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ABSTRACT

The United States Army 75" Ranger Regiment conducts combat parachute
operations as part of United States Special Operations Command (USSOCOM). The
Rangers are the largest deployable asset of USSOCOM, and are required to plan and
execute large-scale parachute assaults into hostile theaters with little or no notice.
Generally fighting numerically superior enemy, far from the support of the conventional
Army, Rangers must arrive capable of self-sustaining combat operations in any
operational environment. This thesis provides Ranger air load planners a tool to rapidly
plan feasible mission equipment loads. The Ranger Air Load Planner (RAP) is simple to
learn and operate, provides load plans selected from pre-approved, United States Air
Force load templates, and supports dynamic decision support with rapid solution
response. An optimization model is used in the thesis to objectively assess the quality of
RAP load plans. RAP is a working product that can be adapted for use in air load
mission planning by all units under USSOCOM.
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DISCLAIMER

The reader is cautioned that the computer programs developed in this research
may not have been exercised for all cases of interest. While every effort has been made,
within time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the planner.
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EXECUTIVE SUMMARY

The United States Army 75™ Ranger Regiment must deploy anywhere in the world in less
than 24 hours to conduct combat operations as part of the United State Special Operations
Command (USSOCOM). Using specially configured Air Force transport aircraft, the Rangers
must move men and equipment from the continental United States to an area of operations and
land ready to sustain combat operations. The primary entry method is parachute assault.

Additionally, to ensure aircraft airworthiness, Air Force representatives must approve all
loads prior to takeoff. The Air Force and Rangers have agreed on a classified list of approved

aircraft loads that, if adhered to, will guarantee load plan acceptance by the Air Force. The

-manual air load planning technique used today generally takes one man eight hours to complete.

While preparing to conduct any mission, Rangers rehearse every aspect of an operation
until all leaders are satisfied the operational plan is well understood by all Rangers. Assembly
after a parachute infiltration is a key rehearsal normally conducted several times for clarity.
However, the exact assembly plan rehearsal cannot take place until the air load plan is approved
by the Ranger chain of command. Time for rehearsal is critical.

This thesis develops an automated air load planning aid for the 75" Ranger Regiment.
The Ranger Air Load Planner (RAP) generates air load plans and presents them visually. The
planner can view candidate loads and suggest loading guidance to shift the numbers of cargo
items between aircraft, thus tailoring load plans to meet specific mission requirements or just
follow the better judgment of the planner.

Using a Ranger battalion-sized example, RAP has been tested against an optimization
model, also created for this thesis, and both construct feasible load plans that are essentially

indistinguishable. RAP generates load plans in less than a second on a personal computer. RAP
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is easy to understand and the software is easy to manipulate. This allows Ranger planners to
audit the air load plan and explain the what and why of it to all Rangers. Written in Java, the
heuristic can be maintained by a Java programmer with modest experience in data structures and
computation, and does not require the skills of a trained analyst.

Before the Rangers can adopt RAP in air load planning, software validation should
include testing with classified data on past missions.

Because RAP performs thousands of times faster than the current manual method, it can
be used early in the air load planning process to quickly suggest feasible solutions to the air load
problem, perhaps while the mission plan is still in flux. Any candidate plan suggested by RAP
provides a foundation the Rangers could use to develop the final air load plan, or to suggest
improvements to the mission manifest to make the assault more effective.

RAP's major attraction is its speed. If RAP were validated for use, Rangers would be able
to disseminate air load plans quickly and accurately to subordinate units, and guarantee that the

Air Force would accept the approved load plan.

xvi




I. INTRODUCTION

A. BACKGROUND

On 17 December 1989, the National Command Authority decided to commit
specially trained airborne units to military action in Panama. The President established
H-hour for 0100 on 20 December, just three days after the decision to intervene. The
complex operation was centrally planned due to the need for thoroughly synchronized
operations. The mission assigned to the airborne force was to quickly isolate, neutralize,
and, if needed, destroy units of the Panamanian Defense Force [PDF] by overwhelming
combat power. These forces were then to link up elements of the 7" Infantry Division
(Light), the 5t Infantry Division (Mechanized), and the 193d Infantry Brigade.

Deploying by strategic airlift from multiple bases in the continental United States,
paratroopers jumped into action on two principal DZs [drop zones]. Ranger task forces
seized airfields at Rio Hato and Torrijos-Tocumen Airport. Another task force built
around I* Brigade of the 82™ Airborne Division Jollowed the Rangers. Their mission was
to jump, assemble, and conduct immediate air assaults to eliminate PDF garrisons at
Fort Cimarron, Tinajitas, and Panama Viejo. These initial offensive operations were
later followed by ground combat and stability operations. They were sustained by air
lines of communication from the US and by CSS [combat service support] units already
in Panama.

Largely through airborne operations, capable and aggressive combined arms task
forces were brought to bear on short notice against a dispersed enemy. Thirty-two
separate objectives were attacked at the same time, paralyzing the enemy. The
resounding success of Operation Just Cause was due mostly to the parachute assault and
rapid follow-on missions possible by the airborne operation. Operation just Cause

demonstrated once again the capability, flexibility, and value of airborne forces.
FM 90-26, Airborne Operations

The United States Army 75™ Ranger Regiment operates as an elite conventional
Airborne Infantry brigade in the US Special Operations Command (SOC). The Regiment
is composed of three Battalions located in the United States. The 75™ Regimental HQ
(Regiment) is located at FT Benning, GA.

Rangers are wholly composed of US Army volunteer men who have excelled in
conventional Army units. Ranger qualification is an arduous process that begins with the
completion of Ranger School at FT Benning early in the Ranger’s career. After

completing US Army airborne school and at least one assignment, ranger leaders may




apply to Regiment. If a candidate meets the very high entry screening requirements, he is
invited to the final assessment phase, Ranger Orientation Program. The Ranger
Orientation Program (ROP) seeks to eliminate all but the most dedicated, physically
strong, and mentally focused candidates. Unlike other units, at ROP officers and enlisted
men are evaluated equally. Only the best are invited to become members of the 75%
Ranger Regiment.

Regardless of rank, Rangers are always expected to behave and perform a cut
above all other soldiers. The Ranger leadership has the unique ability to return a Ranger
to the conventional Army for any lapse in conduct or performance. Self-cleansing allows
the Regiment to operate at peak efficiency, an advantage not enjoyed by all Army units.

Rangers conduct combat operations in support of SOC. Ranger actions are
characterized by lightning quick assaults on a numerica]lsf superior enemy in a hostile
environment. These operations are generally conducted at night. All Ranger operations
are raids, ambushes, reconnaissance, or cordon-searches.

In May 1999, the author accompanied two other Naval Postgraduate School
students and two faculty members to FT Benning, GA. We received 2 detailed brief on
the Ranger Regiment and the missions they conduct. The Regimental Executive Officer
expressed the desire for better decision support tools in the field.

In September 1999, LTC Joel Parker, Naval Postgraduate School faculty member,
and the author attended a Ranger training exercise. As part of this exercise, we observed
a Ranger Battalion staff conduct air load planning. We observed how the air load and
several contingency plans are rehearsed. The Rangers practice loading and unloading
men and equipment into the aircraft that will carry them into the training area.
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We met with various members of both the Regimental and Battalion staffs. These

Rangers agreed that a planning assistance tool for air load planning would be welcome.

B. AN AIRBORNE RANGER MISSION
In September, 1999, the 75™ Ranger Regiment conducted an airborne training

exercise. The manual air load planning took one man 6-8 hours using a procedure that has
not changed for 15 years. Planning for possible aircraft failure, an essential detail that
provides an alternate plan for the failure of any single aircraft, requires more man-hours
to complete.

The success of any military tactical operation depends on preparation before
attempted execution. Tactical rehearsals prior to every operation allow Rangers to
visualize their operation from start to finish. They prioritize, then practice key pieces of
the operation until leaders are satisfied every Ranger knows his part of the operation.

One of the essential portions covered in an airborne pre-execution rehearsal is the
assembly after the jump. Rangers units must assemble in a central area to account for all
personnel and equipment after landing in a potentially hostile environment. If not
rehearsed before an operation, unit assembly can be a time consuming and chaotic ordeal.
The Rangers cannot rehearse movement from the landing site to the assembly area until
the Regimental Air Operations Officer (S3A) tells them in which aircraft they will be
arriving at the objective area.

