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ABSTRACT

This thesis provides a preliminary cost and operational
effectiveness analysis of alternative force structures for the United States
Marine Corps operational support airlift and search and rescue missions.
The four alternative force structures include C-12s and CH-46Es, C-35s
and CH-46Es and HV-609s. Lifecycle cost analysis of the alternative
force structures using Crystal Ball forecasting provides a 90% upper
confidence level lifecycle cost estimate that identifies a mix of C-35s for
operational support airlift and CH-46Es for search and rescue as the
least expensive alternative. Operational effectiveness analysis provides a
measure of overall utility for each of the four alternative force structures
based on five measures of effectiveness. The measures of effectiveness
examined are air travel time, total travel time, landing site requirements,
range versus time on station, and payload versus range. Analytical
hierarchy process rankings indicate that the HV-609 is the preferred
alternative considering these measures of effectiveness. Analysis of cost
versus operational effectiveness identifies the HV-609 as the most cost
and operationally effective alternative for fulfilling the Marine Corps

operational support airlift and search and rescue missions.
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I. INTRODUCTION

The powerful and innovative aircraft that you see here today,
the tiltrotors...are going to revolutionize not only our force
projection but the entire way that America conceives and
sustains its policy of engagement in the decades ahead.
William Cohen, Sept. 8, 1999

A. PURPOSE

This thesis will provide a preliminary cost and operational
effectiveness analysis of alternative force structures for the operational
support airlift and search and rescue missions. This thesis will also
evaluate the possible life cycle costs and benefits of procuring a single

platform for two missions.

B. BACKGROUND

As the United States Marine Corps enters the twenty-first century,
it is poised to do so undertaking substantial force modernization. The
‘MV-22 tiltrotor will replace the venerable CH-46E and the Advanced
Amphibious Assault Vehicle will replace the aging Amphibious Assault
Vehicle, enabling the Corps to complete its vision of Over The Horizon
warfare. Additional inc;reases in warfighting capability will come from
fielding the 5-ton Medium Tactical Vehicle Replacement and the
Lightweight Towed Howitzer.

Overlooked in this modernization strategy are the non-tactical
assets that play a vital role in the Marine Corps. As a force in readiness,

the Corps requires both tactical and non-tactical assets to maintain



warfighting capacity. Operational Support Airlift (OSA) aircraft, such as
the C-12, provide the Corps’ senior warfighters with a degree of flexibility
not available through commercial travel in peacetime and wartime.
Search and rescue (SAR) helicopters play an important role in Marine
Aviation’s continued combat preparation. Tenant SAR units ensure a
quick response to the warfighter in training and provide the civilian
community at large an additional asset in time of need. Both of these
missions are performed on the periphery of USMC operations. Neither is
high visibility, but both are equally important. Assets for these missions
are approaching the end of their service lives and are in need of

replacement.

Just as the MV-22 will likely revolutionize vertical lift in
warfighting, the tiltrotor has the potential to revolutionize the commercial
market for vertical lift requirements. Tiltrotor proponents declare that
" the distinction between rotary wing missions and fixed wing missions will
be transcended by the versatility of the tiltrotor. Traditional ties to a
fixed wing infrastructure for fixed wing performance will be replaced with
fixed wing performance operating from a helicopter infrastructure.
Potential éxists for the Marine Corps to be a civil-military leader in
advancing tiltrotor technology beyond the battlefield while modernizing
two of it’s non-tactical assets.

This thesis will serve as a preliminary study into the comparative

analysis of cost and operational effectiveness of alternative force




structures designed to fulfill the United States Marine Corps operational

support airlift and search and rescue missions.

C. RESEARCH QUESTIONS

The primary research question is: What is the comparative cost
effectiveness of four alternative force structures consisting of C-12s, C-
SSS,ACH—46ES and HV-609s for the OSA and SAR mission?

The subsidiary research questions are as follc;ws:

1. What are the USMC requirements for regional fixed wing
transportation?

2. What are the USMC requirements for land based Search
and Rescue?

3. To what extent is the HV-609 capable of conducting both

the OSA and SAR missions?

D. SCOPE AND METHODOLOGY

This thesis will compare four alternative force structures designed
to accomplish two missions. By analyzing the overall capability of
alternative force structures instead of specific mission requirements, a
measure of non-tactical asset utility can be assessed. This overall
measure of force structure utility will be used as an effectiveness
measure in a lifecycle cost effectiveness analysis.

Historical data were obtained to estimate specific mission

utilization rates and operating and support costs. Research was




conducted to determine aircraft capabilities and suitability for specific
missions. Models were constructed to forecast twenty-year life cycle
costs for each alternative force structure. Measures of effectiveness were
derived to determine force structure capability across both the OSA and
SAR missions. Finally, a decision support software program was used to
analyze the overall utility of each force structure.

The availability and quality of cost data limit this thesis. The data
used are only as good as the originating sources allow it to be. Data from
other DoD components was not available and commercial data were
considered proprietary. To account for uncertainty in the cost data, cost

driver variability was increased and cost models included 90% upper

confidence levels for analysis.

Utility analysis in this thesis was conducted subjectively based on
a qualitative assessment of measures of effectiveness vice objectively

thrbugh the use of quantitative assessments.

E. ORGANIZATION OF THE STUDY

Chapter I identifies the focus and purpose of the thesis as well as

the primary and secondary research questions.

Chapter II provides the reader with a background of the OSA and

SAR requirements. It also provides an overview of current assets and the

history of the tiltrotor.




Chapter III presents four alternative force structures and
summarizes the characteristics of each aircraft in the various force
structures to determine suitability for inclusion in the analysis.

Chapter IV analyzes the life cycle cost of each alternative force
structure.

Chapter V analyzes the overall operational effectiveness of each
alternative force structure.

Chapter VI presents the conclusions and recommendations of the

thesis and provides areas for further research.

F. BENEFITS OF THIS THESIS

While currrent OSA and SAR asset replacements are not scheduled
for the immediate future, this study may provide the preliminary
foundation for further Chief of Naval Operations, United States Marine
Corps Deputy Chief of Staff for Aviation and Naval Air Systems
Command exploration of alternative aircraft. This thesis may also aid in
analyzing alternatives for the future replacement aircraft for the AH-1

and UH-1, the Joint Replacement Aircraft (JRA), scheduled for 2025.
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II. BACKGROUND

This chapter examines the underlying requirements for two Marine
Corps missions: operational support airlift and land-based search and
rescue. + Assets currently used for these missions and alternative
candidate fixed-wing, rotary-wing and tiltrotor aircraft for each mission
will then be introduced. Finally, the chapter concludes with a brief

history of tiltrotor development.

A. UNITED STATES MARINE CORPS REQUIREMENTS

Nearly every mission that DoD components exercise is documented
by a directive or order. This section will examine the requirements that
drive both the operational support airlift and search and rescue missions

within the United States Marine Corps.

