RTS Attack Scenario (Attack Cycle 2000

frames/sec, Duration Field 310) ... 36
Figure 20. Simulation Results of RTS Attack Scenario (Attack Cycle 2000

frames/sec, Duration Field 350) ... 37
Figure 21. Simulation Results of RTS Attack Scenario (Attack Cycle 1000

frames/sec, Duration Field 850) ... 38
Figure 22. Simulation Results of Defense Against Deauthentication Scenario

(Attack Cycle 4000 frames/sec, Timeout 500us) 40
Figure 23. Simulation Results of Defense Against Disassociation Scenario

(Attack Cycle 5000 frames/sec, Timeout 500us) 41
Figure 24. Simulation Results of Defense Against Disassociation Scenario

(Attack Cycle 6667 frames/sec, Timeout 500us) 43
Figure 25. Simulation Results of Defense Against RTS Attack Scenario (Attack

Cycle 2000 frames/sec, Duration Field 350, Timeout 128us) 45
Figure 26. Simulation Results of Defense Against RTS Attack Scenario (Attack

Cycle 1000 frames/sec, Duration Field 850, Timeout 128us) 46

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Average Values from Baseline Scenario .. 28
Table 2. Average Value from Deauthentication Scenario (Attack Cycle 3333

frames/sec)... 29
Table 3. Average Value from Deauthentication Scenario (Attack Cycle 3636

frames/sec)... 30
Table 4. Average Value from Deauthentication Scenario (Attack Cycle 4000

frames/sec)... 31
Table 5. Average Value from Disassociation Scenario (Attack Cycle 3636

frames/sec)... 33
Table 6. Average Value from Disassociation Scenario (Attack Cycle 5000

frames/sec)... 35
Table 7. Average Value from RTS Attack Scenario (Attack Cycle 2000

frames/sec, Duration Field 310) ... 36
Table 8. Average Value from RTS Attack Scenario (Attack Cycle 2000

frames/sec, Duration Field 350) ... 37
Table 9. Average Values from RTS Attack Scenario (Attack Cycle 1000

frames/sec, Duration Field 850) ... 38
Table 10. Average Values From Defense Against Deauthentication Scenario

(Attack Cycle 4000 frames/sec, Timeout 500us) 40
Table 11. Average Values From Defense Against Disassociation Scenario

(Attack Cycle 5000 frames/sec, Timeout 500us) 42
Table 12. Average Values From Defense Against Disassociation Scenario

(Attack Cycle 6667 frames/sec, Timeout 500us) 43
Table 13. Average Values From Defense Against RTS Attack Scenario

(Attack Cycle 2000 frames/sec, Duration Field 350, Timeout 128us) . 45
Table 14. Average Values From Defense Against RTS Attack Scenario

(Attack Cycle 1000 frames/sec, Duration Field 350, Timeout 128us) . 46
Table 15. Consolidated Data Rate Degradation... 47

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank my thesis advisors Dr. William Ray and Dr. Man-Tak

Shing for their assistance in making this thesis possible. A very special thanks to

my wife Janet and son Koen for their love and encouragements.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
It is possible that in the future every laptop, handheld device, and desktop

PC is connected wirelessly to the enterprise network. Today, enterprises are

rapidly deploying wireless networks based on standards such as Institute of

Electrical and Electronics Engineers (IEEE) 802.11b, which offers constant

access to enterprise intranet, extranet, and Internet data and services. Compared

to traditional wired networks, wireless networks offer mobility, giving users

access to enterprise data anywhere and anytime; flexibility, reducing deployment

and network reconfiguration costs; and convenience. These proven

conveniences of wireless networks have led to widespread deployment in the

consumer, industrial and military sectors.

However, there are some concerns associated with wireless networks.

The greatest of which is security. Military and civil network managers must

ensure that new vulnerabilities are not introduced to their enterprise network

when a wireless LAN is deployed. At the same time, they must ensure that

wireless transmissions are safe from eavesdropping, illegal data alteration and

denial of service attacks.

A popular implementation of wireless networks is the IEEE 802.11

WLANs. The widespread deployment makes IEEE 802.11-based networks an

attractive target for potential attackers. Indeed, research has demonstrated basic

flaws in 802.11’s encryption mechanisms [1] and authentication protocols [2] –

ultimately leading to the creation of a series of protocol extensions and

replacements (e.g., WPA, 802.11i, 802.1X) to address these problems. However,

most of this work has focused primarily on the requirements of access control

and confidentiality, rather than availability. Recent works [3] has highlighted the

vulnerability of IEEE 802.11-based networks against attacks on the availability of

the network.

2

B. OBJECTIVE
This thesis presents results from a simulation study evaluating the

vulnerabilities of the IEEE 802.11 medium access control (MAC) protocol against

malicious Denial of Service (DoS) attacks. Attacks targeting the identity

vulnerability and virtual carrier sense mechanism are simulated and various

countermeasures are subsequently implement to investigate their effectiveness

against the corresponding attacks.

3

II. IEEE 802.11 STANDARD

A brief description of the IEEE 802.11 standard is provided in this chapter.

This chapter focuses on the key areas of the IEEE 802.11 protocol that are

pertinent to this work, and is not intended to provide a comprehensive overview

of the capabilities of the protocol. Detailed descriptions of the complete standard

can be found in [4] and [5], which provided the basis of this chapter.

A. IEEE 802.11 ARCHITECTURE

The architecture of the IEEE 802.11 WLAN is designed to support a

network where most decision-making is distributed to the mobile stations. This

architecture has several advantages, including being very tolerant of faults in all

the WLAN equipment and eliminating any possible bottlenecks a centralized

architecture would introduce. The architecture is very flexible, easily supporting

both small, transient networks and large semi permanent or permanent networks.

The IEEE 802.11 WLAN architecture is built around a basic service set

(BSS). The BSS consists of two or more wireless mobile stations, which can

communicate with each other. There are two types of BSS. The first type being

the independent BSS (IBSS), where mobile stations can communicate directly

with each other (Figure 1). Mobile stations must be in communication range of

each other in order to communicate directly, and there is no relay function in an

IBSS.

4

Figure 1. Independent Basic Service Set (BSS) (After [4])

The second type of BSS is the infrastructure BSS. The mobile stations

communicate with each other through an Access Point (AP) (Figure 2). The AP

can act as a bridge to connect the WLAN to a wired network. More importantly,

the AP is the central node for all communications in the WLAN. All frames must

be sent to the AP first, and the AP will retransmit the frame to intended

destination mobile station in the BSS. This consumes twice as much bandwidth

as compared to a one-link communication in an IBSS. However, the AP provides

for traffic buffering if a destination station is not ready to receive the message.

Figure 2. Infrastructure BSS (After [4])

5

A set of infrastructure BSS can be string together through the APs to form

an Extended Service Set (ESS). This facilitates the movement of mobile stations

from one BSS to another BSS within the ESS (Figure 3). The APs communicate

among themselves to forward traffic between each BSS. The APs communicate

via an abstract medium called the Distribution System (DS). The DS is the

backbone of the WLAN and may be constructed of either wired or wireless

networks.

Figure 3. Extended Service Set (ESS) (After [4])

B. DISTRIBUTION SYSTEM
The DS is the mechanism by which one AP communicates with another to

exchange frames for stations in their BSSes, forward frames to follow mobile

stations from one BSS to another, and exchange frames with wired networks, if

any. The DS is not necessarily a network, as long as the services it must provide

exists. Thus the DS may be a wired network; e.g. 802.3 Ethernet, or a dedicated

black box providing the required services.

C. SERVICES
The IEEE 802.11 defines a total of 9 types of services, divided into 2

groups; station services and distribution services.

6

1. Station Services
There are 4 station services; authentication, deauthentication, privacy and

data delivery. These 4 services provide the WLAN with similar functions to those

that are expected of a wired network. An authenticated mobile station is similar to

a physically connected station in a wired network. Similarly, a deauthentication of

a mobile station corresponds to disconnecting a station from the wired network.

The authentication service is used to prove the identity of the mobile station to

another. As such, only authenticated users are allowed to use the WLAN. The

deauthentication service disconnects the mobile station from the WLAN and that

station can no longer access service of the WLAN.

The privacy service of the IEEE 802.11 is designed to provide an

equivalent level of protection for data traversing the WLAN as provided by a

wired network. This service protects the data only as it traverses the wireless

medium, and is not designed to provide end-to-end protection in a

heterogeneous network.

The data transmission service is probably the most utilized service of the

mobile station. This service is responsible for reliably delivering data frames from

the Medium Access Control (MAC) of one mobile station to one or more other

stations.

2. Distribution Services
The 5 distribution services of the protocol are association, reassociation,

disassociation, distribution and integration. These distribution services function to

allow mobile stations to roam freely within an ESS and to allow the IEEE 802.11

WLAN to be connected with a wired LAN infrastructure.

The association service is used to make a logical connection between a

mobile station and an AP. This logical connection is necessary in order for the

DS to know where and how to deliver data to the mobile station. The logical

connection is also necessary for the AP to accept data frames from the mobile

station and to allocate resources to support the mobile station.

7

The reassociation service is similar to the association service, with the

exception that it includes information about the AP with which a mobile station

has been previously associated. A mobile station will use the reassociation

service repeatedly as it roams about the ESS, losing contact with the AP with

which it has been associated with, and thus needing to be associated with a new

AP as the station proceeds to within the new AP’s coverage zone. By using

reassociation service, a mobile station provides information to the new AP to

which it will be associated, that allows that new AP to contact the AP with which

the mobile station was previously associated, to obtain frames that may be

waiting there for delivery to the mobile station.

The disassociation service is used either to force a mobile station to

associate with an AP or for a mobile station to inform an AP that it no longer

requires the services of the WLAN. An AP can uses this service if it wishes to

inform mobile stations that it can no longer provide them with services to the

WLAN. This can be due to network overloading, or network shutting down.

An AP determines how to deliver the frames it receives by using the

distribution service. When a mobile station sends a frame to the AP for delivery

to another station, the AP invokes the distribution service to determine if the

frame should be forwarded to another AP for onward transmission or to

retransmit the frame back into the AP’s BSS.

The integration service functions to connect the IEEE 802.11 WLAN to

other LANs. This connection may include one or more wired LANs, or other IEEE

802.11 WLANS. This service translates IEEE 802.11 frames to frames that may

traverse other networks, and vice versa. This service is similar to the service

provided by multi protocol enabled router in the Internet.

D. INTERACTION BETWEEN SOME SERVICES
The authentication / deauthentication services and association/

disassociation services are used by the mobile stations to maintain two

independent variables. These two variables; authentication state and association

8

state, are used in a simple state machine, which determines the order in which

certain services must be invoked and when a station may begin using the data

delivery service. A station may be authenticated with many different stations or

APs simultaneously. However, it may only be associated with one station or AP

at a time.

Stations always begin in state 1, when it is neither authenticated nor

associated with any other station or AP. When in state 1, the mobile station has

only access to those services that allow the station to discover the WLAN and the

authentication service. If the station is successful in authenticating with another

station or AP, the station will transit to state 2. (see Figure 4).

Figure 4. State Machine of Mobile Station (After [4])

When a mobile station transits from state 1 to state 2; i.e. it successfully

authenticates with an AP or station, the authentication variable is set to true, and

the association variable remains false. In state 2, the mobile station can access

9

additional services that allow the station to associate, reassociate and

disassociate with another station or AP. If the mobile station is not successful in

becoming associated, the mobile station will remain in state 2. When in state 2,

the mobile station receives a deauthentication notification, the mobile station will

return to state 1, and the authentication variable will be set to false.

When in state 2, the mobile station successfully associates with another

station or AP, its association variable will be set to true and the station will make

a transition to state 3. In state 3, a mobile station is allowed to use all frame types

and the data delivery service. The mobile station will remain in state 3, until it

receives either a disassociation or deauthentication notification.

A station must react to frames it receives in each of the states, even those

that are disallowed for a particular state. For example, a mobile station in state 1

receives an association frame from another station, the mobile station must

respond with a deauthentication frame. This mandatory response forces the

station that sent the disallowed frames to make a transition to the proper state in

the state diagram and thus allowing it to proceed properly towards state 3.

E. MEDIUM ACCESS CONTROL
The IEEE 802.11 medium access control (MAC) supplies the functionality

required to provide a reliable delivery mechanism for user data over noisy,

unreliable wireless media. Although the data delivery itself is based on an

asynchronous, best-effort, connectionless delivery of MAC layer data, the frame

exchange protocol at the MAC level does significantly improves on the reliability

of data delivery over wireless media [5]. It does this while also providing advance

LAN services, equal to or beyond those of existing wired LANs.

The fundamental access method of IEEE 802.11 MAC is a Distributed

Coordination Function (DCF) that provides controlled access method to the

shared wireless medium, also known as Carrier-Sense Multiple Access with

Collision Avoidance (CSMA/CA). CSMA/CA is similar to the collision detection

access method deployed by IEEE 802.3 Ethernet LANs, but due to the wireless

10

media, it is not feasible for collision detection in the media, as such, an

avoidance strategy is adopted.

The third function of the IEEE 802.11 MAC is to protect the data that it

delivers. As it is difficult to contain a WLAN within any physical perimeters, the

IEEE 802.11 MAC provides a privacy service; Wired Equivalent Privacy (WEP),

which encrypt the data with RC4 cryptographic process before sending it over the

wireless medium.

Apart from DCF, another method of media access control featured in the

IEEE 802.11 protocol is the Point Coordination Function (PCF). Although DCF is

the primary access control method used, it can also co-exist with PCF. Figure 5

illustrates the MAC Sub layer Architecture that allows for the coexistence of both

functions.

Figure 5. IEEE 802.11 MAC Architecture (After [4])

DCF is used in both independent and infrastructure networks; whereas,

PCF is an optional access method and used only in infrastructure network

configurations. In the infrastructure network, a point coordinator (PC) controls

access to the medium permitting the DCF and PCF to coexist.