The S3A secks a faster, more effective, planning assistance tool. He wants a
decision support aid to expedite his portion of the overall tactical plan. The S3A must
quickly generate, seek approval for, and disseminate his load plan to allow subordinate
units to schedule and conduct effective rehearsals.
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Figure 1.1. Air Load Rehearsal. Rangers conduct mission analysis upon receipt of a mission tasking from
the US Special Operations Command. The Air Operations Officer (S3A) is responsible for load planning
when a mission requires the Rangers to use aircraft as a method of infiltration. He establishes a load plan
for each Air Force aircraft as a function of the mission, opposing enemy forces, terrain in the target area,
friendly troops uncommitted, and time available. The Air Force must test each tentative load plan the S3A
generates for proper fit prior to mission execution time. Proper load planning ensures Ranger men and
equipment will fit when they practice actually loading. (Image from - [USAF, 1999])

C. HOW AIR LOAD PLANS ARE MADE

Once given an airborne mission, SOC staffs determine how many aircraft the
Rangers will receive based on a SOC estimate of mission requirements. Any Air Force
cargo aircraft equipped for airborne assaults are capable of performing all Ranger
airborne missions. The Rangers conduct the military decision making process to
determine force composition needed to accomplish the assigned mission [US Army,

1993].




The US Army uses the Type-Load Method (TLM) to build an aircraft-specific
load template [US Army, 1990]. The Air Force load-masters and Rangers physically
evaluate each template with actual equipment during airborne training events. Once they
deem a load feasible for a specific type of aircraft, that particular load template is called
approved. Each aircraft type has an approved template list (ATL). Loading aircraft from
these lists saves the S3A time.

Appfoved templates are composed of the following cargo types:

Passengers(PAX) — personnel

Rolling stock (RS) — equipment such as trucks, and jeeps

Pallets (PL) — 463L pallets that ride in AF aircraft and occupy space on the ramp
Other (OT) — other space consuming cargo

The number of each cargo item that any given aircraft can hold is classified
SECRET. Any mention herein of capabilities or equipment names is for problem
illustration only.

This sample list of cargo items is not inclusive.

PAX:

Airborne(ABN) — PAX that jump

Airland (ALN) — PAX that air land

Departure Airfield Control Operators (DACO) — PAX that stay with the
aircraft as a team

Tactical Operation Center (TOC) — Ranger command and control cells

Air Force Liaison (ALO) — Air Force command and control teams

RS:

Ranger Wheeled Vehicle (RSOV) - truck

Medical Wheeled Vehicle (MEDV) — ambulance

Wheeled Mortar Truck (MORTV) — mortar carrier

Motorcycle (BIKE) — light(LBIKE), heavy(HBIKE), 4 wheel (QUAD)
Air Force Transport(AFT) — modified wheeled vehicle

Helicopter (HELO) — any helicopter




PL:

Class I (CHOW) — pallet Army meals or water

Class V Supplies (AMMO) — Ammunition pallet

Class III Supplies (POL) — any petroleum, oil, or lubricant pallet
Class VIII Supplies (MED) — any medical supplies

OTHER

Door Bundles (DB) — small cargo item dropped with a parachute

Ramp Bundle (RB) - cargo item that is ramp deployed

Low Altitude Parachute Extraction - items deployed very close to the
ground using a parachute

Patients (LITTER) — injured personnel that are incapable of moving.

Figure 1.2: A Chalk. An initial portion of a military operational planning cycle is devoted to determining
what forces are required to conduct an operation. During the task organization assessment phase, smaller
units are combined to form larger ones. For airborne operations, this can mean distributing these larger
units over several aircraft so they exit their various aircraft over the same point on the ground. Careful load
planning facilitates rapid ground assembly after the Jjump. During planning and execution, aircraft cannot
be referenced by loaded unit names because these aircraft contain mixed units. Once assigned to each
other, men, equipment, and one aircraft are called a chalk. A chalk is labeled with a unique integer number
that designates its order of flight and the aircraft position on the parking ramp. For the reminder of the air
movement phase into and out of an objective area, the parent organization remains organized in chalks.
Generally, chalks into an objective area are composed differently than corresponding chalks coming out.
(Image from - [USAF, 1999])




The S3A plans subordinate unit cargo lists for each aircraft, delineated by cargo
items, using TLM. Each aircraft is assigned a chalk number, a reference for all personnel
participating in the airborne operation. Once a load has been assigned to an aircraft, the
aircraft is referred to by this chalk number only. Large airborne operations require an
additional internal chalk number scheme. The internal chalk numbers, called stick
numbers, refer to a specific group of parachutists in an aircraft and the order in which
they will exit the aircraft.

The same aircraft will generally not carry the same cargo items both into and out
of the objective area. The tactical situation generally requires that infiltration chalks be
different TLM loads than exfiltration chalks. This aspect of Ranger operations makes
them very time consuming to plan. The planner must complete two full independent load
plans.

. Rangers cross load aircraft. Cross loading requires that leaders and key equipment
be separated across several chalks. Cross loading precludes the total loss of command and
control or unit effectiveness in the event of aircraft failure.

Aircraft do fail. To ensure the Ranger commander has the minimal force he needs
to accomplish his mission, the S3A must have an aircraft failure contingency plan, called
a bump plan. A 1-bump plan is a contingency order to re-load cargo items from any
single failed aircraft onto the remaining functional ones. Cargo that cannot be loaded into
remaining aircraft is called aborted cargo. Aborted cargo is left behind.

After he has feasibly loaded all aircraft, the S3A must do two additional plans for
each aircraft: a 1-bump infiltration plan and a 1-bump exfiltration plan. Assuming there is

unused cargo capacity in the remaining aircraft, the S3A must plan to distribute as much
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equipment as possible from damaged aircraft to functional ones. A successful 1-bump
plan loads all cargo items from an incapable aircraft to mission capable ones, with
minimal upset to previously planned loads.

The load plan must be approved prior to dissemination as an order. The load plan
must attempt to simultaneously satisfy the identified mission requirements and the
personal desires of all subordinate unit commanders. During load plan development,
each subordiﬁate element is given the opportunity to lobby for space on specific chalks
based on its specific mission assessments. Subordinate commanders suggest load plan
changes until the parent unit commander's delegate has approved the plan. The S3A also
receives requests and directives from external agencies that must be incorporated into
each load plan. For example, the Air Force may request space on chalk 2 for an
additional five-man Air Liaison Team.

Generally, a load plan iterates several times between the subordinate unit
commanders and staff to the S3A before it can be finalized. Each suggested change must
be evaluated by the S3A. Superficially simple pr;)posed changes can have complicated
consequences with a complete plan. The movement of one cargo item to accommodate a
suggested change may upset the load of several chalks.

New Ranger missions frequently necessitate new load plans not in their app;oved
template list. The Ranger "Standard Operating Procedure” has a set of tactical air load
planning rules to apply in designing new load plans [US Army, 1990]. The S3A must
follow this rule set or a new load will not be tactically or physically feasible. An example

rule could be, “Never load fewer than two ABN or ALN from the same unit’ or ‘Do not




load more than five RSOVs from the same unit on any one plane of this type.” The rules
change with new Ranger equipment and new operational techniques. |

The S3A must also consider the effect of new loads on the bump plan. Consider a
given aircraft and a new cargo item that restricts PAX movement in its cargo hold. Any
aircraft failure thét requires getting PAX from this chalk to another would prove difficult
unless the new item is loaded forward in the hold. Something like this would not be
discovered until the Rangers practice loading the aircraft late in the mission planning

cycle.

D. TIME IS THE ENEMY

Air load planning is an art. The iterative nature of air load planning makes concise
mathematical definition of good or better air load plans problematic. When many leaders
are involved, it becomes very difficult to quantify what makes one solution better than
another. The operational plan requirements may change several times before the
commander finalizes them. The S3A may be required to modify his initial load solution
until all subordinate units commanders are satisfied or planning time expires. The load
planner must additionally respond to external agencies that may require special
accommodation very late in air load planning.

The enemy of all operational planning is time. Given enough time, the manual
Ranger Airborne planning technique provides solutions to accomplish an airborne
mission. The experience of the planner and the number of special considerations

requested influence planning time.