1. Operational Suppbrt Airlift

The United States Marine Corps, as well as other DoD components,
derive their General Officer and VIP transportationv mission from DoD
Directive 4500.43, Operational Support Airlift (OSA). - This directive
defines OSA missions as “movements of high priority passengers and
cargo with time, place, or mission sensitive requirements.” Further, DoD
4500.43 dictates that DoD components budget for the cost of operating
their OSA aircraft and assign and manage OSA aircraft as required to

maximize wartime readiness, efficiency, cost effectiveness and peacetime




utilization. The OSA aircraft inventory is based on joint wartime
readiness requirements of combatant commanders and the military

departments. (Ref. 1, pg. 2)

Thé use of OSA aircraft is likewise delineated in DoD 4500.43.
OSA assets are not to be used if commercial travel, incluciing charter
service, is reasonably available (defined as within + 24 hours), unless
highly unusual circumstances present clear and present danger, an
emergency exists, the use of military air is more cost effective, or
compelling operational considerations make commercial transportation
unacceptable. Based on these constraints, it can be inferred that cost
effectiveness and timeliness in operational considerations drive the
peacetime use of OSA assets.

OSA asset requirements are based on wartime requirements.
These assets do not have an origihating operational requirements
document (ORD) which specifies minimum performance parameters.
(Ref. 2) An October 1995 Joint Wartime Staff Requirements Study
identified two types of OSA aircraft: short-range and long-range. Long
range aircraft are those aircraft having a range of 600 nm or greater.
Short-range aircraft are therefore defined as those aircraft having a range
of less than 600 nm. The joint study also categorized short-range
aifcraft as aircraft having an average speed of less than 250 kts. (Ref. 3,

pg.  2) Further, the United States Transportation Command

(USTRANSCOM) defines short-range aircraft as having the capacity of




nine or fewer passengers and 1000 Ibs or less of cargo. Traditionally, the

Marine Corps and other military services have used fixed-wing aircraft

for this mission.

2. Search and Rescue

The Marine Corps, as well as other DoD components, derive their
SAR requirement from the National Search and Rescue Manual, Volume
I: The National Search and Rescue System (Joint Pub 3-50). This manual
was prepared under the direction of the Interagency Committee on
Search and Rescue (ICSAR), a committee sponsored by the United States
Coast Gﬁard (USCG) that includes the following: member agencies:
Depaftment of Transportation, Department of Defense, Department of
Commerce, Federal Emergency Management Agency, Federal
Communications Commission, National Aeronautics and Space
Administration and the Department of Interior. Joint Pub 3-50 describes
the national search and rescue organization and provides consolidated
guidance to U.S. federal forces, both civil and military, with civil SAR
responsibilities.  Appendix A of the National SAR Manual states:
“Department of Defense components provide SAR facilities for their own
operations. These facilities may be used for civil needs on a not-to-
interfere basis with military missions.” (Ref. 4, pg. A-1)

Based on this requirement, the USMC maintains a land-based SAR
capability at every Marine Corps Air Station (MCAS) that has‘tenant

tactical fixed wing aircraft: MCAS Cherry Point, NC; MCAS Beaufort, -SC;




MCAS Yuma, AZ; and MCAS Iwakuni, Japan. The USCG covers MCAS
Miramar’s SAR requirement under aﬁ interagency agreement between
the Coast Guard and the Marine Corps. (Ref. 5) The Marine Corps has
traditionally used helicopters to fulfill this SAR requirement.

Each SAR unit maintains its own Standard Operating Procedures
(SOP) which provide guidelines and limitations on flight operations. A
representative SOP from Marine Transport Squadron One (VMR-1) at
MCAS Cherry Point provides guidelines that will be uéed as a surrogate
USMC standard for this thesis. In this SOP, over-water flights by single
aircraft are limited to 100nm, unless a helicopter capable ship is present

for refueling and radio relay. (Ref. 6 pg.42)

B. CURRENT ASSETS

This section will present both the fixed and rotary wing assets

currently available in the DoD or the commercial sector for OSA and SAR

missions as described in the previous section.

1. Fixed Wing

The USMC currently maintains a fleet of C-12 variant aircraft for
non-tactical fixed wing transportation. (Figure 1) The Department of the
Navy (DoN) maintains 87 C-12s, of which the USMC has 18 that are
almost exclusively used for transporting General and Flag Officers. The
Fléet Marine Forces use 14 of these aircraft; the remaining 4 are used by

the USMC Reserve (USMCR). These aircraft are operated by USMC

10




| personnel but maintained under a commercial contract. No official plans
currently exist to replace these aircraft when they reach their scheduled
service life, but studies examining replacement options are currently

being conducted. (Ref. 7)

Figure 1. C-12 from Ref. 8

The UC-35 is a military version of a civilian executive business jet,
the Cessna Citation Ultra Encore. (Figure 2) The United States Army has
begun procuring 35 of these aircraft for their OSA fleet. The USMCR has

purchased two UC-35s as replacements for its TC-39s and has two more

on order. (Ref. 9)

1§




Figure 2. C-35 from Ref. 10

2. Rotary Wing

The United States Marine Corps currently uses the Boeing HH-46D
and Bell HH-1N for land-based over-water search and rescue operations
at Marine Corps Air Stations that have tenant tactical aircraft squadrons.
The HH-46D is presently utilized for the land-based over-water search
and rescue mission. A total of nine HH-46D aircraft are assigned to
three bases:” Cherry Point, Beaufort and Iwakuni. The HH-1IN is
currently utilized exclusively at Yuma for over-land search and rescue.
(Ref. 5)

As the MV-22B becomes operational, HH-46Ds will be replaced by

CH-46Es (Figure 3) converted for the SAR mission. (Ref. 11) The HH-1-

12




Ns currently in use for SAR will be converted to UH-1Ys, but returned to
the Fleet Marine Force, not SAR units. Current HQMC plans call for
replacing the HH-1IN with CH-46Es. (Ref. 5) CH-46Es are currently
configured with either original stubwing fuel tanks, each with a capacity
of 178 gallons, or extended range stubwing fuel tanks, each having a
capacity of 330 gallons. By 2005, when the United States Navy

completes its transition to the H-60, the CH-46E will be the USMC’s

“new” SAR platform.