F. INTERFRAME SPACE (IFS)
A station needs to listen to the medium for a period of time before deciding

if the medium is carrying any transmission. If the station does not detect any

transmission during that period of time, then the station will determine that the

11

medium is free from transmission. The IEEE 802.11 MAC recognizes four such

timing periods, known as Interframe spacing (IFS). The four different types of

IFS determine the priorities of stations in accessing the medium. The first type is

Short IFS (SIFS), used in sending an acknowledgement, Clear To Send (CTS)

frames, and the second or subsequent frames of a fragment burst. During the

contention-free period (CFP), a station also uses SIFS when it responds to a poll

while a point coordinator (PC), which coordinates the communication in the

WLAN, may use SIFS for any type of frame. A SIFS is the shortest IFS;

consequently, provides a station with the highest priority in gaining access to the

medium.

The second type of IFS is the Priority IFS (PIFS). Except when responding

to a poll by PC, a station will use PIFS during the CFP for all other purposes

under PCF.

The third type is a Distributed IFS (DIFS), which is used under the DCF.

DIFS is the longest interframe space. Hence, a station waiting a DIFS period has

the lowest priority. A point coordinator is guaranteed to gain and maintain control

of the medium to start the CFP by employing PIFS instead of DIFS.

The fourth type of IFS is an Extended IFS (EIFS), used when the first

attempt to transmit a frame has failed. The EIFS is shorter than DIFS, because a

retransmission has higher priority than a normal transmission. Figure 6 illustrates

the relationships between the IFS.

Figure 6. IFS relationships (After [4])

12

The 4 timing intervals are used to implement the two coordination

functions; DCF and PCF, of the IEEE 802.11 protocol.

G. DISTRIBUTED COORIDINATION FUNCTION

DCF is mandatory and based on the CSMA/CA protocol. With DCF,

802.11 stations contend for access and attempt to send frames when there is no

other station transmitting. If another station is sending a frame, other stations are

expected to wait until the channel is free before attempting to transmit their data.

As a condition to accessing the medium, the MAC Layer checks the value

of its network allocation vector (NAV), which is a counter resident at each station

that represents the amount of time that the previous frame needs to send its

frame. The NAV must be zero before a station can attempt to send a frame. Prior

to transmitting a frame, a station calculates the amount of time necessary to send

the frame based on the frame's length and data rate. The station places a value

representing this time in the duration field in the header of the frame. The IEEE

802.11 defines the Request-To-Send (RTS) frames and Clear-To-Send (CTS)

frames for the purpose of medium reservation by stations. When stations receive

the RTS or CTS frames, they examine this duration field value and use it as the

basis for setting their corresponding NAVs. This process reserves the medium for

the sending station. Figure 7 illustrates the process of using RTS, CTS frames to

reserve the medium.

An important aspect of the DCF is a random back off timer that a station

uses if it detects a busy medium. If the channel is in use, the station must wait a

random period of time before attempting to access the medium again. This

ensures that multiple stations wanting to send data don't all transmit at the same

time. The random delay causes stations to wait different periods of time and

avoids all of them sensing the medium at exactly the same time, finding the

channel idle, transmitting, and colliding with each other. The back off timer

significantly reduces the number of collisions and corresponding retransmissions,

especially when the number of active users increases.

13

With WLANs, a transmitting station can't listen for collisions while sending

data, mainly because the station can't have it's receiver on while transmitting the

frame. As a result, the receiving station needs to send an acknowledgement

(ACK) if it detects no errors in the received frame. If the sending station doesn't

receive an ACK after a specified period of time, the sending station will assume

that there was a collision or medium interference, and retransmit the frame.

Figure 7. RTS / CTS / Data / ACK and NAV Setting (After [4])

H. POINT COORDINATION FUNCTION
For supporting time-bounded delivery of data frames, the IEEE 802.11

protocol defines the optional PCF where the access point grants access to an

individual station to the medium by polling the station during the contention free

period. Stations can't transmit frames unless the access point polls them first.

The period of time for PCF-based data traffic; if enabled, occurs alternately

between contention periods.

The access point polls stations according to a polling list, then switches to

a contention period when stations use DCF. This process enables support for

both synchronous and asynchronous modes of operation.

However, no known wireless Network Interface Cards (NICs) or AP on the

market today, however, implement PCF.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. IEEE 802.11 MAC VULNERABILITIES

The 802.11 MAC layer incorporates additional functionality designed to

address problems of the wireless medium. These functions include the ability to

discover networks, join and leave networks, and coordinate access to the

wireless medium. The vulnerabilities discussed in this chapter are a consequent

of these additional functionalities and can be broadly placed into two categories:

identity and media-access control [3].

A. IDENTITY VULNERABILITIES
Identity vulnerabilities arise from the implicit trust IEEE 802.11 networks

place in a transmitting station’s address. APs and Mobile Stations identify

themselves in an IEEE 802.11 network by their unique 48 bit MAC addresses.

These addresses are found in the unencrypted portion of IEEE 802.11

communication frames. There is no mechanism in the protocol to verify the

authenticity of the self-reported MAC address. As such, an attacker may “spoof”

any node of his choice and request MAC-layer services on the victim’s behalf. By

invoking certain MAC layer services, an attack can force any node to leave the

network involuntarily.

1. Deauthentication
In infrastructure mode, all mobile stations must communicate through an

AP. In order to communicate with an AP, a mobile station must first authenticate

itself with the AP. Part of the authentication framework is a message that allows

mobile clients and access points to explicitly request deauthentication from one

another. The deauthentication message is not authenticated using any keying

material. As such, an attacker may either spoof the access point or the mobile

station, and direct the deauthentication message to the other party (see Figure

8).

16

Figure 8. Graphical depiction of deauthentication attack (After [03])

The victim mobile station, upon receiving the deauthentication message,

must deauthenticate itself from the AP. This response is mandated by the IEEE

802.11 protocol. The victim mobile station will consequently attempt to

reauthenticate with an AP, since it still has a desire to join the network. The time

needed to rejoin a network is a function of how aggressive the mobile station

attempts to rejoin the network. As a condition for the attack to be successful, the

attacker needs to repeatedly deauthenticate the victim client, each time the client

attempts to rejoin the network. This form of deauthentication attack provides the

attacker with the flexibility of denying access to a mobile station of choice, or rate

limit the victim’s access.

2 Disassociation
A very similar vulnerability to the authentication protocol is the association

protocol. A mobile station can be authenticated with multiple APs, but it must be

associated with only one AP in order to use the data delivery service of the

17

network. An attacker can similarly exploit the unauthenticated dissociation

message to deny or degrade a victim mobile station’s access to the network’s

services (see Figure 9).

Figure 9. Graphical depiction of disassociation attack (After [3])

Referring to Figure 4, it can be observed that a deauthentication attack will

always return the victim station to state 1, the lowest possible state of

communication. In contrast, a disassociation attack will only return the victim to

state 2. A mobile station must be in state 3 in order to use the data delivery

service of the network. As such, the deauthentication attack is more efficient than

the disassociation attack; as the victim mobile station needs to transit more

states to attain state 3, comparing with a victim of a disassociation attack. This

greater efficiency of attack can translate to lesser work required of the attacker in

order to successfully mount the attack.

18

B. MEDIA ACCESS VULNERABILITIES
Due to the stochastic nature of wireless communications, it is not possible

to implement perfect collision detection mechanisms in IEEE 802.11 networks.

As such, the protocol use a combination of physical carrier sense mechanism

and virtual carrier sense mechanism to control access to the wireless medium, in

order to avoid collisions. However, these two mechanisms inadvertently provide

opportunities for an attacker to conduct DoS attacks on the mobile stations.

In order to prioritize access to the wireless medium, the IEEE 802.11

protocol has defined 4 IFS of different timing periods. The shortest IFS is the

SIFS, which has a period of 20 microseconds. Before any mobile station can

commence to use the wireless medium, each station must listen to the medium

for one IFS period; the specific type of IFS depends on the state of

communication of the particular mobile station. If there were no transmissions

detected during the IFS period, the mobile station will wait a short random period

before commencing to use the medium. The random period is imposed on the

mobile stations to prevent multiple stations from accessing the medium

simultaneously. If there is a collision detected during the transmission of a

station’s data, the station will suspend its transmission and back off for a period

of time determined by an exponential back off algorithm, before trying to access

the medium again. An attacker can exploit the need for all stations to wait for at

least SIFS period of time, before any station can access the medium, to conduct

a DoS attack on all stations in the network. The attacker sends a random frame

before the end of every SIFS cycle repeatedly. Upon detecting the random

frame, all mobile stations will back off from accessing the medium and will be

unable to send out their legitimate data or requests. This kind of attack demands

a very high workload on the attacker as the attacker is expected to send out a

frame in less than 20 microseconds, repeatedly [3].

Another avenue of attack targets the virtual carrier sense mechanism of

the protocol. Each mobile station updates their respective NAV value when they

receive frames from other nodes. The NAV value indicates to the station the

amount of time the medium is reserved; the station must wait until its NAV value

19

reaches nil before the station tries to access the medium. This feature is used

primarily in the RTS/CTS handshake for medium reservation by mobile stations.

An attacker can send a RTS frame with an exceptionally high value in the

duration value field. The destination station is mandated to respond with a CTS

frame with the duration value updated to account for time elapsed during the

RTS/CTS exchange. Other mobile stations, upon receiving the CTS frame will

update their respective NAV with the exceptionally large duration value. This

causes these stations to defer their access to the medium by a much long period

than necessary. The maximum duration value that is allowable under the IEEE

802.11 protocol is 32767, which roughly translates to about 32 milliseconds. A

major advantage of this form of attack is that the attacker can direct the RTS

frame to a station that has high output power. The high output power station is

able to propagate the CTS response frame to a wider area, and thus increases

the probability that more mobile stations can be affected by the attack. An

example of a high power station is an AP.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. SIMULATION MODEL DEVELOPMENT

A. OMNET++ ENVIRONMENT
OMNeT++ is the acronym for Objective Modular Network Testbed in C++.

It is an object-oriented modular discrete event simulator [6]. The simulator can be

used for:

• Communication protocols modeling

• Computer networks modeling (traffic modeling etc.)

• Modeling multi-processors and distributed systems

• Modeling any other system where the discrete event approach is
suitable.

An OMNeT++ model comprises of hierarchically nested modules. There is

no limit to the depth of module nesting. This facilitates the implementation of the

logical structure of complex systems, which often entails many levels of

abstraction. Figure 10 illustrates the nomenclature of the hierarchy module

nesting in OMNeT++. The hierarchically modules are constructed using a

graphical interface called the Graphical Network Description (GNED) editor. This

graphical tool allows users to have an overview of the logical implementation of

the model; including the communication channels between the modules and the

hierarchical relationship between modules. This visualization tool reduces the

learning curve for OMNeT++, and allows users to build models quickly and

accurately.

Figure 10. Hierarchy of OMNeT++ Modules (After [6])

22

B. MODEL DESCRIPTION
The IEEE 802.11 model is implemented using OMNeT++ in the Microsoft

Visual C++ environment. The model comprise of only the MAC layer

implementation, the physical layer is not explicitly modeled as the effects of the

different transmission times due to different mediums can be simulated by using

different timing values in the MAC layer. The model comprises of an AP, a

medium module, an attacker module, and one or more mobile stations, as

defined by the user. Figure provides a snap shot of the implemented model on

the graphical display of OMNeT++. In this instance, there are 4 mobile stations.

Figure 11. Screen Shot of Implemented Model

Although OMNeT++ is a discrete event simulator, a clock drive approach

was preferred over an event driven approach for the IEEE 802.11 model. This is

due to the need for mobile stations to listen to the network regularly to implement

23

the physical and virtual carrier sense mechanisms. A clock driven model would

account for activities in every cycle and thus facilitates the accounting of NAV

decrements and timeout triggers; e.g. DIFS timeout for medium reservation.

C. KEY MAC FUNCTIONS
The IEEE 802.11 MAC comprise of many functions and services

necessary to ensure reliable communication. These services include security

services, MSDU ordering, data services, distribution services, etc. The identity

and media access vulnerabilities are localized in some of these services; as such

the model does not implement all functionalities of the protocol. For the purpose

of studying the effects of vulnerabilities, the following key functions are

implemented:

• Authentication, Association, Deauthentication and Disassociation

Services

• Virtual carrier sense mechanism

• Distributed Coordination Function

It was envisaged that the non-inclusion of the other functionalities of the

protocol would have significant impact on the results of the simulation. This was

because these additional functionalities are not affected by the attack strategies

adopted; these functionalities do not interact with the spoofed frames generated

by an attacker station during the conduct of an attack.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

V. ATTACK STRATEGIES AND SIMULATION FINDINGS

A. ATTACK GENERES
An incremental approach was adopted in the simulation of attacks and

defenses of the IEEE 802.11 model. An initial unprotected model is subjected

three genres of attacks. Thereafter, the model is progressively hardened against

each kind of attack, and the effectiveness of the defensive measures are

evaluated. In order for all attacks to be effective, they must be repeated

periodically; i.e. attacker station must periodically transmit the spoofed frame on

the network.

The cyclical period of transmitting spoof frames or conducting attacks is

termed as the attack period. Alternatively the number of times a spoofed frame is

transmitted or an attack is conducted over a 1 second time interval is termed as

the attack cycle.

The three genres of attacks under study are as follows:

1. Deauthentication Attacks
The management frames of the IEEE 802.11 protocol are not authenticate

by the receiver, this allows an attack to spoof as a legitimate station in the

network to send management frames to any other stations in the network. The

attacker spoofs a mobile station to request to deauthenticate from the currently

associated AP. The AP upon receiving the request must respond with a

deauthentication frame with its destination as the spoofed mobile station (see

Figure 8). The spoofed mobile station, after receiving the deauthentication frame

from the AP, will set its authentication variable to false. This causes the victim

mobile station to drop to state 1 of communication state with the AP (see Figure

4).

As the victim mobile station retains the desire to continue to communicate

with the network, the victim mobile station will reinitiate the authentication and

association with the same AP or another AP within range. In doing so, the victim

26

station needs obey all timing requirements of the DCF in order to access the

medium to rejoin the network. The attacker needs to repeatedly spoof the victim

mobile station in order to continuously deny the victim mobile station access to

the network, or to degrade the station’s access rate. This form of attack affords

the attacker with the ability to select a particular mobile station within the network

for DoS attack.