E. PROPOSED AUTOMATED AIR LOAD PLANNER
This thesis develops the Ranger Air Load Planner (RAP) that generates an

infiltration load plan for each aircraft. RAP presents the S3A a load plan in a graphical
user interface (GUI). The GUI helps the planner visualize changes. RAP relieves the
planner from tedious manual load planning and re-planning sessions. During negotiations
for plan changes, the S3A will be able to quickly assess the quality of subordinate unit
proposals.

F. THESIS ORGANIZATION

Chapter II explains why the author recommends a heuristic solver and not a
mathematical optimization to the Rangers, although both are completely developed in this
thesis.

Chapter III explains data requirements for air load planning and describes load
templates in greater detail. Because unclassified template data is not available for this
thesis, a template generation algorithm and an interactive display are discussed from
which representative feasible templates have been generated.

An air load planning mathematical optimization model is presented in Chapter IV.
This model forms a basis for evaluating feasible heuristic solutions.

The Ranger Air Load Planner (RAP) is explained in Chapter V.

Chapter VI introduces representative scenario data and evaluates the load plans
from both models.

Chapter VII illustrates how the human planner can use RAP for load plan
negotiation.

Conclusions and recommendations appear in Chapter VIII.
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II. SOLUTION STRATEGY

A. SOLUTION OPTIONS

Two alternate solution options appear capable of solving the Ranger air load
problem:
1. An integer linear program to construct an optimal solution; or

2. A heuristic that will quickly construct a good, but not necessarily optimal,
solution.

The formulation, modification, and maintenance of an integer linear program
requires a trained analyst who is experienced in modeling complex restrictions in terms
of algebraic equations. The solution of an integer program of the size and complexity
associated with the Ranger air load planning problem turns out to require the use of a
commercial software package that must be purchased for about $8,000 per seat, and
maintained for continuous exigent use. The operator may need experience with tuning the
mixed-integer solver, and the S3A would need to learn how to express his desires with
explicit objectiveness.

The initial design of a heuristic requires a skilled computer programmer with
some knowledge of the efficient use of data structures for computationally intense
methods. The heuristic can be written in a high-level computer language that can be later
modified and maintained by any skilled programmer.

If the planner is limited to approved load templates, then the constraints on the
load planning are straightforward and can be unambiguously modeled in either

formulation. The rules for identifying additional templates are less clear and are subject
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to change over time. It will be easier to make changes to the heuristic than to make
changes to the integer programming model.
B. OBJECTIVE FUNCTION

Constructing an objective function that captures the conflicting requirements of
the Rangers is quite difficult. This problem is complicated by the possible conflicting
requirements of various subordinate commanders; a single load plan that satisfies all the
Ranger commanders may not exist. There is not a single well defined objective function
that can unambiguously identify the best solution, rather the software will be used by the
planner as part of an ongoing negotiation to attempt to satisfy conflicting demands that
cannot be simultaneously fully satisfied. The objective we adapt is crude: we measure
whether the loads fit, carry the cargo they should, and disperse cargo. Thus, we just seek

feasible loads.

C. TRANSPARENCY

A heuristic can be explained to an air load planner and thus to the other Rangers.
A heuristic incorporates a mathematical objective function to evaluate each template. A
greedy heuristic loads the planes one at a time by computing the value of each candidate
template and choosing the best. The planner can see the algorithm work and reproduce
the value of any template by hand. By contrast, the working of an integer program that

selects the templates for all planes simultaneously is less easy to understand.
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D. AND THE WINNERIS...
Both the optimization and the heuristic are developed in this thesis. Chapter V

explains the heuristic implementation recommended to the Rangers to solve their
problem. The optimization is used as a surrogate for a hypothetical perfect load against
which the quality of the heuristic is judged.

A heuristic is preferred over a formal mathematical optimization; but testing the

heuristic is essential to reassure us of robustness and effectiveness.
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III. DATA

A. DATA REQUIREMENTS
Before air load planning can begin, the S3A needs resource and constraint

information to define the air load problem. The S3A gathers an aircraft resources list and
a desired equipment list from a staff planning session. Provided by the Air Force, the

aircraft resources list enumerates all aircraft types and tail numbers that will support the

airborne operation. The Desired Equipment List (DEL) specifies what equipment, by
cargo item, the unit commander desires to move in the planned operation. The Mission
Essential List (MEL) is a proper subset of the desired equipment list, specifying the
minimum cargo required to accomplish the operation. Any load plan that does not
accommodate the MEL is infeasible. A mission essential list item that cannot be loaded is

called deficit cargo. A Non-MEL item that cannot be loaded is called frustrated cargo.

B. LOAD TEMPLATES
A unit's tactical standard operating procedure manual (TACSOP) provides

additional guidance. The Ranger TACSOP contains a list of US Air Force approved load
templates (ATL) the S3A should use when planning a mission load solution. The actual
Ranger ATL is classified SECRET.

| A load template is a text representation of a combination of feasible cargo items
that may be loaded together on a particular type of aircraft. ‘The load template gives no
physical description of how cargo items are arranged on a particular aircraft, or in what

restricted order they must load and/or unload, only that they all fit.
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Figure 3.1. Template Approval. For each aircraft type, a proposed set of cargo items must be physically
loaded by Air Force loadmasters before the set can be certified for use in an airborne operation. The
Rangers record the approved combinations in the approved template list (ATL). The approval process
involves loading each proposed piece of cargo on an aircraft, then arranging it so it is balanced in
accordance with specific aircraft limitations. An ATL entry dictates what combinations of cargo items may
be placed aboard a specific aircraft type. (Image from - [The Aviation Zone, 20001)

A template is approved only after an Air Force loadmaster has physically
supervised loading the set of cargo items on a specific aircraft type and deemed the load
airworthy. Before approving a cargo item set, the loadmaster adjusts the cargo items in
the aircraft cargo hold until the load lies within the aircraft takeoff weight and balance
tolerances. If the nominated cargo set cannot be rearranged to accommodate aircraft
airworthiness restrictions, the cargo set is reduced and the loading procedure is repeated

unti] the set can be balanced and is airworthy. This iterative process is time consuming.
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Figure 3.2. Approved Load Templates. Templates are text representations of feasible combinations
of cargo items that have been approved by Air Force loadmasters. The Ranger templates do not
capture the spatial orientation ---the geometry or partial order of loading and/or unloading —- of
feasible cargo item sets. Templates cannot be modified with any assurance that the result is
acceptable. Each new template must be attempted and approved before it can be recorded in the
approved template list. (Image from - [The Aviation Zone, 2000])

If the S3A can find enough approved load templates to carry his desired
equipment list, he is guaranteed the Air Force will accept his load plan.

For each aircraft type, the TACSOP has .rule sets suggesting how new templates
can be nominated. A new template, until it is tried and approved, is called a non-
approved load template (NALT). A NALT must be tried and approved by a loadmaster
before the S3A can be sure the cargo items it represents will be available to the airborne
unit commander. NALT approval takes time, and may stall the entire planning process.

The S3A generally avoids suggesting a non-approved load template during
airborne planning. Depending on a non-approved template load that turns out to be non-

airworthy can lead to frustrated cargo in the plan. If a NALT is approved, it is
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immediately recorded as a new template and added to ATL. This new template is

available for subsequent airborne operations.

C. SYNTHETIC TEMPLATE GENERATOR

1. Overview

No unclassified source of actual Ranger load templates exists. Notional load
templates have been created using first principles and open source data on the Internet.

Assuming the complex aircraft-loading problem is a one-dimensional bin-packing
problem [Martins, 1999] suggests a simple procedure to generate a plausible template list.
This myopic approach to template creation is in lieu of any actual classified templates.

The template synthesizer is implemented as a platform independent Java
application [Cornell and Horstmann,1997]. The program reads physical dimensional
information about each cargo item and each aircraft type from a text file called a property
file (e.g. Figure 3.3).

The application creates aircraft specific template lists and saves them to text files.
Additionally, the application writes a text file table capable of being read into other
applications. The template creator uses a "greedy", linear bin-packing algorithm to create
notional feasible templates. The only dimension considered here is length.