Figure 3. CH-46E from Ref. 12




C. TILTROTOR HISTORY

The HV-6009 tiltrotor aircraft is a candidate aircraft for the OSA and
SAR missions. This section will briefly describe the history of tiltrotor

development and background of the HV-609.
1. Tiltrotor Concept

The first conceptual tiltrotor design, the British designed Baynes
Heliplane, was patented in 1937, but never developed. This tiltrotor
looked much like a tiltrotor as they appear today: an airplane with
vertical lifting rotors at its Wingfips that rotated forward for forward
flight. (Ref. 13, pg. 174) Another tiltrotor design, never built, was the
German Focke-Achgelis Fa-269. This tiltrotor is unique among tiltrotor
designs in that its propeller/rotors were in a pusher configuration. In
airplane mode, the propellers pointed aft; in a hover they were below the
aircraft. (Ref. 13 pg. 177)

| In the United States, the first tiltrotor design came from W.
Lawrence LePage. This design was very similar to the Baynes Heliplane
and based on the XR-1 helicopter. The XR-1 helicopter was more or less
a conventional airplane with rotors mounted at the tip of each wing.
These rotors were counter-rotating, negating the need for a directional
control tailrotor. In LePage’s tiltrotor design, the rotors would tilt
forward as the aircraft accelerated, providing thrust as traditional

propellers. It was never -produced because the size of its rotors and total

14




weight of the aircraft exceeded technological limits in aircraft
manufacturing. (Ref. 13, pg.177)

DoD involvement in tiltrotor development began in 1950 with the
Air Force’s convertiplane project. Desiring a faster observation and
reconnaissance platform that was capable of hovering, the Air Force
tested three separate designs: the XV-1 from McDonnell Corporation, the
XV-2 from Sikorsky Aircraft and the XV-3 from Bell. Of these designs,
only the Bell XV-3 was a true tiltrotor. The XV-1 had a pusher prop for
forward thrust and the XV-2 used jet propulsion for forward thrust. (Ref.
14, pg. 86). |

The XV-3 (Figure 4) design was simiiar to the LePage tiltrbtor. The
XV-3 was powered by a single radial reciprocating engine in the aircraft
fuselage that drove the propeller/rotors in each wingtip using shafts in
the wings. The XV-3 first hovered on August 11, 1955 and made its first
successful transition from a hover to forward flight on December 17,
1958. (Ref. 15, pg. 4) Over the next seven years, two XV-3 aircraft logged
over 450 hours and made over 100 fuli conversions from helicopter mode

to airplane mode. (Ref. 16, pg. 22)

15



Figure 4. Bell XV-3 from Ref. 17
2. XV-15

Bell Helicopter continued company financed tiltrotor research after
the XV-3 program ended. In July 1972, Bell received a joint Army/ NASA
contract to develop two tiltrotors, designated the XV-15. The XV-15
(Figure 5) was funded as a “proof of concept” or “technology

demonstration” aircraft. (Ref. 18)

Figure 5. XV-15 from Ref. 18

16




Unlike the XV-3, the XV-15 was powered by two turbo shaft
engines in each wingtip that were connected by a cross shaft. One
engine could power both rotors in the event of an engine failure. At a .
weight of 13,000 Ibs, the XV-15 was also significantly heavier than the
4,800 Ib XV-3. The first XV-15 flight in helicopter mode occurred in May
1978 and the first full conversion occurred on July 24, 1979. Ultimately,
the XV-15 flight envelope was expanded to a speed of nearly 300 kts and
an altitude of 21,000 ft. (Ref. 15, pg. ) The XV-15 program successfully
demonstrated the maturity of tiltrotor technology and was directly
responsible for the Joint Services Advanced Vertical Lift Project (JVX).

(Ref. 14, pg. 89)

3. V-22

In response. to the DoD JVX program, Bell Helicopter Textron and
Boeing Helicopters teamed to create the V-22. Dubbed the Osprey by
Secretary of the Navy John Lehman, the V-22 (Figure 6) began full-scale
development in June 1985 and made its first flight on March 19, 1989.
Despite program funding cuts in April 1989 by Secretary of Defense
Richard Cheney, the V-22 stayed alive through congressional support.
Over the next five years, four separate analyses would show the V-22 to
be the most cost and operationally effective replacement to the aging CH-

46E. (Ref. 15, pg. 5-9)
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Figure 6. MV-22 from Ref. 19

As of April 8, 1999, the V-22 has met or exceeded all of the Joint
Requirements Oversight Committee (JROC) approved key perfdrmance
parameters. The Osprey has achieved a top speed of 342 kts, an altitude
of 25,000 ft and has flown 227 kts while carrying a 10,000 lb external
load. (Ref. 20) The Marine Corps plans on buying 360 V-22s over the

next two decades to modernize its medium lift helicopter fleet.

4. BA-609/HV-609

The success of the XV-15 and the V-22 has not gone unnoticed in
the civilian market. In 1996, Bell Boeing announced plans to design,
develop, certify and market a six to nine passenger civilian tiltrotor, the
Bell Boeing 609. In 1998, Boeing withdrew from the partnership. Bell
subsequently teamed with the Italian company Agusta to produce and

market the BA-609 (Figure 7). A full size mock-up was exhibited for the
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first time at the Paris Airshow in 1997. By November 1998, Bell received
more than 70 orders .for BA 609 tiltrotors. The HV-609 is a military
version of the BA-609. Bell Helicopter Textron, Incorporated (BHTI) is
marketing the HV-609 as a multi-mission platform, capable of cargo
transportation, executive transportation, and search and rescue
operations. The United States Coast Guard is currently considering the
HV-609 for search and rescue operations as part of their Deepwater
Project. (Ref. 21). The first flight of the BA-609 is scheduled for late 2000

with initial deliveries scheduled for mid 2002.

Figure 7. BA-609/HV-609 from Ref. 21
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III. FORCE STRUCTURE ALTERNATIVES AND AIRCRAFT
CHARACTERISTICS

This chapter presents four alternative force structures that will be
compared for fulfilling the Marine Corps OSA and SAR missions
described in the previous chapter. Additionally, the chapter summarizes
charactefistics of the various aircraft considered for each mission within
each alternative force structure. These force structures and aircraft will
be compared to determine the suitability of each for the specific mission

they will fulfill.

A. ALTERNATIVE FORCE STRUCTURES

This section presents four alternative force structures to fulfill both
the USMC’s short-range OSA and SAR requirem_e:nts. Two alternative
force structures follow the traditional approach to each mission: fixed
wing aircraft for operational support airlift and rotary wing aircraft for
search and rescue. The third and fourth alternative force structures

offer a technologically innovative approach for both missions: a tiltrotor

aircraft.

1. Alternative I: C-12 and CH-46E

This alternative uses C-12s for OSA missions and converted CH-
46Es for SAR. Under this alternative, the Marine Corps will purchase

new C-12s from Raytheon while continuing to use its existing C-12 fleet,
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making the repairs and modifications necessary to keep the aircraft
airworthy. The current practice of using contract logistic support for
maintaining these aircraft is conﬁnued in this alternative. A total of 14
C-12s are required to maintain the current USMC FMF force structure.
For SAR assets, existing HH-46Ds and HH-1Ns are replaced on a one for
one basis with converted CH-46Es. A total of 12 CH-46Es are required
to fulfill current SAR requirements, three each at MCAS Cherry Point,
MCAS Beaufort, MCAS Yﬁma and MCAS Iwakuni. SAR assets would
continue to be maintenanced by Marines assigned to the SAR units, as is

currently the practice.