2. Disassociation Attacks
This attack is very similar to the deauthentication attacks. Instead of

requesting for deauthentication, the attacker requests disassociation from the

currently associated AP, on behalf of the victim mobile station (see Figure 9).

The victim mobile station, upon receiving the disassociation notification from the

AP, will drop to state 2 of communication state with the AP (see Figure 4).

The victim mobile station will attempt to reassociate with the same AP or

another AP that may be within range. Similarly the attacker needs to repeatedly

requests disassociation from the AP in order for this form of attack to be

effective, and the attacker has the ability to direct the attack on a victim station of

choice.

3. RTS Attacks
This attack exploits the implicit trust placed on the MAC address of

stations participating in a RTS/CTS handshake for medium reservation. An

attacker can spoof the request for reservation of the medium on behalf of a

mobile station by sending an RTS frame with the duration value set to an

arbitrary value. The AP, upon receiving the request, will respond with a CTS

frame to all stations within its transmission range. The CTS frame’s duration

value will be that of the initial value set in the RTS frame, less the time elapsed

during the handshake. All stations receiving the CTS frame will update their

respective NAV value, and will not attempt to access the medium until their NAV

reaches zero (see Figure 12).

27

Figure 12. RTS Attack

The attacker can choose to set a high value in the duration field of the

RTS frame, and thus denying other legitimate stations from assessing the

medium for extended periods of time. This form of attack is non-discriminating as

it affects all mobile stations within the AP transmission range, and it needs to be

repeated periodically to sustain the denial of service or degradation effects.

B. SIMULATION RESULTS OF ATTACK SCENARIOS
All simulation scenarios are set up with 1 AP, 1 attacker station and 4

mobiles stations as depicted in Figure 11. The scenarios are each configured

with different combinations of attacker station with different attack strategies and

mobile stations with various defense enhancements.

1. Baseline Scenario
The mobile stations are implemented as described by the IEEE 802.11

protocol, without any additional protection enhancements to defend against

attacks. The transmission rates of each of the 4 mobile stations over a 10 second

time window are captured for analysis. Figure 13 and Table 1 captures the

results from the simulation of the system in a benign environment.

28

The results from the simulation indicate healthy contention and access to

the medium by all 4 mobile stations. This is inferred from the small differences of

average data rates of all stations.

Figure 13. Simulation Results of Baseline Scenario

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 807.93 909.66 867.93 852.07

3 - 6 sec 831.67 909.33 813.33 855.33

6 - 10 sec 820.00 880.98 893.17 768.78

Table 1. Average Values from Baseline Scenario

2. Deauthentication Attack Scenario
The attacker station is configured to carry out deauthentication attacks

periodically over the 3rd to 6th second interval of the simulation. Attacker stations

conducting deauthentication attacks have the ability to choose victim stations. In

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

29

this series of attacks, the chosen victim is Station 1. The attack cycle is varied to

demonstrate its effects on the effectiveness of this attack strategy.

Figure 14 and Table 2 captures the results of the simulation run with

attack cycle set at 3333 frames/sec (attack period 300us).

Figure 14. Simulation Results of Deauthentication Attack Scenario (Attack Cycle
3333 frames/sec)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 951.72 788.62 877.59 791.72

3 - 6 sec 902.00 319.67 944.67 838.67

6 - 10 sec 900.98 757.80 799.27 858.54

Table 2. Average Value from Deauthentication Scenario (Attack Cycle 3333

frames/sec)

It was observed from the results of the simulation that the deauthentication

attack with attack cycle of 3333 frames per second has the ability to degrade the

-200

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

30

data rate of the victim station by about 60%. Although the victim station is still

able to access the network, it suffers from the degradation effects of the attack.

The attack cycle is increased to 3636 frames per second (attack period

275us) during the attack interval from the 3rd second to 6th second of the

simulation run. The victim station is Station 1. The results of the simulation are

captured in Figure 15 and Table 3.

Figure 15. Simulation Results of Deauthentication Attack Scenario (Attack Cycle
3636 frame/sec)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 850.69 793.79 853.45 948.97

3 - 6 sec 1066.67 20.33 1113.00 1098.67

6 - 10 sec 761.22 853.17 820.00 868.05

Table 3. Average Value from Deauthentication Scenario (Attack Cycle 3636

frames/sec)

-500

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

31

It was observed from both Figure 15 and Table 3 that the victim station is

almost totally denied from access to the network. Station 1 is only able to

maintain a data rate of about 20 frames/sec during the period when the attacker

station was conducting the attack. This victim station suffers a data rate

degradation of about 97%.

The attack cycle is further increased to 4000 attacks per second (attack

period 250us) and the results are captured in Figure 16 and Table 4.

Figure 16. Simulation Results of Deauthentication Scenario (Attack Cycle 4000
frames/sec)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 952.76 764.14 842.76 896.21

3 - 6 sec 464.33 0.00 470.67 490.00

6 - 10 sec 777.80 809.02 784.15 870.73

Table 4. Average Value from Deauthentication Scenario (Attack Cycle 4000

frames/sec)

-200

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

32

It was observed that the victim station was unable to transmit any data

during the period when the attacker station was conducting the attack. It was also

observed that other stations that are not the target of the attack, also suffered

from a degradation of about 50% in data rate during the same period. This could

be attributed to the aggressive effort by Station 1, in attempting to reauthenticate

with the AP each time it is deauthenticate with the AP. The aggressive and

frequent transmission of Authentication Request frames by Station 1 causes the

other mobile stations to defer their access to the medium for data transmission.

This results in an overall reduction of data rate by the stations that are not the

target of the attack.

3. Disassociation Attack Scenario
This series of scenarios are similar to the Deauthentication attack

simulation run, except that the attacker station was configured to carry out

disassociation attacks. Station 1 is the target victim station for all disassociation

attacks during the 3rd to 6th second interval of the simulation.

A simulation run with disassociation attacks at 3636 frames/sec (attack

period 275us) was conducted. The results of the simulation run are captured in

Figure 17 and Table 5.

33

Figure 17. Simulation Results of Disassociation Scenario (Attack Cycle 3636
frames/sec)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 778.97 899.31 926.21 830.34

3 - 6 sec 1001.33 286.67 846.67 972.33

6 - 10 sec 784.15 790.49 884.88 828.78

Table 5. Average Value from Disassociation Scenario (Attack Cycle 3636

frames/sec)

It was observed that the victim station’s data rate was reduced by about

68% during the attack interval. Comparing this result with a deauthentication

attack with the same attack cycle (Figure 15 and Table 3), where the victim

station suffers a data rate degradation of about 97% due to the deauthentication

attack. The greater degradation effect on the victim station’s data rate

-500

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

34

demonstrates the greater effectiveness of the deauthentication attack compared

with the disassociation attack.

The basis for the greater effectiveness of deauthentication attacks over

disassociation attacks can be inferred from the communication state machine of

mobile stations (see Figure 4). It is observed that a deauthentication attack

triggers a two state change to the Communication State of the victim mobile

station, as opposed to a one state change arising from a disassociation attack.

The victim mobile station can only transmit data frames only when it is in State 3

of the Communication State. As such, a deauthenticated victim station needs

additional time and bandwidth to reestablish to State 3 before it can transmit data

frames, as compared to a disassociated victim station.

The attack cycle is increase to 5000 frames/sec (attack period 200us).

The results are captured in Figure 18 and Table 6.

Figure 18. Simulation Results of Disassociation Scenario (Attack Cycle 5000
frames/sec)

-500

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

35

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 812.76 926.55 911.72 802.07
3 - 6 sec 1036.00 27.33 1003.33 1107.33
6 - 10 sec 835.61 770.24 794.15 882.44

Table 6. Average Value from Disassociation Scenario (Attack Cycle 5000

frames/sec)

Comparing the results in Figure 18, Table 6 and those of deauthentication

attack with attack cycle of 3636 frames/sec (Figure 15, Table 3), both victim

stations suffer about 97% degradation in data rate. However, the disassociation

attack was conducted at a higher attack cycle at 5000 frames/second. This

reinforces the conclusion that the deauthentication attack is superior than the

disassociation attack in attaining the objectives of a DoS attack.

4. RTS Attack Scenario
For this series of simulations, the attacker station was configured to carry

out RTS attacks periodically over the 3rd to 6th second interval of the simulation.

The attacker station conducting the attacks does not have the ability to target and

choose victim stations for this attack. This form of attack affects all mobile station

within the transmission range of the attacker station or the AP that was unwittedly

used to collaborate the attack. Apart from the attack cycle that was varied, the

duration field of the RTS frame was also varied to demonstrate its effects on the

effectiveness of the RTS attack strategy.

Figure 19 and Table 7 captures the results of the simulation run with

attack cycle set at 2000 frames/sec (attack period 500us) and duration field set at

310.

36

Figure 19. Simulation Results of RTS Attack Scenario (Attack Cycle 2000
frames/sec, Duration Field 310)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 892.76 881.72 869.66 823.45
3 - 6 sec 176.00 106.67 137.33 77.33
6 - 10 sec 833.90 792.93 792.93 816.10

Table 7. Average Value from RTS Attack Scenario (Attack Cycle 2000 frames/sec,

Duration Field 310)
Even though the attack cycle is much lower as compared with the

deauthentication and disassociation cases, it was observed that all mobile

stations suffered significant degradation in data rate. The degradation ranges

from 80% (Station 0) to 91% (Station 3). Comparatively, the RTS is especially

potent in denying network services to mobile stations.

Another simulation run was conducted with the same attack cycle, but the

valued in duration field of the RTS frame was increased to 350. The results are

illustrated in Figure 20 and Table 8.

-500

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

37

Figure 20. Simulation Results of RTS Attack Scenario (Attack Cycle 2000
frames/sec, Duration Field 350)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 810.00 859.31 876.21 871.03

3 - 6 sec 12.00 0.00 0.00 41.33

6 - 10 sec 833.66 795.12 770.73 824.88

Table 8. Average Value from RTS Attack Scenario (Attack Cycle 2000 frames/sec,

Duration Field 350)

Form the results in Table 20, it was observed that by only increasing the

value in the duration field of the RTS frame, all mobile stations can be effectively

denied of network services. All mobile stations will back off from accessing the

medium in accordance with the value in the duration field of a CTS frame that

was in response to the spoofed RTS frame. When the value in the duration field

is sufficiently high with respect to the attack period; in this case the attack period

was 500us, the attacker station can exclusively reserve the medium during the

-500

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

38

time between each spoofed RTS frame, thus denying all other stations access to

the medium.

To validate this conclusion, a simulation run was conducted with attack

cycle set at 1000 frames/sec (Attack period 1000us) and duration field value set

at 850. The results of the simulation are captured in Figure 21 and Table 9.

Figure 21. Simulation Results of RTS Attack Scenario (Attack Cycle 1000
frames/sec, Duration Field 850)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 814.83 772.76 921.38 953.10

3 - 6 sec 0.00 30.00 25.67 0.00

6 - 10 sec 768.29 790.98 819.51 809.02

Table 9. Average Values from RTS Attack Scenario (Attack Cycle 1000

frames/sec, Duration Field 850)

The attack cycle has been reduced by 50% from 2000 to 1000 frames/sec

and the value in the duration field increased to 850. Unlike the deauthentication

-500

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

39

and disassociation attacks, the attack cycle of RTS is not as critical in

determining the success of the attack. So long as the value of the duration field in

the spoofed RTS frame was sufficiently high, the RTS attack would be able to

deny all mobile stations access to the medium. The only drawback about the

RTS attack is that the attacker station cannot choose to direct the attack at any

single mobile station, but to attack all stations within the transmission range of

the innocent collaborating station.

C. SIMULATION RESULTS OF DEFENSE SCENARIOS
The series of proposed defenses against the discussed attack are non-

cryptographic countermeasures that can be implemented in the firmware of

existing MAC hardware [3]. This has the advantages of hardening implemented

IEEE 802.11-based WLANs, without having to make massive hardware

replacements.

1. Defense Against Deauthentication and Disassociation Attacks
The deauthentication and disassociation vulnerability can be solved

directly by explicitly authenticating IEEE 802.11 management frames, which are

unencrypted at the moment. However, this measure will result in legacy MAC

designs unable to meet the increased processing demands due to insufficient

CPU capacity to implement this functionality as a software upgrade [3].

Therefore, solutions that are implemented at system-level with low overhead are

preferred. In particular, by delaying the effects of deauthentication or

disassociation frames, mobile stations has the opportunity to listen for

subsequent frames from the AP before deciding to deauthenticate or

disassociate from the AP. The mobile station can wait for a timeout period before

obeying the deauthentication or disassociation frame. If before the timeout

expires, the AP continues to communicate with the mobile station, the mobile

station can disregard the received deauthentication or disassociation notification.

This approach has the advantage that it can be implemented with a simple

firmware modification to existing Network Interface Cards (NICs).

40

The mobile stations were enhanced with the timeout protection against

spoofed deauthentication and disassociation frames. A simulation run was

conducted with deauthentication attack cycle set at 4000 frames/sec and timeout

value set at 500us. The results are illustrated in Figure 22 and Table 10.

Figure 22. Simulation Results of Defense Against Deauthentication Scenario (Attack
Cycle 4000 frames/sec, Timeout 500us)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 849.66 793.45 948.97 912.07

3 - 6 sec 1030.67 486.33 1070.67 1063.33

6 - 10 sec 857.32 833.17 808.78 803.41

Table 10. Average Values From Defense Against Deauthentication Scenario (Attack

Cycle 4000 frames/sec, Timeout 500us)

Comparing the results of this simulation run and that of the

deauthentication attack at same attack cycle rate of 4000 frame/sec, but without

defense enhancements (Figure 16, Table 4), it was observed that although the

-500

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

41

hardened victim station suffers a data rate degradation of about 39%, this was

still a significant improvement over the total denial of service in the unprotected

situation.