The algorithm uses upper bounds on the number of cargo items to eliminate
unrealistic templates. For example, although six helicopters fit on an aircraft, templates
with more than three are undesirable. The returned templates- represent maximal loads,

therefore dominated templates do not appear in the file.
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[c5]

width = 228
length = 1161
weight = 240000
height = 162
[c141]

width = 123
length = 1000
weight = 40000
height = 108
[c130]

width = 123
length = 499
weight = 45000
height = 108

Figure 3.3. Air Properties File. The template synthesizer receives all necessary aircraft data from
text files. In this example of aircraft properties, three aircraft types C5, C141, and C130 are presented.
Additional information appears below each aircraft name. For example, the C141 cargo area is 123
inches wide, 1000 inches long, and 108 inches tall. The template synthesizer uses only the length of an
aircraft. The aircraft allowable cabin load is 40,000 pounds. These text files can be modified to
incorporate new aircraft or to modify existing ones at run time. (Data from - [The Aviation Zone,
2000]).

2. Template Creation Algorithm

The template synthesizer uses direct recursion to solve the linear packing
problem. At each recursive call, the computer solves a much simpler problem, which gets
- reported as a template when appropriate. Figure 3.4 illustrates the pseudo-code for
solving the template generation problem. At the completion of each run, the list of
templates is saved to a file (Figure 3.5). The template file contains all possible
dominating (i.e., maximal) combinations of cargo items for each aircraft type.

While creating realistic templates, the algorithm relies on the validity of the

aircraft and cargo item data files. Every effort has been made to provide the algorithm
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with comprehensive, notional aircraft and cargo dimensions that resemble actual,
classified, aircraft and cargo. Additional assumptions include:

1. Cargo items are identical with respect to others of the same type;

2. Aircraft are identical with respect to others of the same type;

3. Templates selected from the generated list are equally feasible; and

4. No partial ordering of cargo items, within each ATL template, exists (i.e. no
information is given on a template about the order in which cargo items must be loaded
or unloaded).

The number of different cargo items in a template is called template diversity. If
the mission spreads cargo types among aircraft by use of highly diverse templates, then if
a particular aircraft fails, the diverse templates generally prevent all of one cargo item
from bécoming frustrated. Diverse templates are usually preferred over non-diverse

templates.
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algorithm Template Synthesizer;
begin
for V;define
LENGTH; « cargo length inches ; # integer array of cargo item lengths #
UPPER,; « cargo item upper bounds ; # integer array of cargo item upper bounds #
TEMP; « cargo item upper bounds ; # integer array of cargo items #
PLANNED; « 0; # integer array of cargo item to load in a given template #

end

roomLeft < 0; # scalar #

lastltemIndex, < index of last item in cargo item set; # scalar #
planLoadLength « 0; # scalar #

lengthLoaded < 0; # scalar - linear length of all cargo loaded #
aircraftHoldLength « cargo hold length of aircraft; # scalar #
nextltem < O; # scalar - counter #

addltem(0);
end
function addltem(index)
begin
if (index == lastltemIndex - 1)
begin

PLANNED;4e < roomLeft / LENGTH;,. [integer division)
if (PLANNED;n4ex > UPPER; 4ex) = (PLANNED;; 4x <~ UPPER;4.,)
lengthLoaded « lengthLoaded + (PLANNED;p4ex » LENGTHjpngex)
output template
lengthLoaded <« lengthLoaded - (PLANNED;;4ey » LENGTHjpgex)
PLANNEDindcx «0
end
else
begin
ie TEMPindex
for (ito-1; STEP -1)
begin
PLANNED;4ex < i;
planLoadLength « i ¥ LENGTH;ngex
if (lengthLoaded + planLoadLength < aircraftHoldLength )
begin
lengthLoaded <« lengthLoaded + planLoadLength
roomLeft « aircraftHoldLength - lengthLoaded
nextltem <« index + 1
while (nextitemn < lastltemIndex - 1 and LENGTH, ¢ 1em > roomLeft)
begin
nextltem <« nextltem + 1
end
if (nextltem == lastitemIndex) — (output template)
else( addltem(nextltem))
boolean bounded < {(aircraftHoldLength - lengthLoaded)} > LENGTHpgex +1 ¥ UPPER ngex +1
lengthLoaded « lengthLoaded - (i * LENGTH;qgcx )
if (bounded) — break
end
end
end

Figure 3.4. Template Synthesizer Pseudo-code. In direct recursion, a function simplifies a problem
and calls itself to solve the new simpler problem (e.g., Cornell, 1997). This pseudo-code outputs text
representations of notional load templates to external data files.
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abcdefghiijk
cS5 .Cc5T6114 00000003232
c5 .c5T6115 00000003223 :
c5 .c5T6116 00000003133
c5 .c5T6117 00000O0O0C2333
cl41l .Ccl141T6118 22000000100
cl4l .Cc141T6119 22000000010
cl41 .Cc141T6120 22000000001
cl4l .cl41T6121 21200000000

Figure 3.5. Template File. Tables provide a way to express large amounts of data in a readable form. This
table provides aircraft type, template identification number, and cargo items in each template. For example,
the last item, C141 template number 6,121 represents the load that contains two items "a", one "b", and two
items "c". Shown is a sample from a larger table that provides an optimization model and a heuristic with
data they require. This table is generated from a Java procedure.

3. Template Synthesizer User Interface

The template synthesizer graphical user interface controls notional template
creation. The interface allows modification of aircraft and cargo item data at execution
time. This flexibility allows notional allowable template lists to be created for many

combinations of aircraft and cargo items without directly editing the master data files.
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[ width =1211
[ tlength= 1222
[ weight= 40000
[ height=122-
@ s

3 width=110

[ length=1110
[ weight= 45000
[ height=122

[ width =140

[ tength= 480"
[ weight= 38000
[ rieight=122

Figure 3.6. Template Interface. Highlighted on the left is the C130. The specific cargo area data is
presented under its aircraft name entry. The data can be changed before a loading algorithm creates aircraft
load templates. A similar display exists for cargo item physical data. (Data from - [The Aviation Zone,
2000])
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IV. OPTIMIZATION FORMULATION

A. OPTIMIZATION MODEL OVERVIEW

The optimization model is mixed-integer linear program that suggests a mission

load plan by choosing the best set of load templates based on maximizing a combination

of desired loading goals. The model establishes an objective basis from which to judge

any other attempts solve the air load planning problem.

For a recommended load plan, the model reports for each aircraft the selected

approved template list unique identification number, the aircraft identification number, a

diversity measure, item capacities on this template, and an itemized load inventory.

Additionally the model displays any frustrated or deficient cargo.

B. OPTIMIZATION MODEL

Index Use

a aircraft model name (e.g. C130, C141)

s serial identification number (e.g. 1,2 ,3,4)

i cargo item type (e.g. a, b, c, d)

l loading limitation (e.g. min, max)

t unique, non-dominated, load template (e.g. C5T1600)

r requirements and penalties (e.g. mel, penmel, del, pendel)

fleet,s (a,s) pairs in aircraft fleet (i.e. a specific aircraft)

loads,: (a,t) pairs of load templates # that may be used by aircraft model a (i.e.

templates approved for an aircraft type)

25




Data
loadcap y; maximum number of items 7 for aircraft model a contained on
template ¢

diversity diversification score for each template ¢ associated with aircraft

model a
reqy; value for each requirement or penalty » associated with each item i
goal ;i goal values for every aircraft model q, serial number s, specific

limitation / , and item i that exist

goalpeny; penalty for violating goal for each specific limitation /, and item i

Decision Variables
GOODNESS the total goodness measure of selected load plan

LOADED,; number of items i loaded on aircraft model a serial
number s

OVERGOAL,; number of items i loaded on aircraft model a serial number s
above the specified goal "max"

SLACK number of items i loaded on aircraft model a serial number s
below the specified goal "max"

UNDERGOAL,; number of items i loaded on aircraft model a serial number s
below the specified goal "min"

FUSTRATED; number of mission essential items i not loaded

DEFICIT; number of desired items i not loaded
Zas for each aircraft model a , serial number s, select template
(e(0,1))
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Formulation

(MIP1)
MAXIMIZE
Z
GOODNESS= - " reQupenmei * FRUSTRATED,
- Y 1€Qupengers * DEFICIT,
- Z Zgoalpen.m..i * UNDERGOAL
fleet,s i
- Z Z goalpen. ... * OVERGOAL
fleet,, i
+ Z Zdiversz‘tya, *Z o
Sleet , loads,,
SUBJECT TO
Z Z, <1 V fleet,
loads,,
LOADED,; < ) loadcap,,; * Z,,, V fleet, i
loads ,,
LOADED,; > Y Z,, V fleet, i
loads
> LOADED,, + FRUSTRATED; 2 req.,.,;. Vi
Sfleet
> LOADED,,; + DEFICIT, 2 req.,,. Vi
Sleet ,,
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LOADED,, + SLACK , = goal

as"max"i

+OVERGOAL_; - UNDERGOAL V fleet, i @)
SLACK ,; < goal,,. ... - goal,.. .. V fleet, i ®)
Binary Variables
Z. {01} Va,s,t )

All other variables are nonnegative

The objective (1) evaluates the weighted average desirability of any load plan. A
high penalty is inflicted for any frustrated cargo, and a lesser penalty for any deficit
cargo. There may be goals on the minimum and/or maximum number of any cargo item
to load on any particular aircraft; violating these goals incurs a penalty. Finally, each
load template has a diversity score that rewards templates that have many different cargo
items more than those that have few.