2. Alternative II: C-35 and CH-46E

This alternative replaces existing C-12 assets on a one for one
basis with the C-35. C-12s are continued in use until fully replaced by
C-35s. As in Alternative I, necessary repairs are made to' maintain the
airworthiness of the C-12s until they are completely phased out. Total
OSA aircraft numbers remain constant at 14 throughout the transition to
the C-35. C-12 and C-35 maintenance would be performed under
contract logistic support as is the current practice with the C-12. SAR
assets are replaced in the same manner as outlined in Alternative I,
ensuring that no gap in SAR capability exists during the transition to the

CH-46E. As in Alternative I, SAR asset maintenance would be the
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responsibility of the SAR units. A total of 14 C-35s and 12 CH-46Es are

required in this alternative.

3. Alternative IIIa: HV-609

This alternative uses HV-609 variants to fulfill both OSA and SAR
requirements. For OSA requirements, existing C-12 assets are replaced
one for one with an executive transport configured HV-609. For SAR
requirements, existing HH-46Ds are replaced one for one with SAR
configured HV-609s. Contract maintenance for both OSA and SAR
assets is used in this alternative because SAR assets are located at air
stations that already utilize contract maintenance for OSA aircraft.
Having a high degree of commonality in OSA and SAR aircraft provides
the flexibility to extend OSA contract maintenance to encompass SAR
assets at these locations. A total of 14 OSA configured and 12 SAR

configured HV-609s are required for this alternative force structure.

4. Alternative IIIb: HV-609

Like Alternative Illa, this alternative also uses HV-609 variants to
fulfill both OSA and SAR requirements. For OSA requirements, existing
C-12 assets are replaced one for one with an executive transport
configured HV-609. However, for SAR requirements, two SAR configured
HV-609s are exchanged for every three SAR helicopters. Current SAR

helicopter age and maintenance complexity drive the requirement to
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maintain three helicopters to ensure that one is always available. Bell
claims that the HV-609 will be more reliable and easier to maintain than
a helicopter. Based on that assumption, fewer aircraft would be required
to meet availability requirements. According to Bell, all primary and
secondary structures in the HV-609, including drive shafts, are, by
design, expected to be infinite life components. Additionally, using
contract maintenance for both OSA and SAR ass;ets under this
alternative force structure, as is done in Alternative Illa, provides a
certain degree of flexibility to ensure that required aircraft availability is
achieved and maintained. Figure 8 provides a graphic comparison of

asset requirements under each alternative force structure.

- 0 5 _ﬁio__is - 20 : 25 30
Alternative I |~ 14 | 12
Alternative II | 14 12
Alternative IIIa- o 14 | 12
Alternative IIIb I 14 8
E ;):}i‘ Number of aircraft

Figure 8. Alternative Force Structure Aircraft Requirements
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B. AIRCRAFT CHARACTERISTICS AND CAPABILITIES

This section summarizes the characteristics and capabilities of the
C-12, C-35, CH-46E and the projected performance of the HV-609 and
discusses the significance of selected characteristics. In the case of the
HV-609, the limited information regarding design and performance
specifications provided by Bell are treated as reliable and reasonable
performance estimates, given the past performance of the XV-15 and
present performance of the V-22. Individual aircraft data summaries
and three view diagrams are contained in Appendix A. A summary of

selected performance characteristics is provided in Table 1.

UC-12 | UC-35 HV-609 CH-46E
Max Cruise speed
292 431 275 145
(kts)

Ceiling (ft) 35,000 | 45,000 25,000 10,000

Vertical: 16,000
Max gross wt (lbs) | 12,500 | 16,630 24,300

STOL: 18,000

750 w/o aux fuel 350 w/o0 aux tanks
Max range (nm) 1,883 2,000 1200 w/ aux fuel | 480 w/ 1 aux tank
570 w/ 2 aux tanks
Payload (1bs) 4,308 6,653 5,500 4,300
Passengers 7-9 7-8 6-9 12-18

Table 1. Aircraft Comparison

1. Cruise Speed

Cruise speed is important in both OSA and SAR missions. Because
timeliness in operational considerations is one of the principle drivers in

the peacetime use of OSA assets, a higher cruise speed is more desirable.
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A higher cruise speed should decrease the length of time passengers
spend in the air transiting from one site to another. In SAR missions, a
faster cruise speed can literally be the difference between life and death.
Survival time in water decreases as water temperature drops. Immersion

in water with a temperature between SO°F and 60°F for as little as two

hours can result in loss of consciousness due to hypothermia. (Ref. 22,
pg. 8-3) Wind chill factors further exacerbate survival conditions. Figure

9 shows the relationship between probability of survival and water

temperature.

| /
High Probabili
'—gof Death ! // /I
3
Danger Zony
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Low Probability

i - of Death™
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Water Ternperature('F) -/

/" Duration of Immersion (hou;s\)\

Figure 9. Water Survival Probability from Ref. 23
Higher cruise speeds enable SAR aircraft to reach potential
survivors sooner, remain on station longer and ferry injured survivors

ashore more expediently. A graphic comparison of maximum cruise

speed is presented. in Figure 10.
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Figure 10. Maximum Cruise Speed Comparison

2. Standard Range

For peacetime utilization, all three aircraft considered for OSA
operations have suitable capabilities for short-range flights as defined in
the Joint Requirements Study. An aircraft with greater range could
have potential benefits. Aircraft with greater range may possibly avoid
refueling delays on a series of short-range flights where each leg
approaéhes the upper limit of the short-range definition (less than 600
nm).‘ For SAR missions, however, range is more important. Greater
range is preferable because it permits both rescues at a greater distance -
and a broader search area. The ability to search a larger area increases
the potential to save survivors’ lives when time is a critical factor. A
greater range and search area capability could negate the need to
suspend a search in order to refuel. The HV-609’s standard range is

31% greater than the CH-46E’s range with internal fuel tanks.
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Additionally, any gains in range that the CH-46E attains through an
increased internal auxiliary fuel load are potentially offset because the
extra weight lowers cruising speed. Figure 11 presents a graphical

comparison of aircraft ranges.

C-35

B

HV-609 | .
M 1 aux fuel tank
D2 aux fuel tanks
CH-46E |
0 500 1000 1500 2000 2500

Range (nm)

Figure 11. Range Comparison

3. Passenger and Payload Capacity

In the OSA role, passenger capacity is more important than
payload capacity. @ While OSA requirements do encompass cargo
transportation, bulk cargo would most likely be sent on larger aircraft.
Each of the three aircraft examined for the OSA role possess sufficient
cargo capacity to fulfill the short-range OSA requirement of 1000 lbs

cargo capacity. Both the C-12 and HV-609 are capable of carrying nine
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passengers; the C-35, however, is only capable of carrying eight
passengers. For peacetime utilization, this difference may not be
significant; however, in a wartime situation, utilization rates and
transportation requirements can be affected by the 12.5% lower seating

capacity of the C-35.