It was also observed that unlike the unprotected situation, the other mobile

stations in the network are not affected by the attack. This is because there was

no longer a need for the victim station to aggressively reauthenticate with the AP,

and thus other mobile stations’ request to reserve the medium are not

unnecessarily deferred due to the victim station’s reauthenticate request frames.

The same defense enhancement was implemented against disassociation

attacks. A simulation run was conducted with disassociation attacks at attack

cycle of 5000 frames/sec and timeout at 500us. The results of the simulation are

captured in Figure 23 and Table 11.

Figure 23. Simulation Results of Defense Against Disassociation Scenario (Attack
Cycle 5000 frames/sec, Timeout 500us)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

42

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 884.83 852.07 867.59 866.90

3 - 6 sec 962.67 1017.67 946.00 913.00

6 - 10 sec 810.73 839.02 802.44 863.41

Table 11. Average Values From Defense Against Disassociation Scenario (Attack

Cycle 5000 frames/sec, Timeout 500us)

Comparing the results of this simulation run with those of the

disassociation attack at attack cycle of 5000 frame/sec without defenses (Figure

18, Table 6), it was observed that the hardened victim station suffers no data rate

degradation during the attack interval. The implemented defense was able to

successfully defend against the disassociation attack at a rate that was

previously successfully (97% data rate degradation).

Another simulation run was conduct with the attacker station intensifying

the disassociation attack. The attack cycle is increased to 6667 frames/sec

(attack period 150us). The results from this simulation are captured in Figure 24

and Table 12.

43

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

Figure 24. Simulation Results of Defense Against Disassociation Scenario (Attack

Cycle 6667 frames/sec, Timeout 500us)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 856.21 827.24 929.31 884.14

3 - 6 sec 998.33 558.00 1035.67 1033.33

6 - 10 sec 833.90 818.54 839.02 827.80

Table 12. Average Values From Defense Against Disassociation Scenario (Attack

Cycle 6667 frames/sec, Timeout 500us)

The result of the simulation shows that the victim station suffers a data

rate degradation of about 33%. This shows that the attacker station can still

achieve limited success with the disassociation strategy, but needs to be very

aggressive in mounting the attack in order to achieve the limited success. The

increased in effort of conducting an attack and reduction in payoff may provide

deterrence to an attacker from deploying this attack strategy.

44

2. Defense Against RTS Attacks
The virtual carrier-sense attack is much harder to defend against than the

deauthentication, disassociation attack. This is mainly due to the problems of

possible hidden nodes [5] in WLAN. Mobile stations may move in and out of an

AP’s coverage area, and thus may not be able to listen to all parts of a legitimate

medium reservation handshake. These incomplete handshakes may seem like

the RTS attacks of a malicious station, thus it is difficult to discern between

legitimate reservation requests or malicious attacks.

One approach to mitigate the effects of an RTS attack is for mobile

stations to monitor the state of communications in the WLAN. If there are

deviations from the frame sequence or timing sequence as prescribe by the IEEE

802.11 protocol, mobile stations can take preventive measures to deny malicious

attacks from succeeding in denial of network services. In the case of RTS

attacks, mobile stations will continue to monitor the medium for a timeout period

after a CTS frame has been received. The timeout period must take into

consideration the expected response times of legitimate medium reservation and

data transmission sequences (see Figure 7). If the expected response is not

received after the timeout has expired, it could be due to the hidden node

problem or the previous CTS frame could have been part of an attack on the

network. Either case, the mobile station can ignore the previous medium

reservation and commence to contend for medium access. If the previous

medium reservation was legitimate, a collision will ensure, causing the mobile

stations to backoff for a random period before trying again to reserve the medium

for data transmission. If the previous medium reservation request was an attack

conducted by a malicious station, the mobile stations can safely contend for the

medium upon expiry of timeout, without the possibility of a collision

A simulation run was conducted with the attacker station conducting an

RTS attack with attack cycle at 2000 frames/sec and duration field value at 350.

The mobile stations are implemented with the described defenses, with the

timeout value set at 1 DIFS (128us). The results of the simulation are captured in

Figure 25 and Table 13.

45

Figure 25. Simulation Results of Defense Against RTS Attack Scenario (Attack Cycle
2000 frames/sec, Duration Field 350, Timeout 128us)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 528.28 638.97 777.24 914.48

3 - 6 sec 319.67 334.67 346.00 353.00

6 - 10 sec 495.37 599.76 717.32 863.90

Table 13. Average Values From Defense Against RTS Attack Scenario (Attack

Cycle 2000 frames/sec, Duration Field 350, Timeout 128us)

It was observed from the results of the simulation that the defense

enhancements made to the mobile stations achieved limited success in

mitigating the effects of an RTS attacks. The mobile stations suffer from

degradation to data rates ranging from 39% (Station 1) to 61% (Station 3). The

degradation in the data rates is attribute to the excess wait time (1 DIFS)

necessary to determine that the medium is free, before commencing to contend

for medium access. Comparing with the almost total denial of network services

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

46

for an unprotected system (Figure 20, Table 8), the degradation suffered by the

protected system may still be acceptable for users of the WLAN.

Another simulation was conducted with the attacker station set up with

attack cycle of 1000 frames/sec and duration field value set at 850. The mobile

stations’ timeout value remained at 1 DIFS. The results of this simulation are

illustrated in Figure 26 and Table 14.

Figure 26. Simulation Results of Defense Against RTS Attack Scenario (Attack Cycle
1000 frames/sec, Duration Field 850, Timeout 128us)

Simulation Time Average Data Rate (Frames / sec)
 Station 0 Station 1 Station 2 Station 3
0 - 3 sec 504.83 635.86 777.24 914.48

3 - 6 sec 444.33 512.67 616.00 712.00

6 - 10 sec 493.41 599.27 723.17 874.63

Table 14. Average Values From Defense Against RTS Attack Scenario (Attack

Cycle 1000 frames/sec, Duration Field 350, Timeout 128us)

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Time (s)

D
at

a
R

at
e

(F
ra

m
es

/S
ec

)

Stn 0
Stn 1
Stn 2
Stn 3

47

Analyzing the results from the simulation, it was expected that the

implement defense against RTS attacks performed better when the attack is less

aggressive; 50% reduction in attack cycle rate. The data rate degradation

suffered by the mobile station ranges from 12% to 22%, as compared to the

previous simulation case of 39% to 61%, and almost total denial of service in the

unprotected system. As such, the implemented defense can be an effective

deterrent to potential attackers as the attack effort must be aggressive enough to

achieve the desired level of data rate degradation to mobile stations.

However, more sophisticated attackers can outsmart this defense

enhancement by simply mimicking as two legitimate stations (1 AP and 1 mobile

station) exchanging medium access handshake and data transmissions. This will

deceive the legitimate mobile station into backing off from accessing the medium,

until such a time the attacker station decides to stop the spoofed exchange.

D. SUMMARY OF EFFECTIVENESS OF IMPLEMENTED DEFENSES
It was observed that different attack genres have different effects on the

data rate of the victim mobile station. The results from the series of simulation

runs are tabulated in Table 15.

 Avg Data Rate Degradation Attack Genre

Attack Cycle
Rate (frames/sec)

Unprotected
Systems

Hardened
Systems

Deauthentication Attacks 4000 100% 39%

Disassociation Attacks 5000 97% 0%

RTS Attacks 2000 100% 50%

Table 15. Consolidated Data Rate Degradation

From the table, it was observed that the hardened systems were able to

resist all three kinds of attacks to different degrees, as compared to the

48

unprotected systems, where there was almost total denial of service to the victim

stations.

Although the hardened mobile systems were able to resist the attacks, it

was also shown in the simulation runs that by increasing the aggressiveness of

the attacks, the attacker could still achieve success in limiting the victim station’s

data rate. However, it is hope that the higher demands placed on the attacker to

mount the attack on hardened mobile stations, coupled with the reduced payoff

of the attack, will discourage an attacker from deploying the 3 genres of attacks.

The series of proposed defenses against the discussed attack were

conceived such that they can be implemented in the firmware of existing MAC

hardware. This has the advantages of hardening implemented IEEE 802.11-

based WLANs, without having to make massive hardware replacements. The

benefits of the ability to limit the success of attacks and the need for only

firmware upgrades to implement the proposed solutions are worthwhile for the

proposed solutions to be considered, not as a permanent solution, but as interim

measures taken to discourage attackers from exploiting the known weaknesses.

The long-term objective must still be to eliminate implicit trust IEEE 802.11

networks place in a transmitting station’s address, and to implement appropriate

per-packet authentication mechanisms such that trust among the nodes of a

WLAN is explicitly established and not implicitly accepted.

49

VI. CONCLUSION

WLANs based on the IEEE 802.11 protocol have been widely deployed in

many areas. This is mainly due to the physical conveniences of wireless mobile

communications. However, there are some vulnerabilities that exist in the IEEE

802.11 protocol that make the implement WLANs susceptible to attacks that

target the confidentiality of data and denial of network services. This work

focused on those vulnerabilities that can be exploited to mount DoS attacks on

specific victim stations or to conduct network wide DoS attacks.

The two categories of vulnerabilities of the IEEE 802.11 protocol; identity

vulnerabilities and medium access vulnerabilities can be exploited to conduct

attacks that deauthenticate or disassociate mobile station from the network, or to

indefinitely reserve the medium such that legitimate mobile stations cannot

access the medium. These attack strategies have the common objective of

denying the victim mobile stations access to the network.

In response to the 3 genres of attacks, specific countermeasures are

discussed and simulated to evaluate their effectiveness against the attacks. The

results from the simulation runs demonstrated that these countermeasures do

indeed result in increased resistance against the attacks. The benefits of the

proposed countermeasures are that they can be implemented only with firmware

upgrades, and thus eliminating the need for massive replacement of existing

network hardware.

However, the fundamental problem of implicit trust IEEE 802.11 networks

place in a transmitting station’s address remains. Therefore the long-term plan

must be to find solutions to eradicate the implicit trust problem.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

APPENDIX A. SOURCE CODE LIST OF SIMULATION MODEL

//--
// File: Dyna.ned
//
// OMNeT++ simulation of IEEE802 network
//
// Nicholas Tan, 01 September 2003
// US Naval Postgraduate School
//--

//--

// Access Point --
//
// An Access Point (AP) of the Wireless LAN
//
simple AccessPoint //
 parameters:
 gates:
 out: out;
 in: in;
endsimple

// Freespace --
//
// The wireless transmission medium of the network
//
simple Freespace //
 parameters:
 gates:
 out: out[];
 in: in[];
 out: APout;
 in: APin;
 out: Aout;
 in: Ain;
endsimple

// Station --
//
// the Mobile station (STA) of the wireless network
//
simple Station //
 gates:
 out: out;
 in: in;
 in: Cin;
endsimple

//Hacker attacking the network
simple Attacker //
 gates:
 in: in;
 out: out;
endsimple

//Wireless Network--
//
// Model of the IEEE802 wireless network, consisting of serveral mobile stations, an access point
//
module IEEE802 //
 parameters:

52

 num_station : numeric const;
 submodules:
 ap: AccessPoint; //
 parameters:
 display: "p=164,110;i=access_point02;b=80,75";
 freespace: Freespace; //
 parameters:
 gatesizes:
 in[num_station],
 out[num_station];
 display: "p=245,199;i=cloud_l;b=103,49";
 sta: Station[num_station]; //
 parameters:
 display: "p=106,317,r,50;i=pda1;b=25,36";
 attacker: Attacker;
 display: "p=440,150;i=hacker05;b=139,105";
 clk: Clock[num_station];
 display: "p=78,340,r,50;i=cogwheel2_s;b=15,10";
 connections:
 for i=0..num_station-1 do
 sta[i].out --> datarate 11000000 --> freespace.in[i]; //
 freespace.out[i] --> sta[i].in; //
 clk[i].out --> sta[i].Cin;
 endfor;
 ap.out --> datarate 11000000 --> freespace.APin; //
 freespace.APout --> ap.in; //
 freespace.Aout --> attacker.in display "m=m,95,63,47,28"; //
 attacker.out --> datarate 11000000 --> freespace.Ain display "m=m,47,28,95,63"; //

 display: "p=2,4;b=638,464";
endmodule

simple Clock
 gates:

 out: out;
endsimple
//Wireless LAN
//
// Instantiates an IEEE 802 wireless network.
//
network theWirelessLAN : IEEE802
 parameters:
 num_station = input(8,"Number of Mobile Station :");
endnetwork

53

//---
// file: ap.ccp
//(part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class AccessPoint : public cSimpleModule
{
 Module_Class_Members(AccessPoint,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(AccessPoint);

void AccessPoint::activity()
{
 //recording variables
 cOutVector resp_v("DataStn");

 float process_time = 0;
 float time_stamp = 0;
 float elasped_time = 0;
 float delay = 0;

 int random_wait; // variance time randomised

 //Address Information
 int sta_add = parentModule()->par("num_station");
 int AP_addr = sta_add + 1;
 const int data_addr = 99; //permanent addr for data sta

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device

54

 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

for(;;)

{//for

 //receiving from FS
 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();

 delete done;

if (destination == AP_addr)
{//if destination

 if (msg_kind == AUT)
 {//if AUT

 //reply with a rply_AUT
 cMessage *work = new cMessage("rply_AUT");
 work->setSCR(AP_addr);
 work->setDES(source);
 //work->setROUTESCR(AP_addr);
 //work->setROUTDES(source);
 work->setKind(rply_AUT);
 work->setMsgTime(simTime());
 work->setNAV(0);

 random_wait = intrand(6);
 wait ((SIFS+random_wait)*Million);

 send(work, "out");

55

 }//if AUT

 if(msg_kind == ASS)
 {//if ASS

 //reply with a rply_ASS
 cMessage *work = new cMessage("rply_ASS");
 work->setSCR(AP_addr);
 work->setDES(source);
 //work->setROUTESCR(AP_addr);
 //work->setROUTDES(source);
 work->setKind(rply_ASS);
 work->setNAV(0);
 work->setMsgTime(simTime());

 random_wait = intrand(6);
 wait ((SIFS+random_wait)*Million);

 send(work, "out");