Packing constraints (2) require that each aircraft be assigned at most one load
template.

Constraints (3) limit the number of cargo items loaded on each aircraft to the
capacity of the selected load template for that aircraft, and constraints (4) require that if a
selected template has capacity for a cargo item, then at least one unit of that item must be
loaded. (Otherwise, a template might be selected for high diversity, but not used with
high diversity.)

Constraints (5) and (6) respectively account for any frustrated or deficit cargo

items.
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Elastic constraints (7) express any goals on the minimum and/or maximum
number of any cargo item that should be loaded on any particular aircraft. Together with
variable bounds (8), the amount of each cargo item loaded on an aircraft determines
whether this load is within, under, or over its goal. The under- or over-goal amounts
determined here appear in the objective function where they are penalized.

Variable bounds (9) require that all decision variables have non-negative values,
and that the decision to select a particular load template for a particular.aircraft be binary

(i.e., adopting fractional templates is not allowed).
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V. HEURISTIC

A. INTRODUCTION
1. Description

A heuristic is a feasible solution derived from prescriptive analysis that is not
guaranteed to yield an exact optimal answer. Losses from settling for a heuristic instead
of exact optimal solutions are often dwarfed by variations associated with questionable
model assumptions and doubtful data.

Rardin, 1998
Heuristics are generally simple to understand and more intuitive to use than a

formal mathematical optimization.

2. Heuristic Solution Technique

Some heuristics are called greedy heuristics. "Greedy heuristics elect the next
variable to fix and its value that does least damage to feasibility and most helps the
objective function, based on what has already been fixed in the current partial solution”
[Rardin, 1998].

3. Ranger Air Load Planner Overview

Given a set of goals for the aircraft and a desired equipment list, the Ranger Air
Load Planner (RAP) attempts to greedily solve the air load planning problem. Any cargo
items not yet loaded on an aircraft but not frustrated are called asphalt cargo. RAP uses
simple constructive search [Rardin, 1998]. The strategy is to load each aircraft by
selecting a template for it. A single greedy pass through all the aircraft may fail to
produce a feasible load plan, even if one exists. For éxample, exclusively loading the
first planes with many similar cargo items may lead other items to be left unloaded. RAP

uses a "floating diversity penalty function" to reduce the number of greed-induced
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infeasible load plans. A template choice made early, that appears good, may ultimately

necessitate poor selections later.

B. DETAILS OF THE HEURISTIC
1. Rudimentary Algorithm
RAP is very easy to understand. The algorithm can be explained to a planner who
may then explain it to other Rangers involved in air load planning. Ease of understanding
eliminates any ambiguity as to how a particular load plan result is achieved. The
algorithm relies on an objective function that can compute a loaded value for each
template. The RAP algorithm is:
For the smallest unloaded aircraft, given cargo still to load -
Evaluate objective function for each template
Choose maximum objective function value and associated template
Subtract the number of each cargo item in the selected template Jfrom cargo

still to load
Do for all remaining aircraft

2. Construction of Objective Function

a. Get Base Value

A cargo item value is the value of that item to the mission. Cargo item values
are normalized to fractions of the most valuable item type and each cargo item gets a new
relative equipment value. Item base value is the number of specific items loaded
multiplied by the relative equipment value. The sum of all base values is called the

template base value.
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b. Determine Violation Penalties -— following manual planner guidance

(1) Upper and Lower Goals. An upper goal is the most number of a
specific cargo item the planner wants to see loaded on a specific aircraft. A lower goal is
the minimum number of a specific cargo item a planner wants to see loaded on a specific
aircraft. RAP assesses a penalty if a candidate template violates a defined upper or lower
goal. The amount of penalty depends on the magnitude of the deviation above an upper
goal or below a lower goal. Loaded amounts that fall between an upper goal and a lower

goal are not penalized.

maximum

3 1 Actual pénalty value
| for loading six items

LoWei; énd u’;r)p\her Qc;;I”‘\')ionétioh \

penalties set the slope of each half
of the penalty function

U pperGSa|

Lower Goal . |

0 1 2 3 4 5 6 7 |

Number Loaded _ |

Figure 5.1. Visualizing Planner Guidance. The figure above shows the goal violation penalty function
when a planner sets an upper and lower goal for a particular cargo item on a specific aircraft. For this cargo
item on this aircraft the minimum load is zero and the maximum load is seven, while the lower goal is two
and the upper goal is five. Changing violation penalties changes the slope of the goal violation function
tails. By setting a upper violation penalty of 10 and a goal of five items, RAP will pay a large penalty for
trying to load six cargo items. Loading one item accrues less penalty because the lower goal violation
penalty is only two.
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(2) Locked Goals. During planning, it may be desireable to absolutely fix
the number of specific cargo items on an aircraft. When the planner does not want a goal
violated he locks the goal. Upper and lower goals may be locked at different numbers,
indicating an absolute range of accepted values or at the same number indicating it is the
only acceptable number a feasible solution should return for a specific aircraft load plan.
Locking a goal implies an infinite penalty for violating it. However, this is implemented
in RAP as a large penalty. Thus RAP may violate even locked goals for aircraft when

feasibility is threatened.

maximum

T : ,
Actual penalty value !
for loading six items
| sets the slope |
: 1 toinfinity =
| i Upper Goal ;
Locked Lower Goal |

0 1 2 3 4 5 6 7
Number of a Cargo Item Loaded

Lckig a goal

Figure 5.2. Locking One Goal. The figure above is another representation of the goal violation penalty
function. The planner has established an upper goal of five and a lower goal of two. To indicate he does not
want to see any solution with fewer than two of this cargo item on this aircraft, he locks the lower value.
Violating a locked goal induces a conceptually infinite penalty.
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maximum

Locked Upper

Goal

Penalty

0 1 2 3 4 5 6 7
Number of a Cargo Item Loaded

Figure 5.3. Locking both Goals. During load plan negotiation, on a given aircraft for a given cargo item
type, the planner may set the absolute range of the acceptable number of items by locking an upper and
lower goal. In this figure, the planner will only accept solutions if the number of this cargo item is between
one and three. If the planner has a particular number in mind, he can set both the upper and lower value to
that number. Moderation is a virtue: Locked goals restrict the approved load templates that can be used, and
may even rule out all approved templates.

(3) Diversity Value. Mission diversity is the degree to which cargo item
numbers are evenly distributed across all mission aircraft. If even loading is possible,
each aircraft should take a specific number of cargo items of a specific type and taking
any more would reduce mission diversity. For example, if there are three identical aircraft
and three identical cargo items, the highest mission diversity would exist when each
aircraft loads one cargo item. Loading any more than one on any aircraft would reduce
mission diversity. Aircraft should take numbers of cargo items commensurate with their
cargo hauling capacity and the number of cargo items available to load. Aircraft that load
in this manner are said to load their "fair-share" of cargo items. Mission diversity is
desirable.

RAP penalizes aircraft that attempt to take too many or too few of a single

item with a penalty based on the deviation from the aircraft's "fair-share” of the
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remaining items raised to a user-determined power. This thwarts the natural tendency for
the aircraft that are loaded first to select all the high value items and thus reduce
diversity. This penalty is relaxed when fewer aircraft are available to load. Incrementally
relaxing this penalty when few planes remain ensures that loading all cargo items takes
precedence over attempting to load all cargo items evenly.

The mission diversity value is the relative weight applied to total mission
diversity when RAP calculates the potential contribution to the objective function of a
candidate template. The planner uses a high mission diversity value when he wants the

returned load plan to use templates that lead to mission diversity.