In the SAR mission, payload capacity is more important. SAR
aircraft need to- have enough capacity to carry rescue personnel
(crewchiefs, SAR swimmers, and medical personnel), rescued survivors
and provisions for survivors that may not be immediately rescued, such
as life rafts, radios, rations, and other survival gear. A graphic
comparison of payload, or cargo, capacity for the SAR mission is shown

in Figure 12.

HV-609 | el @ ;,';, : SRS .
standard N—— : : B
configuration

CH46E [~ ... 14300
standard : i - - e
configuration

0 1,000 2,000 3,000 4,000 5,000 6,000
' Payload (Ibs)

Figure 12. SAR Payload Comparison
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In Figure 12, aircraft are compared based upon a standard SAR
configuration. In the case of the CH-46E, this means that the internal
auxiliary fuel tank is not installed. Currently, the HH-46D is always
configured with the internal tank installed. However, assuming that only
CH-46Es with extended range fuel cells will be converted for SAR negates
this requirement. In the case of the HV-609, standard SAR configuration

means that the integral wingtip tanks and auxiliary cabin fuel cell are

not utilized.

4. Summary

Based on the characteristics summarized here, all four aircraft

meet the minimum performance requirements necessary to be included

in the alternative force structures. The C-12, C-35 and HV-609 all
possess adequate airspeed, range and seating capacity to adequately
fulfill the operational support airlift mission as defined by the Joint
Requirement Study and USTRANSCOM. The HV-609 and the CH-46E
both possess adequate speed, range and payload capacity for the Marine

Corps’ search and rescue mission.
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IV. COST ANALYSIS

This Chapter analyzes the cost of each alternative force structure.
Cost will be analyzed in terms of total life cycle costs (LCC) for each
alternative force structure. Traditional life cycle cost categories are
research, development, test and evaluation (RDT&E), procurement,
operating and support (O&S) and disposal. Since the aircraft in the
alternative force structures are commercially available and do not require
extensive modification for use by the Marine Corps, RDT&E costs will not
be considered. Only procurement and O&S costs will be examined in
this analysis.

Costs examined include applicable procurement, conversion and
annual operating and support (O&S) costs. Cost data for existing
inventory aircraft were obtained from program offices, the Naval Center
for Cost Analysis (NCCA) and the commercial buying services. Limited
cost data for the HV-609 was obtained from Bell. All costs were
converted to FY98. Net Present Value (NPV) of costs was obtained using
an annual discount rate of 4.1%, as directed in OMB Circular A-94.

All DoD components maintain standardized O&S cost data for use
by the Office of the Secretary of Defense. These data are referred to as
Visibility and Management of Operating and Support Costs (VAMOSC)
data. Ten years of VAMOSC data were obtained for the C-12 and H-46.

USMC data in this data set were listed separately for the years 1988-
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1995. However, due to a change made in the method of tracking USMC
costs and flight hours, no separate USMC data exists for 1996-97. The
USMC costs for the years after 1996 were included in the Navy command
that funds their operation, specifically Atlantic Fleet and Pacific Fleet.
Only the déta with USMC specific \cost and flying hours broken out
separately were used in this thesis.

To examine costs, cost models were constructed using Microsoft
Excel spreadsheets and Crystal Ball forecasting. Crystal Ball is a
software “add-in” for Microsoft Excel that forecasts values based on user
defined assumptions for the distribution and standard deviation of
variables. For purposes of this thesis, all distributions were considered
normal unless otherwise noted. Standard deviations applied to
distributions were either based on historic averages or applied at 10% of

the mean unless otherwise noted.

Similar cost models were utilized for each of the four alternatives.
Each model calculates the total life cycle cost of each alternative force
structure. Specific forecasted costs include procuremeht and O&S;
Procurement costs involve new aircraft procurement and conversion
costs for existing aircraft as applicable in each model. Totai Operating
and support costs are based on the sum of OSA aircraft O&S costs and
SAR aircraft O&S costs. These models are presented in Appendix B.

The models were run through a simulation of 2,000 trials to enable

a lifecycle cost forecast at the 90t percentile. Each model contained an
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aircraft fielding plan that was held constant in terms of total aircraft for
OSA assets. Fielding of SAR assets was held constant in Alternatives I,
II, and Illa, but modified as necessary for Alternative IIIb. The modified
SAR fielding plan reflects the reduced number of aircraft required to
fulfill the SAR requirements while maintaining the same annual SAR site
transition plan used in the other models. Detailed reports of fhe Crystalb

Ball forecasting trials for each Alternative are contained in Appendix C.

A. PROCUREMENT AND CONVERSION COSTS

Procurement costs for the C-12 and C-35 were obtained from an
impartial third party source. Since the C-12 aﬁd C-35 are commercially
available respectively as the King Air 3200 and the Cessna Citation Ultra
Encore, commercial market costs were used for procurement costs. This
was done to ensure that there was no government or manufacturer bias
in the price figures. The prices were obtained from aircraftbuyer.com for
each aircraft and represent the price for a fully equipped aircraft, not the
| manufacturer’s suggested base price. For analysis, standard deviations
of these prices were estimated at 10% of the purchase price.

Procurement cost for the HV-609 was not commercially available,
nor was Bell willing to divulge precise cost data, as that data is
considered proprietary. Based on reliable information, conservative
estimates were derived for both the OSA and SAR versions of the HV-
609. Bell currently has orders for 77 aircraft at a quoted price of $8-10M

(FY98) each, but will not sell any more at that price. (Ref. 24) Using $9M
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as a mean procurement cost and increasing it by 33% yields an estimate
of $12M for an OSA variant. Likewise, an additional increase of 33%, or
a 66% total increase in the mean price, provides a more conservative cost
estimate of $15M for a SAR variant HV—609 for this thesis.

Conversion costs for the CH-46E were obtained from the CH-46
Class desk at the Naval Air Systems Command (NAVAIRSYSCOM). Costs
provided reflect the installation of SAR specific equipment salvaged from
HH-46Ds. Equipment considered in the estimate include the searchlight,
the loud hailer, a commercial V/UHF radio, a crewman controller for the
Doppler, and the Doppler unit. The conversion cost given indicates a
minimum conversion cost that maximizes the installation of salvaged
| SAR specific equipment from the HH-46Ds. An alternative price
indicates using all new SAR equipment. Additional costs include
repainting the aircraft in SAR color schemes. A complete breakdown of
expected minimum and maximum conversion costs is included in
Appendix D.