 }//if ASS

 if((msg_kind == RTS))
 {//if RTS reply with CTS

 //reply with a CTS
 cMessage *work = new cMessage("CTS");
 work->setSCR(AP_addr);
 work->setDES(source);
 //work->setROUTESCR(AP_addr);
 //work->setROUTDES(source);
 work->setKind(CTS);

 work->setMsgTime(simTime());

 // The transmission delay from RTS to CTS needs to be subtracted
 // from the RTS NAV

 process_time = msg_nav - SIFS;

 work->setNAV(process_time);

 NAV = process_time; //setting own NAV vector
 time_stamp = simTime(); //of the NAV vector

 wait ((SIFS)*Million);

 send(work, "out");

 }//if RTS

 if(msg_kind == LASTPKT)
 {//if DATA

 //reply with a ACK for last packet
 cMessage *work = new cMessage("ACK");
 work->setSCR(AP_addr);
 work->setDES(source);
 //work->setROUTESCR(AP_addr);
 //work->setROUTDES(source);
 work->setKind(ACK);
 work->setNAV(0);

 wait ((SIFS)*Million);//delay SIFS
 work->setTimestamp();

56

 send(work, "out");
 //resp_v.record(source); //xxx

 }//if DATA

}//if destination

} //for
}//void

57

//---
// file: clock.ccp
//(part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Clock : public cSimpleModule
{
 Module_Class_Members(Clock,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Clock);

void Clock::activity()
{

 //Addressing Information
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1; //permanent AP address
 int Attk_addr = sta_add + 2; // permanent addr for attacker
 int Clk_addr = sta_add + 3; // permanet addr for clock
 const int data_addr = 99; //permanent addr for data sta

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

58

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

double delay = CLOCK * Million;

 for(;;)
 {

 cMessage *work = new cMessage("clock");
 work->setSCR(Clk_addr);
 work->setDES(Clk_addr);
 work->setKind(CLK);//clock signal
 work->setNAV(0);
 wait (delay);
 send(work, "out");

 } //for
}//void

59

//---
// file: freespace.ccp
// (part of Wireless LAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Freespace : public cSimpleModule
{
 Module_Class_Members(Freespace,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Freespace);

void Freespace::activity()
{

 // address of all stations
 int sta_add = parentModule()->par("num_station"); // Total num of STA
 int AP_addr = sta_add + 1; // permanent addr for AP
 int Attk_addr = sta_add + 2; // permanent addr for attacker

 // msg parameters
 int source; // source MAC address of the rx msg
 int msg_kind; //type of msg
 long msg_nav; // nav of msg
 float msg_timestamp; //timestamp of msg
 //float process_time;

 int loop_count;

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond

60

 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

for(;;)
 {

 //receiving one packet
 cMessage *pkt = receive();

 source = pkt->scr_add();
 msg_kind = pkt->kind();
 msg_nav = pkt->nvec();
 msg_timestamp = pkt->msgtimer();

 // rebro packet

 if (source > sta_add) // either AP or Attacker packet

 { // AP or Attk

 //broadcast to all STA
 for(loop_count=0; loop_count < sta_add; loop_count++)

 {//for
 int dest = loop_count;
 cMessage *work = (cMessage *) pkt->dup(); //duplicate orginal pkt
 work->setNAV(msg_nav); //omnet bug, need to explicite include this
 work->setMsgTime(msg_timestamp);
 send(work, "out", dest);

 }//for

 if (source == AP_addr)

 {//AP packet
 // send to Attk
 cMessage *work3 = new cMessage(*pkt); //duplicate orginal pkt
 work3->setNAV(msg_nav); //omnet bug, need to explicite include this
 work3->setMsgTime(msg_timestamp);
 send(work3, "Aout");

 }// AP packet

61

 else

 {//Attk packet
 // send to AP
 cMessage *work2 = new cMessage(*pkt); //duplicate orginal pkt
 work2->setNAV(msg_nav); //omnet bug, need to explicite include this
 work2->setMsgTime(msg_timestamp);
 send(work2, "APout");

 }
 } // AP or Attk

 else

 {//else

 // send to AP
 cMessage *work4 = (cMessage *) pkt->dup(); //duplicate orginal pkt
 work4->setNAV(msg_nav); //omnet bug, need to explicite include this
 work4->setMsgTime(msg_timestamp);
 send(work4, "APout");

 // send to Attaker
 cMessage *work5 = new cMessage(*pkt); //duplicate orginal pkt
 work5->setNAV(msg_nav); //omnet bug, need to explicite include this
 work5->setMsgTime(msg_timestamp);
 send(work5, "Aout");

 // broadcast to all other STA

 for(loop_count=0; loop_count < sta_add; loop_count++)

 {//for
 int dest = loop_count;
 if (loop_count != source)
 {//if
 cMessage *work = new cMessage(*pkt);
 work->setNAV(msg_nav); //omnet bug, need to explicite include this
 work->setMsgTime(msg_timestamp);
 send(work, "out", dest);

 }//if
 }//for

 }//else

 delete pkt;

 } //for

}//void

62

//---
// file: sta(unprotected).ccp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Station : public cSimpleModule
{
 Module_Class_Members(Station,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Station);

void Station::activity()
{

 float process_time = 0; // working variable for internal calculations
 float time_stamp = 0; // time stamp of NAV
 float elasped_time = 0; // working variable for internal calculations
 float tx_time = 0; // Time between successive packet transmissions
 float tx_stamp = 0; // Time stamp of packet sent, used in conjunction with

tx_time
 int delay_len = 0; // working variable for internal calculations
 int delay_counter = 0; // working variable for internal calculations
 int true_counter = 0;
 int packet_count = 0;
 int delay_RTS; // random back off SIFS for RTS frame
 int delay_CTS; // delay for CTS tx
 int data_len = 120; // arbitual data transmission time
 time_t current_time; // stores current pc clock time in seconds
 ldiv_t divresult; // used for long division of integers in random num

generation

 //recording variables
 cOutVector resp_v("DataStation"); // time when data is transmitted
 cOutVector resp_b("Tx times"); // time between successive transmissions

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); //sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1;

 //permanent AP address
 int Attk_addr = sta_add + 2;

 //permanent addr for attacker
 const int data_addr = 99;

 //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1; //initial state
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

63

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false; // Another Station has RTS outstanding
 bool flag_OCTS = false; // Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal
 bool flag_DataSent; // Data flag to indicate if there is a need to send the last packet

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 int Device_Itvl; // device delay

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

for(;;)
{//for

//randomly generate device interval for each cycle
current_time = time(NULL);
srand(current_time+own_addr);
divresult = ldiv (current_time,31);//the max possible RNG for intuniform is 31
Device_Itvl = intuniform(4, 7, divresult.rem);

//-----------------Incoming Pkt -------------------------

//receiving from FS
cMessage *done = receive();
source = done->scr_add();
destination = done->des_add();

64

msg_kind = done->kind();
msg_nav = done->nvec();
msg_timestamp = done->msgtimer();
delete done;

//-----------------------CLOCK Signal---------------------------
if (msg_kind == CLK)
{//if clock signal

 if (NAV > 0)
 {//if NAV >0
 NAV = NAV - CLOCK;
 if (NAV <=0) NAV = 0;
 }//if NAV >0

 time_stamp = simTime();

}//if clock signal

//---------------PACKETs addressed to this station----------------
if (destination == own_addr)
 {// if destination

//------------------Authentication & Association------------------
 if ((msg_kind == rply_AUT) && (flag_AUT)) {State =2;flag_AUT = false; flag_ASS = false;}
 if ((msg_kind == rply_ASS) && (flag_ASS)) {State =3;flag_ASS = false;}
 if (msg_kind == de_AUT) {State =1; flag_AUT = false;flag_ASS = false;}
 if ((msg_kind == de_ASS) && (State ==3)) State =2;

//--------------------------CTS------------------------------------

 if ((msg_kind == CTS) && (State == 3) && (flag_RTS))
 {//if CTS

 //----NAV Calculuation---------------
 NAV = msg_nav; //set the NAV to that specified in CTS

 flag_CTS = true; //CTS has been approved for this station
 flag_DataSent = false; //no need to send last packet, only need if the first packets are sent

 //delay 1 SIFS and listen out for other Transmitions
 //if there is any transmission during the SIFS
 //the CTS will be aborted (flag_CTS set to false)
 flag_CLK = false;
 delay_counter = 1;
 delay_CTS = (SIFS / CLOCK) + intrand(error_SIFS/CLOCK); //DIFS + x number of clock

cycle

 while (delay_counter <= delay_CTS)// SIFS + x number of clock cycle
 {//receiving from CLK
 cMessage *done = receive();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 if (msg_kind != CLK)
 {//if
 if (msg_kind == RTS) {flag_CTS = false; flag_RTS = false;NAV =

msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
RTS

65

 if (msg_kind == CTS) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
CTS

 if (msg_kind == DATA) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
DATA

 if ((msg_kind == de_AUT) && (destination == own_addr)) {flag_CTS =
false; flag_RTS = false;delay_counter = (delay_CTS + 10);State =1;flag_AUT = false;flag_ASS = false;}

 if ((msg_kind == de_ASS) && (State ==3) && (destination ==
own_addr)){ flag_CTS = false; flag_RTS = false;delay_counter = (delay_CTS + 10);flag_AUT = false;flag_ASS =
false;State =2;}

 }//if
 if (msg_kind == CLK) {NAV = NAV - CLOCK; delay_counter++;if (NAV <= 0) NAV

= 0;}
 }//receiving from CLK

 //no station has tx during the SIFS
 //this station will tx data
 while (flag_CTS)
 {//send out data packets

 cMessage *work = new cMessage("Data");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(DATA);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //wait for 1 clock cycle
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 if (NAV <= CLOCK) {flag_CTS = false;flag_DataSent = true;} //completed

sending all data less last packet

 }//send out data packets

 if (flag_DataSent)
 {//flag_DataSent
 //send Last packet
 cMessage *work = new cMessage("Last Pkt");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(LASTPKT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //recording vectors
 packet_count++;
 resp_v.record(packet_count); //xxx

 tx_time = simTime() - tx_stamp;
 //resp_b.record(tx_time);//xxx

66

 tx_stamp = simTime();

 }//flag_DataSent

 }//if CTS

 //------ACK received---------------
 if ((msg_kind == ACK) && (flag_RTS))
 {flag_RTS = false;} //no more outstanding RTS

 //delay of 1 cycle to allow other stations access to media
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 }//if destination

 else

//--------------------PACKETs addressed to other station--------------------

 {//not to this destination

 // other station has asked for RTS and own has not sent RTS
 if ((msg_kind == RTS) && (!flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 flag_RTS = false; // back off

 }//if RTS

 // other station has asked for RTS, own has sent RTS
 if ((msg_kind == RTS) && (flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 flag_RTS = false; // back off

 }//if RTS

 }//not to this destination

67

//----------State 1 Authentication------------

 if ((State ==1) && (flag_AUT == false))

 {//if State ==1
 //request for Authentication to AP
 cMessage *work = new cMessage("Auth");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(AUT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 NAV = 0;
 time_stamp = simTime();
 send(work, "out");
 flag_AUT = true; //oustanding AUT request
 }//if State ==1

//----------State 2 Association------------

 if ((State ==2) && (flag_ASS == false))
 {//if State ==2
 //request for Authentication to AP
 cMessage *work = new cMessage("Assoc");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(ASS);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");
 flag_ASS = true; //oustanding ASS request
 time_stamp = simTime();
 }//if State ==2

//----------State 3 Authenticated and Associated------------

 if (State ==3)
 {//if State == 3

 if ((NAV == 0) && (!flag_RTS))
 {//Send RTS

 //RTS
 cMessage *work = new cMessage("RTS");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(RTS);
 work->setNAV(data_len);
 process_time = simTime();
 work->setMsgTime(process_time);

 flag_ORTS = false;//reset this flag

 //Delay for DIFS
 delay_counter = 1; // reset counter

 //random number gen

68

 delay_len = intuniform(1, Device_Itvl, divresult.rem);

 delay_RTS = (DIFS / CLOCK) + delay_len; //DIFS + x number of clock cycle

 while (delay_counter <= delay_RTS)// DIFS + x number of SIFS
 {//while delay
 cMessage *done = receive();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 //Clock Cycle received
 if (msg_kind == CLK)
 {
 if (NAV == 0) delay_counter++; //only increment if NAV = 0
 NAV = NAV - CLOCK;
 flag_ORTS = false;
 if (NAV <= 0) NAV = 0;
 }
 else
 {//else
 //if during any of the DIFS cycles is not a clock signal, then

check if it is an RTS, CTS, DeAut, DeASS
 if (msg_nav > NAV) NAV = msg_nav;//set to the higher NAV
 if (msg_kind == RTS) {flag_ORTS = true; delay_counter =

0;} //back off
 if (msg_kind == CTS) {flag_ORTS = true; delay_counter =

0;} //back off
 if ((msg_kind == de_AUT) && (destination == own_addr))

{State =1; flag_AUT = false;flag_ASS = false;delay_counter = (delay_RTS + 10);}
 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr)){ State =2;;flag_AUT = false;flag_ASS = false;delay_counter = (delay_RTS + 10);}
 }//else

 }//while delay

 if (State == 3) //send RTS only if the station is at state 3 only
 {//if State 3
 //NAV Calculations for own RTS
 NAV = data_len;
 time_stamp = simTime();

 //Send the RTS message
 send(work, "out");
 flag_RTS = true;
 }//if State 3

 }// Send RTS

 }//if State ==3

} //for
}//void

69

//---
// file: attacker.ccp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Attacker : public cSimpleModule
{
 Module_Class_Members(Attacker,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Attacker);

void Attacker::activity()
{

 int random_wait; // variance time randomised
 double process_time = 0;
 double time_stamp = 0;
 double elasped_time = 0;

 int data_len = 1000; // arbitual data transmission time

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); // sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1; //permanent AP address
 int Attk_addr = sta_add + 2; // permanent addr for attacker
 const int data_addr = 99; //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 int data_size; //length of data or
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