3. Solution Sequence

RAP requires a list of feasible templates, loading goals for each aircraft, goal
violation penalties, relative equipment values, and mission diversity value before it
constructs an air load plan.

For each aircraft in the mission, RAP selects a template that seeks to maximize
diversity and loaded equipment value, while meeting predetermined goals. RAP loads
aircraft in order from smallest to largest. Once an aircraft load template is selected, the
equipment set in that template is subtracted from the remaining cargo items to load and is
not available to any other aircraft in the mission. A mission load plan is feasible when the
sum of all selected template cargo item numbers equals the desired equipment list.

RAP solves each aircraft air load problem in five phases: Setup, Base-value

Determination, Penalty Assessment, Load Plan Adjustment and Template Evaluation.
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Aircraft 1

- 90 Aircraft 1

. 80 should take

70 one cargo item.

. 60

. 50

L 40 Range of little

.30 or no penaity. !
120

| 10

R i !
0 1 2 3 4
: Aircraft 2

If Aircraft 1 does not take this
cargo item, the diversity
penalty function adjusts the
region of no penalty and
encourages Aircarft 2 to take
two cargo items.

Now much smaller
- range of little or
no penalty.

Figure 5.4. Moving Diversity Penalty. The diversity penalty function (DPF), graphically displayed above
at four levels, assesses a penalty for loading too many of a given cargo item on a given aircraft. The DPF
calculates how many items an aircraft should take based roughly on how many the remaining aircraft not
yet loaded should take. In the example above, there are four identical cargo items that must be loaded on
any of four identical aircraft. Each aircraft should get one item to eam each aircraft one diversity point
each. If Aircraft 1 does not load any cargo items, Aircraft 2 is motivated to take two items because taking
any less would hurt his objective score.
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C. THE HEURISTIC PRESENTED AS AN ABSTRACT ALGORITHM

algorithm RAP (array of aircraft to load, asphalt, all templates);
begin
define
begin
asphalt «— array of integers that is the numbers of each cargo item in the
mission
numberMEL « array of integers that is the numbers of mission essential
cargo items in the mission
templates < array that is every approved template for an aircraft type
UVPEN <« upper goal violation penalty
LKGVPEN « locked goal violation penalty
LVPEN« lower goal violation penalty
DIVERPEN <« diversity penalty
DIVERPOW « exponent reflecting diversity importance {eg: 1... 4}
k < maximum number of cargo items any template will ever have
J < number of unique cargo item types in mission (column length of asphalt
array) ,
MELBONUS «- scalar, added to objective function for loading mission essential
cargo items
UPPERGOAL <« two-dimensional array of integers that is the planner
determined maximum number of items an aircraft should load.
The dimension of this array is [number of aircraft in the
mission, j].
UNDERGOAL <« two-dimensional array of integers that is the planner
determined minimum number of items an aircraft should load.
The dimension of this array is the same as UPPERGOAL.
values < three dimensional array that holds scoring values
itemValues < scalar array that is the total military worth of each cargo item
end
loop (a € aircraft to load)
setup( a, asphalt)
base-value (a, asphalt)
loadPlanAdjust (a)
evaluation (a, asphalt, templates,)
end
end

function setup( a, asphalt ) 1)
begin
numberOfUniqueCargoltems « j
dim values, (k, numberOfUniqueCargoltems) 2
dim tenPlan, (k, numberOfUniqueCargoltems) 3)
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end

function base-value ( a, asphalt)
begin
for(Vie Otok-1)
begin
for ( Vi e cargoitems )
begin
tenPlan,; <— min { , asphalt; }
values,; < tenPlan,; * itemValue;
penaltyAssessment ( a, 1, 1, asphalt; )
end
end
end

function penaltyAssessment (a, 1, i, asphalt;)
begin
# upper goal calculations #
overpen,; < 0
if (Is this cargo item's upper limit locked ?)
if ( tenplan,; - uppergoal,;) > 0

overpen,; < | tenplan,; - uppergoal,i | * UVPEN * LKGVPEN

else # upper goal not locked #
if ( tenplan,y; - uppergoal,;) >0

overpen,; <« | tenplan,; - uppergoal,; | * UVPEN

# lower goal calculations #

underpeny; < 0

if (Is this cargo item's lower limit locked ?)
if ( tenplan,; - lowergoal,;) <0

underpen,;; <« | tenplany; - lowergoal,; | * LVPEN * LKGVPEN

else # lower goal not locked #
if ( tenplan,; - lowergoal,;) <0

underpen,;; < | tenplan,;; - lowergoal,; | ¥ LVPEN

# diversity calculations #

diversityPen, < DIVERPEN*|| asphalt, * -2
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# bonus calculation #
loadingBonus <« 0
loadingBonus <« ( min (numberMEL; , tenPlan,; ))* MELBONUS (11)
# values table adjustment #
values,; <— values,; + loadingBonus
- ( overpeny;; + underpen,;; + diversityPen;; ) (12)
end

function loadPlanAdjust (a) (13)
begin
BEST « -0
BESTIDX « -1
for (V1 € cargoitems)
begin
for (V1 € 1=0, k-1)
begin
if (values,; >BEST) (14)
BEST « values,;
BESTIDX « 1
end
X <~ BESTIDX
tenPlan,; < tenPlan,;, (15)
end
end

function evaluation (a, asphalt, templates,) (16)
begin
BEST « -
BESTT « -1
for (Vt e templates,)
SCORE « 0
begin
for (Vi e cargoitems)
begin
Yyt
SCORE = SCORE + values,jy 17
end
if (SCORE >BEST) (18)
BEST « SCORE
BESTT «t
end
for (Vi € BESTT)
b « BESTT;
begin
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asphalt; = asphalt; — tenPlangp; (19)
numberMEL; = numberMEL,; - tenPlan,,; (20)
end
end

Function (1) accepts as input the specific aircraft to be loaded and an asphalt
array that represents the number of each cargo item, i, currently not loaded. Statements
(2) and (3) define two, two-dimensional arrays that are £ rows, by j (the number of unique
cargo item types long). Each row represents a cargo loading capacity limit on any given
template. For example, row /=0 indicates there is no capacity for a cargo item. The
defined maximum amount of any cargo a template can have is -1 items. Function (4)
receives the aircraft and the asphalt and is responsible for populating both two-
dimensional arrays.

Assignments (5) populate the two-dimensional array, tentative plan, with the
minimum of / and what is currently on the ground, asphalt;. To gain computational speed
the Penalty Assessment Function (7) is called (6) from the BaseValue Function (4).

Assignments (8), (8a), and (8b) use absolute differences to penalize loading more
than a planner's guidance. When the planned load does not exceed an upper goal,
assignment (8) sets the upper violation penalty to zero. Similarly conditional
assignments (9), (92), and (9b) handle cases where the planned load falls belov& a
planner's guidance.

Assignment (10) calculates the diversity penalty. Based on the amount total cargo
loading space still available, assignment (10) first computes the expected number of item
i aircraft a should load if item i is distributed proportionally among remaining aircraft.

Assignment (10) next raises the absolute difference between the amount that should be
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loaded and the planned load to an exponent. The changing diversity exponent allows the |
planner to induce more or less diversity in early stages of mission planning.

Assignment (11) calculates a reward that is added to the objective function when
a tentative plan loads mission essential cargo.

Assignment (12) combines the value, any mission essential loading bonus, and all
penalties for loading / cargo items of cargo item 7. This is the objective function value.

Function (13) modifies the tentative load plan array to reflect the best value based
loading policy. This array is used to compare template capacity, the row, and what should
be loaded given that capacity. For example, if there are 2 items on the ground and a
template has a capacity for 10, the policy should be to load 2 or fewer. Traversing down
every column, i, of the values array, conditional statement (14) screens for the highest
value. If candidate value;; exceeds the best incumbent value thus far, this improved
incumbent value and its row index, BestIDJX, are recorded. Assi gnment (15) ensures that
any template selected loads the best amount it can, which is not necessarily the maximum
capacity.