To accurately portray the total conversion costs for 12 aircraft, a
uniform distribution of costs was used. The lower limit of the
_ distribution represents the absolute minimum cost based on complete
equiprnent’reuse and application of the SAR paint scheme over the top of
the existing camouflage paint on the CH-46Es. The upper limit of the
distribution represents the maximum cost based on purchasing all new

SAR equipment and the need to strip the existing camouflage paint off
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the aircraft prior to applying the SAR paint scheme. A uniform
distribution was chosen because it provides an equal probability that the
conversion cost will fall somewhere between the minimum and maximum
price. Additionally, a separate cell in the model was used for each one of
the 12 CH-46Es converted, ensuring that a discrete cost was assigned to
each conversion instead of one cost being assigned to all conversions for

any given year.

1. Alternative I Procurement and Conversion Costs

Alternative I involves procuring new C-12s to replace existing C-
12s. In this scenario, C-12s are fielded four per year for the first three
years, finishing with two aircraft in the fourth procurement year, for a
total of 14 aircraft. The total number of new aircraft in the force
structure determines total procurement costs. In Alternative I, 14 C-12s
and are required. Each new C-12 has a price of $4.11M (FY98).

Conversion costs under this alternative involve converting CH-
46Es for use as SAR assets. Replacement of HH-1Ns and HH-46Ds with
CH-46Es occurs at a rate c;f three per year for four years. Replacement
of the HH-1Ns at MCAS Yuma occurs first. Each CH-46E has an
estimated minimum conversion cost of $87.6K (FY98) and a maximum
conversion cost of $325K (FY98). Total conversion cost for the CH-46E
at the 90t™ percentile is estimated to be $2.43M (FY98) and constitutes

4% of the total procurement cost.
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Analysis of this alternative indicates that there is a 90% probability
that the net present value of the total procurement and conversion cost
will not exceed $60.1M. (FY98) Figure 13 graphically depicts the

distribution of the NPV of procurement and conversion costs for

Alternative I.
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Figure 13. NPV of Estimated Alternative I Procurement and Conversion Cost

2. Alternative II Procurement and Conversion Costs

Alternative II involves procuring C-35s to replace existing C-12s.
As in the Alternative I C-12 fielding scenario, C-35s are fielded four per
year for the first three years, finishing with two aircraft in the final
procurement year, for a total of 14 aircraft. Each C-35 has a price of
$6.77M (FY98). Conversion costs for the CH-46E SAR assets under this
alternative are éalculated in the same fashion as in Alternative I. In this

Alternative, 14 C-35s and 12 CH-46Es are required.
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Analysis of this alternative indicates that there is a 90% probability

that the net present value of the total procurement and conversion cost
will not exceed be $99.8M. (FY98) CH-46E conversion costs are
estimated to be $2.43M, or 2.4% of the total procurement cost. Figure
14 graphically depicts the distribution of the NPV of procurement aﬁd

conversion costs for Alternative II.
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Figure 14. NPV of Estimated Alternative II Procurement and Conversion Cost

3. Alternative IIla Procurement Costs

Alternative Illa involves procuring OSA variant HV-609s to replace
existing C-12s and SAR variant HV-609s to replace the existing HH-
46Ds. Fielding of the OSA variant HV-609s followed the same timeline
as the OSA fielding plans in the other alternative models, four per year

for the first three years with the final two aircraft fielded in the fourth

year.
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Procurement and fielding of SAR variant HV-609s occur at a rate
consistent with the conversion of CH-46Es in the other models. One SAR
site is equipped with three HV-609s each year for the first four years of
the lifecycle, beginning with MCAS Yuma. This fielding reflects a one for
one replacement of HH-46Ds with HV-609s.

Total aircraft requirements for this alternative are 14 OSA variants
at a cost of $12M (FY98) each and 12 SAR variants at a . cost of $15M
(FY98) each. A standard aeviation of 25% was used instead of 10% in

this analysis to reflect the uncertainty in the estimated procurement

cost.

Analysis of this alternative indicates that there is a 90% probability
that the net present value of the total procurement and conversion cost
will nof exceed $379.3M (FY98) Procurement of OSA variants accounts
for 48% of the cost; SAR variants make up the other 52%. Figure 15

graphically depicts the distribution of the NPV of procurement costs for

Alternative Illa.
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is equipped with HV-6009s.

Alternative IIIb Procurement Costs

aircraft and eight SAR variant aircraft.

costs for Alternative IlIb.
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Figure 15. NPV of Estimated Alternative Illa Procurement Cost

Alternative IIlb procurement cost differs from Alternative Illa
because only eight SAR variants are required to fulfill the SAR mission.
Fielding is consistent with the other models in that one SAR site per year

This Alternative requires 14 OSA variant

Analysis of this alternative indicates that there is a 90% probability
that cost will not exceed $314.4M (FY98). Procurement of OSA variants
accounts for 59% of the cost; SAR variants make up the remaining 41%.

Figure 16 graphically depicts the distribution of the NPV of procurement
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Figure 16. NPV of Estimated Alternative IlIb Procurement Cost

5. Procurement and Conversion Cost Summary

Based on net present value, Alternative I has the lowest
procurement and conversion cost of all four alternatives. This will hold
true as long as the procurement cost of each C-12 is less than that of the
C-35. Alternative Illa will always have the highest procurement cost
because of both the procurement cost and number of SAR variant HV-
609 used in the force structure. Alternatives Illa and IIIb will always
have higher procurement cost relative to Alternatives I and II because the
procurement price of the HV-609 is substantially greater than the
conversion cost for the CH-46E. Figure 17 shows a graphic comparison

of estimated procurement and conversion costs for all four alternative

force structures.
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Figure 17. Comparison of Estimated Procurement and Conversion Cost

This comparison shows the significant difference in the
procurement and conversion cost between the four alternatives. The
procurement cost for Alternative II is $39.7M or 66% higher than that of
Alternative I. Additionally, if the reliability gains proposed by Bell are
realized, procurement cost of Alternative Illa decreases $64.9M or 17%,

to a cost of $314.4M, as seen in Alternative IIIb.

B. OPERATING AND SUPPORT COSTS

Operating and Support (O&S) costs for OSA assets are based upon
Contract Logistic Support (CLS), or contract maintenance,. costs. Since
current C-12 assets are maintained under this arrangement, traditional
O&S cost analysis is difficult. Traditional O&S cost analysis involves
identifying cost drivers, such as spare parts, fuel, and maintenance, and
their relationship to overall cost. Under CLS, the biggest cost driver is

the cost of labor, a cost not easily captured in traditional VAMOSC data.
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(Ref. 25) Only depot level maintenance costs, such as hot section
inspections (HSI) and engine overhauls (OH), are considered separately
from the contract price by the program in determining total ownership
costs. (Refs. 9 and 25). Estimated CLS contract costs obtained from the
C-12 and C-35 program offices were considered in this analysis. HV-609
O&S costs were estimated relative to the C-12 O&S cost estimates.