70

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

 //clock cycle
 float delay = (CLOCK * Million);
 //---

// do nothing
for(;;)
{//for

 //receiving from FS
 cMessage *done = receive();
 delete done;

} //for
}//void

71

//---
// file: attacker-DeAUT.cpp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Attacker : public cSimpleModule
{
 Module_Class_Members(Attacker,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Attacker);

void Attacker::activity()
{

 int random_wait; // variance time randomised
 double process_time = 0;
 double time_stamp = 0;
 double elasped_time = 0;

 int data_len = 1000; // arbitual data transmission time

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); // sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1; //permanent AP address
 int Attk_addr = sta_add + 2; // permanent addr for attacker
 const int data_addr = 99; //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 int data_size; //length of data or
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //Attacker Parameters
 //--------------------

 bool flag_wait = false;
 const int Starttime = 3;
 int period = 3;
 int Endtime = Starttime + period;

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

72

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

 //clock cycle
 float delay = (CLOCK * Million);
 //---

// deAUT station 1

for(;;)
{//for

 //conduct attack from Starttime to Endtime

 if (!flag_wait)
 {wait (Starttime); flag_wait = true;}

 if (simTime() < Endtime)
 {
 wait(0.000250);//Vary this value for different simulations

73

 //deAUT
 cMessage *work = new cMessage("DeAUT");
 work->setSCR(Attk_addr);
 work->setDES(1);
 work->setKind(de_AUT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 }

 else

 {cMessage *done = receive();
 delete done;
 }

} //for
}//void

74

//---
// file: attacker-DeAss.cpp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Attacker : public cSimpleModule
{
 Module_Class_Members(Attacker,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Attacker);

void Attacker::activity()
{

 int random_wait; // variance time randomised
 double process_time = 0;
 double time_stamp = 0;
 double elasped_time = 0;

 int data_len = 1000; // arbitual data transmission time

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); // sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1; //permanent AP address
 int Attk_addr = sta_add + 2; // permanent addr for attacker
 const int data_addr = 99; //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 int data_size; //length of data or
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //Attacker Parameters
 //--------------------

 bool flag_wait = false;
 const int Starttime = 3;
 int period = 3;
 int Endtime = Starttime + period;

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

75

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

 //clock cycle
 float delay = (CLOCK * Million);
 //---

// Dissassociated station 1

for(;;)
{//for

 //conduct attack from Starttime to Endtime

 if (!flag_wait)
 {wait (Starttime); flag_wait = true;}

 if (simTime() < Endtime)
 {
 wait (0.000150); //vary this value for differnt runs

76

 //DeAss Stn 1
 cMessage *work = new cMessage("DeASS");
 work->setSCR(Attk_addr);
 work->setDES(1);
 work->setKind(de_ASS);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 }

 else

 {cMessage *done = receive();
 delete done;
 }

} //for
}//void

77

//---
// file: attacker-RTS.cpp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Attacker : public cSimpleModule
{
 Module_Class_Members(Attacker,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Attacker);

void Attacker::activity()
{

 int random_wait; // variance time randomised
 double process_time = 0;
 double time_stamp = 0;
 double elasped_time = 0;

 int data_len = 1000; // arbitual data transmission time

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); // sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1; //permanent AP address
 int Attk_addr = sta_add + 2; // permanent addr for attacker
 const int data_addr = 99; //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 int data_size; //length of data or
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //Attacker Parameters
 //--------------------

 bool flag_wait = false;
 int Starttime = 3;
 int Endtime = 6;

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1;
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

78

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false;// Another Station has RTS outstanding
 bool flag_OCTS = false;// Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 const int Device_Itvl = 3; // 3 cycles of clock

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

 //clock cycle
 float delay = (CLOCK * Million);
 //---

//

for(;;)
{//for

 //conduct attack from Starttime to Endtime

 if (!flag_wait)
 {wait (Starttime); flag_wait = true;}

 if (simTime() < Endtime)
 {
 wait (0.002000);

 //RTS Attack

79

 cMessage *work = new cMessage("RTS");
 work->setSCR(Attk_addr);
 work->setDES(AP_addr);
 work->setKind(RTS);
 work->setNAV(1850);
 work->setMsgTime(simTime());
 send(work, "out");

 }//RTS Attack

 else

 {cMessage *done = receive();
 delete done;
 }

} //for
}//void

80

//---
// file: sta-DeAut.ccp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Station : public cSimpleModule
{
 Module_Class_Members(Station,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Station);

void Station::activity()
{

 float process_time = 0; // working variable for internal calculations
 float time_stamp = 0; // time stamp of NAV
 float elasped_time = 0; // working variable for internal calculations
 float tx_time = 0; // Time between successive packet transmissions
 float tx_stamp = 0; // Time stamp of packet sent, used in conjunction with

tx_time
 int delay_len = 0; // working variable for internal calculations
 int delay_counter = 0; // working variable for internal calculations
 int true_counter = 0;
 int packet_count = 0;
 int delay_RTS; // random back off SIFS for RTS frame
 int delay_CTS; // delay for CTS tx
 int data_len = 120; // arbitual data transmission time
 time_t current_time; // stores current pc clock time in seconds
 ldiv_t divresult; // used for long division of integers in random num

generation

 //recording variables
 cOutVector resp_v("DataStation"); // time when data is transmitted
 cOutVector resp_b("Tx times"); // time between successive transmissions

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); //sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1;

 //permanent AP address
 int Attk_addr = sta_add + 2;

 //permanent addr for attacker
 const int data_addr = 99;

 //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1; //initial state
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

81

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false; // Another Station has RTS outstanding
 bool flag_OCTS = false; // Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal
 bool flag_DataSent; // Data flag to indicate if there is a need to send the last packet
 bool flag_DeAUT = false; // Indicate that a DeAUT is valid

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 int Device_Itvl; // device delay

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //DeAUT, DeASS delay timeout
 const int TimeOut = 500; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

for(;;)
{//for

//randomly generate device interval for each cycle
current_time = time(NULL);
srand(current_time+own_addr);
divresult = ldiv (current_time,31);//the max possible RNG for intuniform is 31

82

Device_Itvl = intuniform(4, 7, divresult.rem);

//-----------------Incoming Pkt -------------------------

//receiving from FS
cMessage *done = receive();
source = done->scr_add();
destination = done->des_add();
msg_kind = done->kind();
msg_nav = done->nvec();
msg_timestamp = done->msgtimer();
delete done;

//-----------------------CLOCK Signal---------------------------
if (msg_kind == CLK)
{//if clock signal

 if (NAV > 0)
 {//if NAV >0
 NAV = NAV - CLOCK;
 if (NAV <=0) NAV = 0;
 }//if NAV >0

 time_stamp = simTime();

}//if clock signal

//---------------PACKETs addressed to this station----------------
if (destination == own_addr)
 {// if destination

//------------------Authentication & Association------------------
 if ((msg_kind == rply_AUT) && (flag_AUT)) {State =2;flag_AUT = false; flag_ASS = false;}
 if ((msg_kind == rply_ASS) && (flag_ASS)) {State =3;flag_ASS = false;}

 if (msg_kind == de_AUT)

 {//if de_AUT (apply TimeOut and flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;

83

 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 State =1;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_AUT

 if ((msg_kind == de_ASS) && (State ==3)) State =2;

//--------------------------CTS------------------------------------

 if ((msg_kind == CTS) && (State == 3) && (flag_RTS))
 {//if CTS

 //----NAV Calculuation---------------
 NAV = msg_nav; //set the NAV to that specified in CTS

 flag_CTS = true; //CTS has been approved for this station
 flag_DataSent = false; //no need to send last packet, only need if the first packets are sent

 //delay 1 SIFS and listen out for other Transmitions
 //if there is any transmission during the SIFS
 //the CTS will be aborted (flag_CTS set to false)
 flag_CLK = false;
 delay_counter = 1;
 delay_CTS = (SIFS / CLOCK) + intrand(error_SIFS/CLOCK); //DIFS + x number of clock

cycle

 while (delay_counter <= delay_CTS)// SIFS + x number of clock cycle
 {//while receiving from CLK
 cMessage *done = receive();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 if (msg_kind != CLK)
 {//if
 if (msg_kind == RTS) {flag_CTS = false; flag_RTS = false;NAV =

msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
RTS

 if (msg_kind == CTS) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
CTS

 if (msg_kind == DATA) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
DATA

84

 if ((msg_kind == de_AUT) && (destination == own_addr))
 {//if de_AUT (apply TimeOut and flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 flag_RTS = false;
 State =1;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;
 flag_CTS = false;
 delay_counter = (delay_CTS + 10);

 }//if de_AUT

 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr)){ flag_CTS = false; flag_RTS = false;delay_counter = (delay_CTS + 10);flag_AUT = false;flag_ASS =
false;State =2;}

 }//if
 if (msg_kind == CLK) {NAV = NAV - CLOCK; delay_counter++;if (NAV <= 0) NAV

= 0;}
 }//while receiving from CLK

85

 //no station has tx during the SIFS
 //this station will tx data
 while (flag_CTS)
 {//send out data packets

 cMessage *work = new cMessage("Data");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(DATA);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //wait for 1 clock cycle
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 if (NAV <= CLOCK) {flag_CTS = false;flag_DataSent = true;} //completed

sending all data less last packet

 }//send out data packets

 if (flag_DataSent)
 {//flag_DataSent
 //send Last packet
 cMessage *work = new cMessage("Last Pkt");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(LASTPKT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //recording vectors
 packet_count++;
 resp_v.record(packet_count); //xxx

 tx_time = simTime() - tx_stamp;
 //resp_b.record(tx_time);//xxx
 tx_stamp = simTime();

 }//flag_DataSent

 }//if CTS

 //------ACK received---------------
 if ((msg_kind == ACK) && (flag_RTS))
 {flag_RTS = false;} //no more outstanding RTS

 //delay of 1 cycle to allow other stations access to media
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();

86

 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 }//if destination

 else

//--------------------PACKETs addressed to other station--------------------

 {//not to this destination

 // other station has asked for RTS and own has not sent RTS
 if ((msg_kind == RTS) && (!flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 flag_RTS = false; // back off

 }//if RTS

 // other station has asked for RTS, own has sent RTS
 if ((msg_kind == RTS) && (flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 flag_RTS = false; // back off
 }//if RTS

 }//not to this destination

//----------State 1 Authentication------------

 if ((State ==1) && (flag_AUT == false))

 {//if State ==1
 //request for Authentication to AP
 cMessage *work = new cMessage("Auth");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(AUT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 NAV = 0;
 time_stamp = simTime();
 send(work, "out");
 flag_AUT = true; //oustanding AUT request
 }//if State ==1

87

//----------State 2 Association------------

 if ((State ==2) && (flag_ASS == false))
 {//if State ==2
 //request for Authentication to AP
 cMessage *work = new cMessage("Assoc");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(ASS);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");
 flag_ASS = true; //oustanding ASS request
 time_stamp = simTime();
 }//if State ==2

//----------State 3 Authenticated and Associated------------

 if (State ==3)
 {//if State == 3

 if ((NAV == 0) && (!flag_RTS))
 {//Send RTS

 //RTS
 cMessage *work = new cMessage("RTS");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(RTS);
 work->setNAV(data_len);
 process_time = simTime();
 work->setMsgTime(process_time);

 flag_ORTS = false;//reset this flag

 //Delay for DIFS
 delay_counter = 1; // reset counter

 //random number gen
 delay_len = intuniform(1, Device_Itvl, divresult.rem);

 delay_RTS = (DIFS / CLOCK) + delay_len; //DIFS + x number of clock cycle

 while (delay_counter <= delay_RTS)// DIFS + x number of SIFS
 {//while delay
 cMessage *done = receive();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 //Clock Cycle received
 if (msg_kind == CLK)
 {
 if (NAV == 0) delay_counter++; //only increment if NAV = 0
 NAV = NAV - CLOCK;
 flag_ORTS = false;
 if (NAV <= 0) NAV = 0;
 }

88

 else
 {//else
 //if during any of the DIFS cycles is not a clock signal, then

check if it is an RTS, CTS, DeAut, DeASS
 if (msg_nav > NAV) NAV = msg_nav;//set to the higher NAV
 if (msg_kind == RTS) {flag_ORTS = true; delay_counter =

0;} //back off
 if (msg_kind == CTS) {flag_ORTS = true; delay_counter =

0;} //back off

 if ((msg_kind == de_AUT) && (destination == own_addr))
 {//if de_AUT (apply TimeOut and

flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP

packets
 while ((delay_counter > 0) &&

(!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done-

>des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done-

>msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter =

delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0)

delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV)

NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 State =1;
 flag_AUT = false;
 flag_ASS = false;

 }

 //zerolise all parameters
 msg_kind = 0;
 delay_counter = (delay_RTS + 10);

 }//if de_AUT

89

 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr)){ State =2;flag_AUT = false;flag_ASS = false;delay_counter = (delay_RTS + 10);}
 }//else

 }//while delay

 if ((State == 3) && (NAV <=0)) //send RTS only if the station is at state 3 only
 {//if State 3
 //NAV Calculations for own RTS
 NAV = data_len;
 time_stamp = simTime();

 //Send the RTS message
 send(work, "out");
 flag_RTS = true;
 }//if State 3

 }// Send RTS

 }//if State ==3

} //for
}//void

90

//---
// file: sta-DeASS.ccp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Station : public cSimpleModule
{
 Module_Class_Members(Station,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Station);

void Station::activity()
{

 float process_time = 0; // working variable for internal calculations
 float time_stamp = 0; // time stamp of NAV
 float elasped_time = 0; // working variable for internal calculations
 float tx_time = 0; // Time between successive packet transmissions
 float tx_stamp = 0; // Time stamp of packet sent, used in conjunction with

tx_time
 int delay_len = 0; // working variable for internal calculations
 int delay_counter = 0; // working variable for internal calculations
 int true_counter = 0;
 int packet_count = 0;
 int delay_RTS; // random back off SIFS for RTS frame
 int delay_CTS; // delay for CTS tx
 int data_len = 120; // arbitual data transmission time
 time_t current_time; // stores current pc clock time in seconds
 ldiv_t divresult; // used for long division of integers in random num

generation

 //recording variables
 cOutVector resp_v("DataStation"); // time when data is transmitted
 cOutVector resp_b("Tx times"); // time between successive transmissions