Function (16) evaluates all maximally-loaded feasible templates for aircraft a and
selects the best o’ne. The template score is calculated by looking in the i position of each
template for a loading amount that corresponds to a row /, the load potential, in the value
table. For each template, all identified values are summed (17) and conditional statement
(18) screens for the best template value. Once the best maximally-loaded template has
been identified, the heuristic enters each capacity in the tentative plan array as a row
index and receives the actual amount to load. Finally the amount to load, from the
tentative plan array (not from the template), is deducted from the asphalt cargo (19).
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Assignment (20) recalculates the numbers of mission essential cargo that remain

unloaded.
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D. GRAPHICAL USER INTERFACE
1. Template Data Input
The template data file contains load templates for all cargo items and aircraft
used in the mission; the data is blank-delimited. The template data file contains all

maximally-loaded candidate templates the heuristic will try when loading aircraft.

termplateData.dat

Figure 5.5. Template Data Dialog. The template data file contains all the feasible candidate load
templates RAP considers for load planning a given mission.

2. Aircraft and Cargo Item Input
Aircraft and cargo item physical attributes are defined in an external property
file and are loaded at run time. The aircraft and cargo item names must correspond to
template data entries exactly. The planner has the option of loading saved aircraft and
cargo item files or creating them new for this planning session. Like the template data,
aircraft and cargo item property files may be discovered at run time on any computer

storage device the planner has access to. Figure 5.6 shows the graphical user interface

display for this.




&5 cargoContainer Chooser

Figure 5.6. Cargo Aircraft Selector. Here, the planner selects the number of aircraft he plans to load. In
this display, he plans to use one C5. He may add additional aircraft types by pressing the Select new Master
File button in the upper right of this display or increase the number of aircraft by pressing the plus button.
RAP discovers cargo items using a similar looking interface.

3. Aircraft Loading Guidance

Once the template data, aircraft, and cargo items have been discovered, the
planner is prompted to suggest loading goals for each aircraft and each cargo item. If
absolute adherence to a goal is sought, a planner may Jlock uppef and/or lower goals.
Locked goals appear yellow. It is possible make the overall load plan infeasible by
locking goals. Blank lower or upper goals indicate planner indifference to lower or upper

loading values. Figure 5.7 illustrates an example.
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Figure 5.7. Aircraft Loading Guidance. An air load planner may suggest upper and/or lower loading
goals for specific items on specific aircraft. Additionally, he may be intolerant to deviation from his goals -
locking them - because of specific tactical concerns. For example, exactly one item a is locked on
C130.001 and exactly zero item a on C130.002. Aircraft c130.005 has a lock of zero on item a, locked
lower goal of one and an upper goal of three on item c. The planner wants exactly three d items on aircraft
C141.007. Blank entries indicate any feasible numbers of particular cargo items are acceptable.
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4. Penalties and Diversity

The planner can define violation penalties differently for lower and upper

goals. He defines the goal violation penalty slope by using a "slider" bar.

"RSet Manual Guidance Yiolation Penalties and Mission Diversity

Figure 5.8. Relative Importance of Goals and Diversity. In the interest of feasibility, RAP may violate a
user goal. The two sliders on the left indicate to what degree RAP should adhere to lower and upper goals.
Displayed above, lower goal violation costs five units and upper goal violation cost eight. The diversity
slider indicates a reasonably low diversity (exponent amplifying diversity in objective).

S. Relative Equipment Values
Each cargo item in the mission has a relative value. The planner selects a
value for the each cargo item with a slider. RAP automatically normalizes equipment
values by dividing each value by the lowest value and using these normalized scores in

| subsequent calculations. Figure 5.8 shows the full display of this.
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VI. IMPLEMENTATION AND ANALYSIS

A. SAMPLE PROBLEM

The number and types of cargo items and aircraft used here suggest a battalion-
sized operation. Because no Ranger load plan is available for this fictitious sample
mission, the optimization is used as a benchmark to assess the quality of the heuristic
solution. The optimized load plan is assumed to be what the planner would have chosen if
he had solved the air load planning problem manually.

Using the template synthesizer described in Chapter II1, 16,048 notional templates
for 11 types of cargo and three types of aircraft are generated. Based on conversations
with various Rangers involved in air load planning, the author is convinced this number
of templates greatly exceeds the number maintained by the Rangers. The sample problem

has 51 cargo items of 11 types to load on 11 mission aircraft.

B. DATA
1. Aircraft

The number of each aircraft type presented to both models is shown in Table 6.1.
The selection of aircraft types and numbers are arbitrary, but suggest a battalion-level

exercise.
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Allow Total
Hold | Hold | Hold
Aircraft Cabin Number
Length | Width | Height
Type Load in
@ | @m | @n
(Ibs) Mission
G 1,161 228 162 | 263,000 1
~C14l | 1,000 | 123 108 | 94,000 4
T C130 | 4% 123 108 | 42,000 6

Table 6.1. Aircraft Resource List. This table indicates how many aircraft, of specific types, need load
plans. Using fewer than the indicated aircraft is undesirable because given a feasible solution, using fewer
aircraft decreases diversity. For example, there is a feasible load plan to place all the cargo on the six C130

and two C141 aircraft, but this would not meet the mission diversity goal described in Chapter V. ( Data
from - [USAF, 1999])

2. Template Data
Table 6.2 displays the aircraft type specific number of templates considered. (This
template list is artificially constructed by the template generator, and is not the classified

list of templates used by the Rangers.)

Aircraft Type Templates Considered
e LR 6,117
e 9,779
T ci30 T 152

Table 6.2. Number of Indicated Load Templates for each Aircraft Type. Shown is the number of
templates considered for each aircraft type.
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3. Cargo Items

The numbers of cargo items are arbitrary, and the names are suppressed here.

Lengths have been obtained from open Internet sources. Equipment dimensions,

specifically length, are relevant to synthetic template generation only. If a cargo item

appears on a approved template, by definition, it fits on an aircraft.

Maximum | Total Total
Item | Length | Width | Height | Weight In Number | Number
Name (in) (in) (in) (Ibs) Any MEL in | DEL in
Template | Mission | Mission
“a | 276 65 98 | 3,378 2 0 2
b | 265 | 75 | 74 | 8166 2 0 2
e | 200 | 75 74 | 7,040 4 0 3
—a | 1% 86 102 | 8,000 4 0 2
e | 198 | 75 74 | 7,050 3 0 12
[ 197 86 72| 7,100 3 0 4
g | 169 65 62 | 5,200 3 0
_ :h; 1 163 63 57 | 2,816 3 0 2
™ 84 36 48 240 3 0 12
7| 82 47 50 690 3 0 12
Tk 72| 29 | 42 | 160 3 0 6

Table 6.3. Cargo Items List. The numbers of cargo items to be loaded in the sample mission are in the
last column. Physical dimension information is provided for reference and notional template generation
only. The reader is reminded MEL is the mission essential list and DEL is the desired equipment list. (Data

from - [Internet, 1999])

C. OPTIMIZATION IMPLEMENTATION

The optimization model is implemented in the General Algebraic Modeling

System (GAMS) [Brooke et al., 1997] with the CPLEX solver, Version 6.5 [ILOG,

1999]. The model uses a branch and bound technique to arrive at a feasible solution to
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the sample problem. The integer program has 277 equations and 46,294 variables. With a
relative integer solution tolerance of 10 percent, it runs in less than three minutes on a
personal computer with a Pentium II 266MHZ processor and 128 MB of random access
memory. The sample problem solution exhibits a zero absolute integer gap (the
difference between the solution objective value and an upper bound on this), indicating a
globally optimal solution.

The optimization model mimics an air load planner who will accept any feasible
solution that is the most diverse. All cargo item goals are relaxed, allowing diversity to
dominate the objective function value. No cargo item values are used because we simply

seek a feasible load plan.

D. RANGER AIR LOAD PLANNER IMPLEMENTATION
RAP is implemented in Java [Sun Microsystems, 1998], Version 1.3 Beta. On a

Pentium II 266MHZ processor personal computer with 128 MB of random access
memory, RAP runs in less than one second.

For the base case run, all RAP parameters are at default settings.

E. COMPUTATIONAL RESULTS
1. Comparison of the Optimization and Ranger Air Load Planner

The optimization returns an optimal solution with an objective function score of
49 and reports no frustrated cargo items. RAP also returns a feasible solution with an
objective function score of 49 and reports loading all cargo items.

When the selected template identification numbers are compared, the optimization
and heuristic differ in all but three of 11 aircraft. Given non-dominated templates in the

template list and no loading goals, there are probably many alternate template selections
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that constitute virtually indistinguishable load plans. Any template assigned to a specific
aircraft can be freely exchanged with any other template assigned to another aircraft of
the same type, with no loss of objective function value or threat of feasibility violation.