To calculate total flight time, a utilization rate was derived from the
historic data. Dividing average annual flight hours by the average
number of aircraft yields flight hours per aircraft per year. This was
dene for both the C-12 and the HH-46D. These rates were then applied
to each model as an OSA utilization rate and a SAR utilization rate. The
standard deviations obtained in determining the utilization rates for each

mission were applied throughout all the models. -

1. Alternative I O&S Costs

Operating and support costs were calculated for a 20-year period
beginning with the first year of procurement. Operating and support
costs for the OSA portion of this alternative are based on historical data.
Comparison of VAMOSC data with program office estimates revealed
significant differences in cost per flight hour. Program office estimates
for the next ten years project the C-12’s avefage cost per flight hour to be
$992. This cost includes the contract maintenance cost, repairables and
consumables, engine inspections and overhauls. VAMOSC data

estimates an average cost of $2,320 per flight hour for all Navy and
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Marine Corps C-12s. Analysis of only USMC C-12 data yields an average
operating cost of $1,456. The C-12 program office provided two separate
cost projections, each based on a different number of total flight hours.
Considering this disparity in the cost projections, the historic (VAMOSC)
USMC C-12 average cost per flight hour was used as an average O&S
cost in this analysis. To reflect the operating cost of a new C-12, a 30%
reduction in the historic operating cost was used. A 30% reduction in
operating cost reflects expectations of better fuel efficiency and reduced
maintenance requirements achieved with a new aircraft. This resulted in
an hourly O&S cost of $1,019. Since the total number of aircraft
remains the same for OSA assets, the historic USMC utilization rate was
used.

SAR costs were estimated based on histofic averages obtained from
analyzing HH-46D VAMOSC data. For comparison purposes, operating
costs were estimated using historic total costs vice individual cost
elements. Further analysis of cost drivers for these assets would have no
impact on the estimated cost since the H-46 is a legacy system in the
process of being replaced. It is wunlikely that any significant
improvements will be made to lower operating costs. Most reductions in
total operating cost are likely to come from reductions in the number of
flight hours flown by these systems.

Historical averages for cost per flight hour for the HH-46D and CH-

46E were used to reflect the mix of HH-46Ds and CH-46Es in the force
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structure until all HH-46Ds are replaced. Flight hours were allocated
based on a ratio of CH-46Es to HH-46Ds. The distribution of the
forecasted NPV of O&S costs for Alternative I are depicted in Figure 18.
Analysis of this alternative indicates that there is a 90% probability that

the NPV of the total O&S cost . will not exceed $511.7M (FY98).
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Figure 18. NPV of Estimated Alternative I Operating and Support Cost

2. Alternative II O&S Costs

Operating and support costs were palculated for a 20-year period.
Operating and support costs for the OSA portions of this alternative are
based on projected averages of C-35 Logistic Contract Support prices
obtained from the program office and historic averages of flight hours
from VAMOSC data. Since the Army Cost and Economic Analysis Center
was unable to provide historic data for their C-35s, program funding

from the NAVAIRSYSCOM C-35 program office was used. The C-35
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program office provided current estimates for program funding for the
two existing C-35s in the USMC Reserve. Basic annual contract logistic
support cost for the two USMC Reserve sites was averaged to determine
O&S costs. This cost excluded hot section inspections (HSI) and engine
overhauls (O/H). Costs for HSIs were calculated by dividing the
estifnated cost of the inspection by the mean time between inspections.
This provided a cost per hour for the HSI that was added to the program
office’s O&S cost estimate. Engine overhaul costs were derived similarly,
and likewise added to the O&S cost. Incorporating HSI and O/H costs
provides a more accurate portrayal of total costs. The hourly O&S cost
used for the C-35 was $658. Additionally, since CLS for a new model
aircraft is being initiated, a site activation fee was calculated in for each
site during procurement. While fielding the C-35, O&S costs for OSA are
allocated to both the C-12 and C-35 based on ratio of the total numbers
of each aircraft in the inventory.

Since ‘this alternative has the same SAR force structure as
Alternative I, the SAR O&S costs were calculated as in Alternative I.
Distribution of the forecasted NPV of O&S costs for Alternative II with a
90% UCL are depicted in Figure 19. Analysis of this alternative indicates
that there is a 90% probability that the NPV of the total O&S cost will not

exceed $456.6M (FY98).
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Figure 19. NPV of Estimated Alternative II Operating and Support Cost

3. Alternative IIIa O&S Costs

Bell provided a rough direct operating cost estimate of $850 per
flight hour. This figure is based on commercial use and consists of
consurnabies, repairables, fuel and maintenance. Bell claims that this
low direct operating cost will be attainable through the reliability features
and component lifetimes designed and built into the aircraft. The
complexity of the tiltrotor mechanics, however, cannot be ignored. Under
government funded CLS, it would not be unreasonable to assume that
O&S cost for the HV-609 would be at least equal to or slightly higher
thaﬁ that of a new C—12v, particularly since both aircraft use different
models of the same engine, the Pratt & Whitney PT6A. Therefore, a cost
that reflects a ten percent increase over the estimated new C-12 O&S

cost was used. The hourly O&S cost that was used is 31.8% higher than
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Bell’s estimate, or $1,121. While fielding the HV-609, O&S costs for OSA
are allocated to both the C-12 and HV-609 based on ratio of the total
numbers of each aircraft in the inventory. Additionally, appropriate site
activation costs for the initiation of CLS for a new airframe were factored
into this model, as in Alternative II.

As in Alternatives I and II, the utilization rate of the HH-46D was
used ‘ch forecast annual SAR O&S costs. The average cost per flight hour
for the HH-46D, the projected costs per flight hour for the HV-609 and
the historic utilization rate were used to reflect the mix of HH-46Ds and
HV-609s in the force structure until all HH-46Ds are replaced. Analysis
of this alternative indicates that there is a 90% probability that the NPV
of the total O&S cost will not exceed $315.9M (FY98) Figure 20 depicts

the forecasted distribution of the net present value of Alternative Illa

O&S cost.
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Figure 20. NPV of Estimated Alternative Illa Operating and Support Cost
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4. Alternative IIIb O&S Costs

Alternative IIIb O&S cost is calculated based on historical
utilization rates for OSA aircraft énd total SAR flight hours. Even though
this alternative uses fewer aircraft to accomplish the SAR mission, the
same annual flight hours are applied. To estimate the SAR utilization
rafe for this alternative, the historic annual SAR flight hours were divided
by the number of proposed SAR variant HV-609s. This resulted in a
utilization rate 50% higher than the historic utilization .rate.