 //Addressing Information
 int own_addr = gate("out")->toGate()->index(); //sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1;

 //permanent AP address
 int Attk_addr = sta_add + 2;

 //permanent addr for attacker
 const int data_addr = 99;

 //permanent addr for data sta

 //data parameters
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //msg parameters
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //IEEE802 vectors
 //--------------------------
 //State definitions
 int State = 1; //initial state
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

91

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false; // Another Station has RTS outstanding
 bool flag_OCTS = false; // Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal
 bool flag_DataSent; // Data flag to indicate if there is a need to send the last packet
 bool flag_DeAUT = false; // Indicate that a DeAUT is valid
 bool flag_DeASS = false; // Indicate that a DeASS is vaild

 //Timing Constants - dependant on the PHY
 //Device Interval - delays due to busy device
 int Device_Itvl; // device delay

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //DeAUT, DeASS delay timeout
 const int TimeOut = 500; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

for(;;)
{//for

//randomly generate device interval for each cycle
current_time = time(NULL);

92

srand(current_time+own_addr);
divresult = ldiv (current_time,31);//the max possible RNG for intuniform is 31
Device_Itvl = intuniform(4, 7, divresult.rem);

//-----------------Incoming Pkt -------------------------

//receiving from FS
cMessage *done = receive();
source = done->scr_add();
destination = done->des_add();
msg_kind = done->kind();
msg_nav = done->nvec();
msg_timestamp = done->msgtimer();
delete done;

//-----------------------CLOCK Signal---------------------------
if (msg_kind == CLK)
{//if clock signal

 if (NAV > 0)
 {//if NAV >0
 NAV = NAV - CLOCK;
 if (NAV <=0) NAV = 0;
 }//if NAV >0

 time_stamp = simTime();

}//if clock signal

//---------------PACKETs addressed to this station----------------
if (destination == own_addr)
 {// if destination

//------------------Authentication & Association------------------
 if ((msg_kind == rply_AUT) && (flag_AUT)) {State =2;flag_AUT = false; flag_ASS = false;}
 if ((msg_kind == rply_ASS) && (flag_ASS)) {State =3;flag_ASS = false;}

//------------------DeAuth & DeAss Handler------------------
 //--------------DeAuth--------------------
 if (msg_kind == de_AUT)

 {//if de_AUT (apply TimeOut and flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)

93

 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 State =1;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_AUT

 //--------------DeASS--------------------
 if ((msg_kind == de_ASS) && (State ==3))

 {//if de_ASS (apply TimeOut and flag_DeASS)
 //initialise
 delay_counter = TimeOut;
 flag_DeASS = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeASS))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeASS = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_ASS---
 if (!flag_DeASS)

94

 {
 State =2;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_ASS

//--------------------------CTS------------------------------------

 if ((msg_kind == CTS) && (State == 3) && (flag_RTS))
 {//if CTS

 //----NAV Calculuation---------------
 NAV = msg_nav; //set the NAV to that specified in CTS

 flag_CTS = true; //CTS has been approved for this station
 flag_DataSent = false; //no need to send last packet, only need if the first packets are sent

 //delay 1 SIFS and listen out for other Transmitions
 //if there is any transmission during the SIFS
 //the CTS will be aborted (flag_CTS set to false)
 flag_CLK = false;
 delay_counter = 1;
 delay_CTS = (SIFS / CLOCK) + intrand(error_SIFS/CLOCK); //DIFS + x number of clock

cycle

 while (delay_counter <= delay_CTS)// SIFS + x number of clock cycle
 {//while receiving from CLK
 cMessage *done = receive();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 if (msg_kind != CLK)
 {//if NOT CLOCK
 if (msg_kind == RTS) {flag_CTS = false; flag_RTS = false;NAV =

msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
RTS

 if (msg_kind == CTS) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
CTS

 if (msg_kind == DATA) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
DATA

 //------------DeAUT Handler-------------
 if ((msg_kind == de_AUT) && (destination == own_addr))
 {//if de_AUT (apply TimeOut and flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();

95

 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 flag_RTS = false;
 State =1;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;
 flag_CTS = false;
 delay_counter = (delay_CTS + 10);

 }//if de_AUT

 //--------------DeASS Handler---------------
 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr))
 {//if de_ASS (apply TimeOut and flag_DeASS)
 //initialise
 delay_counter = TimeOut;
 flag_DeASS = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeASS))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;

96

 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeASS = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_ASS---
 if (!flag_DeASS)
 {
 State =2;
 flag_AUT = false;
 flag_ASS = false;
 flag_CTS = false; flag_RTS = false;delay_counter =

(delay_CTS + 10);
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_ASS

 }//if NOT CLOCK

 if (msg_kind == CLK) {NAV = NAV - CLOCK; delay_counter++;if (NAV <= 0) NAV

= 0;}
 }//while receiving from CLK

 //no station has tx during the SIFS
 //this station will tx data
 while (flag_CTS)
 {//send out data packets

 cMessage *work = new cMessage("Data");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(DATA);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //wait for 1 clock cycle
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 if (NAV <= CLOCK) {flag_CTS = false;flag_DataSent = true;} //completed

sending all data less last packet

 }//send out data packets

 if (flag_DataSent)
 {//flag_DataSent

97

 //send Last packet
 cMessage *work = new cMessage("Last Pkt");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(LASTPKT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //recording vectors
 packet_count++;
 resp_v.record(packet_count); //xxx

 tx_time = simTime() - tx_stamp;
 //resp_b.record(tx_time);//xxx
 tx_stamp = simTime();

 }//flag_DataSent

 }//if CTS

 //------ACK received---------------
 if ((msg_kind == ACK) && (flag_RTS))
 {flag_RTS = false;} //no more outstanding RTS

 //delay of 1 cycle to allow other stations access to media
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 }//if destination

 else

//--------------------PACKETs addressed to other station--------------------

 {//not to this destination

 // other station has asked for RTS and own has not sent RTS
 if ((msg_kind == RTS) && (!flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 flag_RTS = false; // back off
 }//if RTS

 // other station has asked for RTS, own has sent RTS
 if ((msg_kind == RTS) && (flag_RTS))
 {//if RTS
 if (msg_nav > NAV)

98

 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 flag_RTS = false; // back off
 }//if RTS

 }//not to this destination

//----------State 1 Authentication------------

 if ((State ==1) && (flag_AUT == false))

 {//if State ==1
 //request for Authentication to AP
 cMessage *work = new cMessage("Auth");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(AUT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 NAV = 0;
 time_stamp = simTime();
 send(work, "out");
 flag_AUT = true; //oustanding AUT request
 }//if State ==1

//----------State 2 Association------------

 if ((State ==2) && (flag_ASS == false))
 {//if State ==2
 //request for Authentication to AP
 cMessage *work = new cMessage("Assoc");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(ASS);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");
 flag_ASS = true; //oustanding ASS request
 time_stamp = simTime();
 }//if State ==2

//----------State 3 Authenticated and Associated------------

 if (State ==3)
 {//if State == 3

 if ((NAV == 0) && (!flag_RTS))
 {//Send RTS

 //RTS
 cMessage *work = new cMessage("RTS");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);

99

 work->setKind(RTS);
 work->setNAV(data_len);
 process_time = simTime();
 work->setMsgTime(process_time);

 flag_ORTS = false;//reset this flag

 //Delay for DIFS
 delay_counter = 1; // reset counter

 //random number gen
 delay_len = intuniform(1, Device_Itvl, divresult.rem);

 delay_RTS = (DIFS / CLOCK) + delay_len; //DIFS + x number of clock cycle

 while (delay_counter <= delay_RTS)// DIFS + x number of SIFS
 {//while delay
 cMessage *done = receive();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 //Clock Cycle received
 if (msg_kind == CLK)
 {
 if (NAV == 0) delay_counter++; //only increment if NAV = 0
 NAV = NAV - CLOCK;
 flag_ORTS = false;
 if (NAV <= 0) NAV = 0;
 }
 else
 {//else
 //if during any of the DIFS cycles is not a clock signal, then

check if it is an RTS, CTS, DeAut, DeASS
 if (msg_nav > NAV) NAV = msg_nav;//set to the higher NAV
 if (msg_kind == RTS) {flag_ORTS = true; delay_counter =

0;} //back off
 if (msg_kind == CTS) {flag_ORTS = true; delay_counter =

0;} //back off

 //---------------DeAUT Handler----------------

 if ((msg_kind == de_AUT) && (destination == own_addr))
 {//if de_AUT (apply TimeOut and

flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP

packets
 while ((delay_counter > 0) &&

(!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done-

>des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done-

>msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)

100

 {
 delay_counter =

delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0)

delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV)

NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 State =1;
 flag_AUT = false;
 flag_ASS = false;

 }

 //zerolise all parameters
 msg_kind = 0;
 delay_counter = (delay_RTS + 10);

 }//if de_AUT

 //--------------De ASS handler-------------
 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr))
 {//if

de_ASS (apply TimeOut and flag_DeASS)
 //initialise
 delay_counter = TimeOut;
 flag_DeASS = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeASS))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeASS = true;
 if (msg_nav > NAV) NAV = msg_nav;

101

 }

 }//while

 //---Successful de_ASS---
 if (!flag_DeASS)
 {
 State =2;
 flag_AUT = false;
 flag_ASS = false;
 delay_counter = (delay_CTS + 10);
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_ASS

 }//else xxx

 }//while delay

 if ((State == 3) && (NAV <=0)) //send RTS only if the station is at state 3 only
 {//if State 3
 //NAV Calculations for own RTS
 NAV = data_len;
 time_stamp = simTime();

 //Send the RTS message
 send(work, "out");
 flag_RTS = true;
 }//if State 3

 }// Send RTS

 }//if State ==3

} //for
}//void

102

//---
// file: sta-protected.ccp
// (part of WirelessLAN - an OMNeT++ simulation of IEEE802)
//---

#include "omnetpp.h"

class Station : public cSimpleModule
{
 Module_Class_Members(Station,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Station);

void Station::activity()
{

 float process_time = 0; // working variable for internal calculations
 float time_stamp = 0; // time stamp of NAV
 float elasped_time = 0; // working variable for internal calculations
 float tx_time = 0; // Time between successive packet transmissions
 float tx_stamp = 0; // Time stamp of packet sent, used in conjunction with

tx_time
 int delay_len = 0; // working variable for internal calculations
 int delay_counter = 0; // working variable for internal calculations
 int true_counter = 0;
 int packet_count = 0;
 int delay_RTS; // random back off SIFS for RTS frame
 int delay_CTS; // delay for CTS tx
 int counter_ORTS; // counter when another Stn has asked for RTS
 int data_len = 120; // arbitual data transmission time
 time_t current_time; // stores current pc clock time in seconds
 ldiv_t divresult; // used for long division of integers in random num

generation

 //RECORDING VECTORS
 cOutVector resp_v("DataStation"); // time when data is transmitted
 cOutVector resp_b("Tx times"); // time between successive transmissions

 //ADDRESSING INFORMATION
 int own_addr = gate("out")->toGate()->index(); //sta own address
 int sta_add = parentModule()->par("num_station"); //total num of station
 int AP_addr = sta_add + 1;

 //permanent AP address
 int Attk_addr = sta_add + 2;

 //permanent addr for attacker
 const int data_addr = 99;

 //permanent addr for data sta

 //DATA PARAMETERS
 const int data_length = 8000; //1000 bytes (xxx Need to check on this one)

 //MSG PARAMETERS
 int source; // msg source
 int destination; // msg destination
 int msg_kind; //msg kind
 long msg_nav; // nav of the msg
 float msg_timestamp; // time stamp of msg

 //IEEE802 VECTORS
 //--------------------------
 //State definitions
 int State = 1; //initial state
 //1 - Unauthenticated, Unassociated
 //2 - Authenticated, Unassociated
 //3 - Authenticated, Associated

103

 //Network Allocation Vector (NAV) - max value 32767 (appox 32 msec)

 long NAV = 0;
 long temp_NAV = 0; // updated NAV value of the incoming packet

 //Flags

 bool flag_AUT = false; // is there an outstanding AUT request
 bool flag_ASS = false; // is there an outstanding ASS request
 bool flag_CTS = false; // This station has CTS
 bool flag_RTS = false; // This station has RTS outstanding
 bool flag_ORTS = false; // Another Station has RTS outstanding
 bool flag_OCTS = false; // Another Station has CTS outstanding
 bool flag_CLK = false; // not waiting for CLK signal
 bool flag_DataSent; // Data flag to indicate if there is a need to send the last packet
 bool flag_DeAUT = false; // Indicate that a DeAUT is valid
 bool flag_DeASS = false; // Indicate that a DeASS is vaild

 //TIMING CONSTANTS - dependant on the PHY

 //Device Interval - delays due to busy device
 int Device_Itvl; // device delay

 //DIFS
 const int DIFS = 128; // microsecond
 const int error_DIFS = 12; // microsecond

 //SIFS
 const int SIFS = 28; // microsecond
 const int error_SIFS = 4; // microsecond

 //DeAUT, DeASS delay timeout
 const int TimeOut = 500; // microsecond

 //ORTS delay
 const int delay_ORTS = 128; // microsecond

 //Clock Cycle Time
 const int CLOCK = 4; // microsecond

 //microsecond denominator
 const double Million = 0.000001;

 // Message Kind Definition
 const int RTS = 1;
 const int CTS = 2;
 const int AUT = 3;
 const int ASS = 4;
 const int rply_AUT = 5;
 const int rply_ASS = 6;
 const int de_AUT = 7;
 const int de_ASS = 8;
 const int DATA = 9;
 const int ACK = 10;
 const int CLK = 11;
 const int LASTPKT = 12;