Optimization
b ¢ d f g h
1 .

-—
-
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c141_003] 1
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Table 6.4. Load Plans. Manually constructed load plans are the product of many hours of planning and
negotiation. Using computers, it is possible to arrive at quality feasible solutions in minutes rather than
hours. Shown above are two summary tables, which are the load plans for a sample air load planning
mission done on a personal computer. Aircraft names are listed on the left of both tables, while the cargo
item names appear at the top of each column. The sum of specific cargo items loaded is the last row entry
of each table. Both implementations load the same numbers of cargo items.

53




a b c¢c d e f h I j k
c5.001 | 1 11 1 1

c141_001| 1 1 1111
c141_002 -1
c141_003] 1 1 -1 111 -1
c141_004| 1 1] -1 1] 1 1
¢130_001
¢130_002 1 1] 1
¢130_003 -1 11 1
c130_004
¢130_005 1 ~1 | -1
¢130_006 -1 1 1

Table 6.5. Load Plan Difference. Both the optimization and the heuristic returned feasible load plans that
have the same objective function penalty value, but they do not use the exact same templates. Table entries
above show discrepancies between the optimization and the heuristic load plans. A positive one for cargo
item a on both ¢5_001 and c141_003 means the optimization suggests the planner load one more of these
than the heuristic does. Negative quantities reflect the opposite case.

2. Runtime Complexity of the Optimization and Ranger Air Load Planner

RAP runtime is O (number of templates * number of cargo item types * number of
aircraft). Computing time can be predicted with accuracy. On a Pentium II personal
computer 266MHZ computer with 128MB of RAM, RAP returns the sample problem
solution in 0.111 seconds. It is particularly important that runtime grows linear with ¢
because this means that the heuristic will continue to operate efficiently as more
templates are a@ded.

Worst-case runtime for the optimization model is exponential, and on any
computer envisioned would take longer than the estimated survival of the sun. In
practice, runtime is considerably better, on the order of a minute or so on a workstation.
Empirically, runtime grows linearly with the number of templates. Storage complexity of

the optimization is comparable to that of RAP.
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VII. WHEN THINGS GO WRONG

A. HEURISTICS CAN BE RISKY

Because RAP is a myopic, greedy, and non-backtracking heuristic, it will fail fof
some air loading problems, even when a feasible plan exists and is discovered by the
optimization model. Haste has a price. |

One example of first-pass RAP infeasibility arises when using a small number of
approved témplates. Few template combinations in the feasible solution set means
myopic early template selections may have adverse consequences. As RAP loads aircraft

from smallest to largest, it inadvertently selects poor template combinations that makes

the initial returned solution infeasible.

Figure 7.1. Frustrated Cargo. RAP may not find a feasible solution to an air load problem in a single pass
and therefore leave cargo on the asphalt. This dialog box displays options the planner has at the end of a
RAP run if frustrated and/or deficit cargo items are encountered.

A planner can help RAP find a feasible solutioﬁ. The planner can adjust model
parameters, "unload" some aircraft, and then give RAP another opportunity to solve the
new air load problem. This "change parameters-unload aircraft -resolve” process also
suggests a constructive way to conduct negotiations with subordinate unit commanders.

The sample problem in this Chapter is designed to induce an infeasible initial

RAP solution and illustrate how to discover a feasible solution by negotiation.
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B. RESTRICTED SAMPLE PROBLEM

The aircraft and cargo item data remain unchanged from before. A uniformly
distributed random sample is made from the approved template list for each aircraft type.

The new approved template list contains only 180 total templates.

New
Aircraft Old Number of
Number of
Type Templates ,

Templates
6,117 50
9,779 100

152 30

Figure 7.1. Smaller Approved Template List. Small approved template lists hinder RAP by reducing the
number of feasible template combinations possible to achieve a feasible load plan. Shown is the number of
randomly chosen templates used in another run of both the optimization and RAP. The reduction in number

of templates leads the myopic RAP to return an initial infeasible solution, which is repaired through planner
guidance.

C. COMPUTATIONAL RESULTS

1. The Optimization Works

The optimization model has 265 equations and 46,278 variables, and solves in a
minute. The sample problem exhibits a ten-percent integer gap, but the optimization

model constructs a feasible solution.

2. But RAP Fails
RAP reports an infeasible solution in 0.070 seconds. The heuristic initial solution

leaves one item 4 and one item e on the asphalt and loads all other mission equipment.
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Figure 7.2. Load Plan Display. The above dialog box appears when a planner requests a RAP load
solution. The last row indicates how many cargo items remain on the asphalt. This display shows the first
infeasible RAP load plan, which does not load one item d and one item e.

D. PLANNER GUIDANCE IS ALWAYS KEY
1. How the Planner Can Control Loads

Negotiating with RAP is primarily based on intuitive trail and error parameter
adjustment. For this sample problem, adjusting loading goals is all that is required to
create a feasible load plan from an infeasible one. The sample problem approach is:

- Observe what cargo item types are not loaded,
- Lock these numbers on aircraft,
- Unload newly locked aircraft ( at least two aircraft), and

- Resolve.
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ich Aircraft ?

Figure 7.3. Unloading Aircraft. This display lists all aircraft in the current mission. A planner that
chooses to remove all loaded cargo items from an aircraft and put them back on the asphalt, selects the
aircraft to download and clicks the "Edit Selected” button. No aircraft have been selected in this example.

2. Suggesting Specific Templates By Locking Guidance

For any aircraft in RAP, the use of locked upper and lower guidance may select a
specific template for that aircraft, if such a template exists and there is enough candidate

cargo to fit the template.
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Figure 7.5. Final Negotiation. During negotiation, many RAP parameters can be adjusted to test alternate
feasible loads. Aircraft loading guidance has the most impact. The planner graphically loads items on one
aircraft and forbids others from being considered. For example, the planner wants at least one item ¢ on
aircraft c130.001 but does not want any items b on ¢130.004. The above figure shows the final adjustments
the author made to the initially infeasible RAP load plan that made it feasible.
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Figure 7.6. Final Load Plans. The final RAP load plan again differs from the optimization load plan.
Initially RAP returns an infeasible solution to this air load problem because the approved template list in
this example is much smaller than before.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

While specific Ranger operations do not receive much media attention, their
impact has significant impact on the United States Army operational successes as evident
in Operation Just Cause. Had Rangers not had the time to properly plan their airborne
assault into Panama, the success of US operations in the region could have been seriously
impacted.

The Ranger Air Load Planner provides a man-in-the-loop decision support tool an
assistant operations officer can employ when constructing an air load plan. This tool is
particularly valuable during air load plan negotiations with subordinate unit commanders.
RAP returns solutions in less than a second, and instant plan visualization could be key to
simplifying negotiations. With additional testing, to include validation with classified
data, RAP may provide a key tool to accelerate effective airborne assault planning in the
future --- and time is precious in special operations.

RAPis platforfn independent and runs in Java which is available free of charge
[Sun Microsystems, 1998]. A Java programmer with experience in computation and data
structures can easily maintain RAP.

RAP demonstrates the capability to put high-quality, simple-to-use operations
research tools in the hands of the operational decision-maker. A validated version of RAP
would have a positive impact on miséion accomplishment by saving mission planning
time and increasing time available for rehearsals. Funding for formal RAP development

support, and deployment is highly encouraged.
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B. RECOMMENDATIONS

RAP does not address the construction of 1-bump plans. The sole reason we
cannot directly produce 1-bump plans is that the approved templates the Rangers use do
not include a computer-readable encoding of loaded item ordering. Without some generic
representation (preferably in some unambiguous digital code), we cannot deduce the
order in which cargo must be loaded, unloaded, 6r, in particular, for 1-bump planning,
added to an existing load without disturbing cargo already loaded.

We can approximate 1-bump plans by reserving the right amount of capacity on
each loaded aircraft to absorb cargo on a failed aircraft. But we cannot be sure of a
feasible reloading.

We are concerned that lack of available load template ordering may inhibit
manual air load planners as well, unnecessarily raising the level of abstraction and
uncertainty at precisely the time the air operations officer needs to concentrate and

complete 1-bump plans quickly. This is a deficiency that we would like to help repair.
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