//---

for(;;)

104

{//for

//randomly generate device interval for each cycle
current_time = time(NULL);
srand(current_time+own_addr);
divresult = ldiv (current_time,31);//the max possible RNG for intuniform is 31
Device_Itvl = intuniform(4, 7, divresult.rem);

//-----------------Incoming Pkt -------------------------

//receiving from FS
cMessage *done = receive();
source = done->scr_add();
destination = done->des_add();
msg_kind = done->kind();
msg_nav = done->nvec();
msg_timestamp = done->msgtimer();
delete done;

//-----------------------CLOCK Signal---------------------------
if (msg_kind == CLK)
{//if clock signal

 if (NAV > 0)
 {//if NAV >0
 NAV = NAV - CLOCK;
 if (NAV <=0) NAV = 0;
 }//if NAV >0

 //Other Station has RTS handler
 if (flag_ORTS)
 {//ORTS
 counter_ORTS = counter_ORTS + CLOCK;
 if (counter_ORTS > delay_ORTS) {NAV = 0;flag_ORTS = false;} //no other transmission

during the del, reset the NAV to allow own RTS

 }//ORTS

}//if clock signal

//---------------PACKETs addressed to this station----------------
if (destination == own_addr)
 {// if destination

//------------------Authentication & Association------------------
 if ((msg_kind == rply_AUT) && (flag_AUT)) {State =2;flag_AUT = false; flag_ASS = false;}
 if ((msg_kind == rply_ASS) && (flag_ASS)) {State =3;flag_ASS = false;}

//------------------DeAuth & DeAss Handler------------------
 //--------------DeAuth--------------------
 if (msg_kind == de_AUT)

 {//if de_AUT (apply TimeOut and flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeAUT))

105

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 State =1;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_AUT

 //--------------DeASS--------------------
 if ((msg_kind == de_ASS) && (State ==3))

 {//if de_ASS (apply TimeOut and flag_DeASS)
 //initialise
 delay_counter = TimeOut;
 flag_DeASS = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeASS))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

106

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeASS = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_ASS---
 if (!flag_DeASS)
 {
 State =2;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_ASS

//--------------------------CTS------------------------------------

 if ((msg_kind == CTS) && (State == 3) && (flag_RTS))
 {//if CTS

 //----NAV Calculuation---------------
 NAV = msg_nav; //set the NAV to that specified in CTS

 flag_CTS = true; //CTS has been approved for this station
 flag_DataSent = false; //no need to send last packet, only need if the first packets are sent

 //delay 1 SIFS and listen out for other Transmitions
 //if there is any transmission during the SIFS
 //the CTS will be aborted (flag_CTS set to false)
 flag_CLK = false;
 delay_counter = 1;
 delay_CTS = (SIFS / CLOCK) + intrand(error_SIFS/CLOCK); //DIFS + x number of clock

cycle

 while (delay_counter <= delay_CTS)// SIFS + x number of clock cycle
 {//while receiving from CLK
 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 delete done;
 if (msg_kind != CLK)
 {//if NOT CLOCK
 if (msg_kind == RTS)
 {//back off because someone else is transmitting RTS
 flag_CTS = false;
 flag_RTS = false;
 NAV = msg_nav;
 delay_counter = (delay_CTS + 10);
 if (NAV <= 0) NAV = 0;
 }//back off because someone else is transmitting RTS

 if (msg_kind == CTS) {flag_CTS = false; flag_RTS = false;NAV =

msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
CTS

107

 if (msg_kind == DATA) {flag_CTS = false; flag_RTS = false;NAV =
msg_nav; delay_counter = (delay_CTS + 10); if (NAV <= 0) NAV = 0;}//back off because someone else is transmitting
DATA

 //------------DeAUT Handler-------------
 if ((msg_kind == de_AUT) && (destination == own_addr))
 {//if de_AUT (apply TimeOut and flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 flag_RTS = false;
 State =1;
 flag_AUT = false;
 flag_ASS = false;
 }

 //zerolise all parameters
 msg_kind = 0;
 flag_CTS = false;
 delay_counter = (delay_CTS + 10);

 }//if de_AUT

 //--------------DeASS Handler---------------
 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr))
 {//if de_ASS (apply TimeOut and flag_DeASS)
 //initialise
 delay_counter = TimeOut;

108

 flag_DeASS = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeASS))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeASS = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_ASS---
 if (!flag_DeASS)
 {
 State =2;
 flag_AUT = false;
 flag_ASS = false;
 flag_CTS = false; flag_RTS = false;delay_counter =

(delay_CTS + 10);
 }

 //zerolise all parameters
 msg_kind = 0;

 }//if de_ASS

 }//if NOT CLOCK

 if (msg_kind == CLK) {NAV = NAV - CLOCK; delay_counter++;if (NAV <= 0) NAV

= 0;}
 }//while receiving from CLK

 //no station has tx during the SIFS
 //this station will tx data
 while (flag_CTS)
 {//send out data packets

 cMessage *work = new cMessage("Data");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(DATA);
 work->setNAV(0);
 work->setMsgTime(simTime());

109

 send(work, "out");

 //wait for 1 clock cycle
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 if (NAV <= CLOCK) {flag_CTS = false;flag_DataSent = true;} //completed

sending all data less last packet

 }//send out data packets

 if (flag_DataSent)
 {//flag_DataSent
 //send Last packet
 cMessage *work = new cMessage("Last Pkt");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(LASTPKT);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");

 //recording vectors
 packet_count++;
 resp_v.record(packet_count); //xxx

 tx_time = simTime() - tx_stamp;
 //resp_b.record(tx_time);//xxx
 tx_stamp = simTime();

 }//flag_DataSent

 }//if CTS

 //------ACK received---------------
 if ((msg_kind == ACK) && (flag_RTS))
 {flag_RTS = false;} //no more outstanding RTS

 //delay of 1 cycle to allow other stations access to media
 flag_CLK = false;
 while (!flag_CLK)
 {//receiving from CLK
 cMessage *done = receive();
 msg_kind = done->kind();
 delete done;
 if (msg_kind == CLK) {NAV = NAV - CLOCK; flag_CLK = true;}
 if (NAV <= 0) NAV = 0;
 }//receiving from CLK

 }//if destination

 else

110

//--------------------PACKETs addressed to other station--------------------

 {//not to this destination

 // other station has asked for RTS and own has not sent RTS
 if ((msg_kind == RTS) && (!flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 counter_ORTS = 0; //reset counter
 flag_RTS = false; // back off
 }//if RTS

 // other station has asked for RTS, own has sent RTS
 if ((msg_kind == RTS) && (flag_RTS))
 {//if RTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has RTS
 counter_ORTS = 0; //reset counter
 flag_RTS = false; // back off
 }//if RTS

 //xxxx need to add a CTS handler here xxx
 // AP respond CTS to other station
 if (msg_kind == CTS)
 {//if CTS
 if (msg_nav > NAV)
 {//if msg_NAV
 NAV = msg_nav;
 time_stamp = simTime();
 }//if msg_NAV
 flag_ORTS = true; // another Station has CTS
 counter_ORTS = 0; //reset counter
 flag_RTS = false; // back off
 }//if CTS

 //any other msg received will reset the ORTS flag
 if ((msg_kind != CTS)&&(msg_kind != CLK) && (msg_kind != RTS))
 {//if not CTS or CLK
 if (flag_ORTS) {flag_ORTS = false;NAV = 0;}

 }//if not CTS or CLK

 }//not to this destination

//----------State 1 Authentication------------

 if ((State ==1) && (flag_AUT == false))

 {//if State ==1
 //request for Authentication to AP
 cMessage *work = new cMessage("Auth");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(AUT);

111

 work->setNAV(0);
 work->setMsgTime(simTime());
 NAV = 0;
 time_stamp = simTime();
 send(work, "out");
 flag_AUT = true; //oustanding AUT request
 }//if State ==1

//----------State 2 Association------------

 if ((State ==2) && (flag_ASS == false))
 {//if State ==2
 //request for Authentication to AP
 cMessage *work = new cMessage("Assoc");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(ASS);
 work->setNAV(0);
 work->setMsgTime(simTime());
 send(work, "out");
 flag_ASS = true; //oustanding ASS request
 time_stamp = simTime();
 }//if State ==2

//----------State 3 Authenticated and Associated------------

 if (State ==3)
 {//if State == 3

 if ((NAV == 0) && (!flag_RTS))
 {//Send RTS

 //RTS
 cMessage *work = new cMessage("RTS");
 work->setSCR(own_addr);
 work->setDES(AP_addr);
 //work->setROUTESCR(own_addr);
 //work->setROUTDES(AP_addr);
 work->setKind(RTS);
 work->setNAV(data_len);
 process_time = simTime();
 work->setMsgTime(process_time);

 flag_ORTS = false;//reset this flag

 //Delay for DIFS
 delay_counter = 1; // reset counter

 //random number gen
 delay_len = intuniform(1, Device_Itvl, divresult.rem);

 delay_RTS = (DIFS / CLOCK) + delay_len; //DIFS + x number of clock cycle

 while (delay_counter <= delay_RTS)// DIFS + x number of SIFS
 {//while delay

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();

112

 delete done;
 //Clock Cycle received
 if (msg_kind == CLK)
 {
 if (NAV == 0) delay_counter++; //only increment if NAV = 0
 NAV = NAV - CLOCK;
 if (NAV <= 0) NAV = 0;
 }
 else
 {//else
 //if during any of the DIFS cycles is not a clock signal, then

check if it is an RTS, CTS, DeAut, DeASS

 delay_counter = 1; // reset the counter because there is a tx

during DIFS and it is not CLK

 if (msg_nav > NAV) NAV = msg_nav;//set to the higher NAV

 if (msg_kind == RTS)
 {flag_ORTS = true; counter_ORTS = 0; delay_counter =

(delay_RTS + 10);} //back off due to other station RTS

 if (msg_kind == CTS)
 {flag_OCTS = true; counter_ORTS = 0; delay_counter =

(delay_RTS + 10);} //back off due to other station CTS

 //---------------DeAUT Handler----------------

 if ((msg_kind == de_AUT) && (destination == own_addr))
 {//if de_AUT (apply TimeOut and

flag_DeAUT)
 //initialise
 delay_counter = TimeOut;
 flag_DeAUT = false;

 //sense the media to check for AP

packets
 while ((delay_counter > 0) &&

(!flag_DeAUT))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done-

>des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done-

>msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter =

delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0)

delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeAUT = true;
 if (msg_nav > NAV)

NAV = msg_nav;
 }

113

 }//while

 //---Successful de_AUT---
 if (!flag_DeAUT)
 {
 State =1;
 flag_AUT = false;
 flag_ASS = false;

 }

 //zerolise all parameters
 msg_kind = 0;
 delay_counter = (delay_RTS + 10);

 }//if de_AUT

 //--------------De ASS handler-------------
 if ((msg_kind == de_ASS) && (State ==3) && (destination ==

own_addr))
 {//if

de_ASS (apply TimeOut and flag_DeASS)
 //initialise
 delay_counter = TimeOut;
 flag_DeASS = false;

 //sense the media to check for AP packets
 while ((delay_counter > 0) && (!flag_DeASS))

 {//while

 cMessage *done = receive();
 source = done->scr_add();
 destination = done->des_add();
 msg_kind = done->kind();
 msg_nav = done->nvec();
 msg_timestamp = done->msgtimer();
 delete done;

 //---Clock---
 if (msg_kind == CLK)
 {
 delay_counter = delay_counter - CLOCK;
 NAV = NAV - CLOCK;
 if (delay_counter < 0) delay_counter = 0;
 }

 //---Check AP---
 if (source == AP_addr)
 {
 flag_DeASS = true;
 if (msg_nav > NAV) NAV = msg_nav;
 }

 }//while

 //---Successful de_ASS---
 if (!flag_DeASS)
 {
 State =2;
 flag_AUT = false;
 flag_ASS = false;
 delay_counter = (delay_CTS + 10);
 }

 //zerolise all parameters

114

 msg_kind = 0;

 }//if de_ASS

 }//else

 }//while delay

 if ((State == 3) && (NAV <=0)) //send RTS only if the station is at state 3 only
 {//if State 3
 //NAV Calculations for own RTS
 NAV = data_len;
 time_stamp = simTime();

 //Send the RTS message
 send(work, "out");
 flag_RTS = true;
 }//if State 3

 }// Send RTS

 }//if State ==3

} //for
}//void

115

LIST OF REFERENCES

[1] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting Mobile
Communications: The Insecurity of 802.11. In Seventh Annual
International Conference on Mobile Computing And Networking, Rome,
Italy, July 2001.

[2] W.A. Arbaugh, N. Shankar, J.Wang, and K. Zhang. Your 802.11 Network

has No Clothes. In First IEEE International Conference on Wireless LANs
and Home Networks, Suntec City, Singapore, December 2001.

[3] Bellardo, John, and Savage, Stefan. “802.11 Denial-of-Service Attacks:

Real Vulnerabilities and Practical Solutions.” Proceedings of the USENIX
Security Symposium, August 2003.

[4] The Institute of Electrical and Electronics Engineers, Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
20 August 1999.

[5] O’Hara, B. and Petrick, A. The IEEE 802.11 Handbook: A Designer’s

Companion, IEEE Press, 1999.

[6] András Varga. OMNeT++ Discrete Event Simulation System Version 2.3

User Manual. http://www.omnetpp.org. Accessed 15 November 2003.

[7] W.A. Arbaugh, N. Shankar, J.Wang, and K. Zhang. Your 802.11 Network

has No Clothes. In First IEEE International Conference on Wireless LANs
and Home Networks, Suntec City, Singapore, December 2001.

116

THIS PAGE INTENTIONALLY LEFT BLANK

117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr William Ray
Naval Postgraduate School
Monterey, California

4. Dr Man-Tak Shing
Naval Postgraduate School
Monterey, California

5. Temasek Defence Systems Institute
National University of Singapore
Singapore

6. MAJ Boon Hwee Tan
Republic of Singapore Navy
Singapore