The average cost per flight hour for the HH-46D, the projected
costs per flight hour for the HV-609, the historic SAR utilization rate and
the proposed revised HV-609 utilization rate were used to reflect the mix
of HH-46Ds and HV-609s in the force structure until all HH-46Ds are
replaced. Analysis of this alternative indicates that there is a 90%
probability that the NPV of the total O&S cost will not exceed $317.1M
(FY98)F Figure 21_ depicts the forecasted distribution of the net present

value of Alternative IIIb O&S cost.
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Figure 21. NPV of Estimated Alternative IIIb O&S Cost

5. 0&S Costs Summary

With the values used in the analysis, Alternatives Illa and IIIb have
the lowest estimated O&S cost of the alternatives. The $1.2M difference
seen between Alternative Illa and Illb is a result of the variability
forecasted in each model and amounts to only a 0.04% difference.
Alternatives Illa and IIb provide lower O&S cost because of the high 0&S
cost for the CH-46E. At an estimated $5,490 per hour, the CH-46E
operating cost is 390% higher than that of the estimated HV-609 hourly
operating cost. Because of this, Alternatives Illa and IlIb will always
have lower overall O&S costs than Alternatives I and II. Alternative II
O&S costs are $55M or 10% less than Alternative I cost due to the lower
hourly operating cost of the C-35. The estimated hourly cost of the C-35
is 35% or $361 less than the hourly cost of the C-12. Figure 22 shows a

graphic comparison of O&S costs for all four alternative force structures.
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Figure 22. Comparison of Estimated Operating and Support Cost

C. SUMMARY OF COSTS

Adding estimated procurement and conversion cost, and the
estimated operating and support cost of each alternative force structure
yields estimated total life cycle costs. Figure 22 graphically depicts the

estimated NPV of total lifecycle costs for each of the four alternatives at

the S0t percentile.
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Figure 23. Comparison of Estimated 50th Percentile Total Cost

Figure 23 shows that at the median cost represented by the 50t
percentile, Alternative II has the lowest overall LCC, followed by
Alternative I. Despite having higher procurement costs, Alternatives Illa
and IIIb have lower O&S costs relative to total LCC. Alternative I O&S
cost constitutes 88% of total LCC. Alternative II O&S cost constitutes
80% of tbtal LCC. Alternative Illa O&S cost constitutes 45% of total LCC.
Alternative IIIb O&S cost constitutes 50% of total LCC. At this percentile
there is a difference of $117.9M or 26% in total cost between the least
expensive and most expensive Alternative.

Figure 24 shows the NPV of total lifecycle costs at the 90tk
percentile. Analysis of all four alternatives indicates that there is a 90%
chance that the total procurement cost would not exceed $652.1M (FY98)

regardless of the alternative selected. At the 90t percentile, the
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difference in cost between the least expensive and most expensive

alternative is reduced from $117.9M to $106.8M.
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" Figure 24. Comparison of Estimated 90th Percentile Total Costs
This shows that at a higher degree of certainty, the overall lifecycle
cost still favors Alternative II. However, when forecasting cost Variabﬂity,
the difference between the least expensive and most expensive alternative

is reduced from 26% to 19.5% of the estimated total cost.

4. MANPOWER COSTS

The commonality of OSA and SAR assets in Alternatives Illa and
IIb provides the potential for reducing manpower costs. If contract
maintenance is available for both wvariants of the HV-609, direct
maintenance manpower requirements may be reduced in two of the

proposed alternative force structures. Direct maintenance refers to those
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Marines with appropriate Military Occupatioh Specialties (MOSs) who are
directly involved in maintaining the SAR aircraft. The MOSs considered
direct maintenance for the purposes of this thesis include line mechanics
(MOS 6112 and 6114}, airframes mechanics (MOS 6152 and 6154) and
avionics mechanics (MOS 6322 and 6324). Table 2 summarizes the
February 1999 Troop List requirements for direct maintenance Marines
supporting SAR units at MCAS Cherry Point, MCAS Beaufort, MCAS

Iwakuni and MCAS Yuma.

MOS E7 E6 ES5 E4 E3 total
Iwakuni 6112 H-46 mechanic 1 0 3 2 0 6
6152 H-46 airframes 1 2 2 0 4 9
6322 H-46 avionics 1 1 2 3 0 7
site total 3 3 7 5 4 22
Beaufort 6112 H-46 mechanic 1 2 1 0 3 7
6152 H-46 airframes 2 2 3 1 3 11
6322 H-46 avionics 1 1 2 2 1 7
site total 4 5 6 3 7 25
Cherry Point |6112 H-46 mechanic 1 1 2 0 3 7
6152 H-46 airframes 1 2 2 1 3 9
6322 H-46 avionics 2 1 1 1 2 7
site total] 4 4 5 2 8 23
Yuma 6114 H-1 mechanic 1 2 0 3 -2 8
6154 H-1 airframes 0 3 1 0 2 6
6324 H-1 avionics 1 1 1 1 1 5
site total 2 6 2 4 S 19
TOTAL 13 18 20 14 24 89

Table 2 Current SAR Direct Maintenance Manpower Requirements

Indirect manpower costs, such as administrative clerks and
operations specialists, were omitted from the comparisons because these
numbers would be the same in each alternative force structure. Pilot’s
wages were also excluded from the analysis, as they are not specifically
attributable to these billets. Pilots in C-12 billets are normally assigned

to other jobs on the base at which the aircraft are located. Flying duties
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are secondary to the station billets the pilots hold. SAR pilot billets
would not change in number under any of the proposed alternatives.
Pilots are not specifically assessed into USMC aviation for SAR or C-12
duty and these costs would be incurred regardiess of these billets.
Enlisted manning levels at SAR units are impacted by the various
alternative force structures and each model reflects net changes in the

costs associated with direct maintenance Marines involved.

1. Alternative I and II Manpower Costs

The total number of pilots and crewchiefs required for C-12 and C-
35 billets would remain unchanged in these alternatives. Manning
requirem¢nts for current HH-46D SAR wunits would also remain
unchanged, but the H-1 maintenance specific requirements at MCAS
Yuma would be changed to H-46 maintenance specific requirements. By
analyzing the Troop List requirements for the H-46 SAR sites and Yuma,
a difference in the manning requirement was identified.

Utilizing MCAS Beaufort as a model, establishing H-46
maintenance at MCAS Yuma involves the addition of six Marines in
various paygrades. MCAS Beaufort was chosen as it represents a typical
SAR unit. The total direct maintenance manpower requirements for the

search and rescue mission in Alternatives I and II are provided in Table

3.
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E7 E6 E5 E4 E3 total
Iwakuni 3 3 7 5 4 22
Beaufort 4 5 6 3 7 25
Cherry Point 4 4 5 2 8 23
Yuma 4 - 5 6 3 7 25
TOTAL 15 17 24 13 26 95

Table 3. Alternative I and II Direct Maintenance Manpower Requirements

This manpower requirement can be converted into a cost by using
a composite wage scale obtained from the O&S Costing Division at
NAVAIRSYSCOM. Table 4 reflects the annual manpower cost associated
with Alternatives I and II. This cost already is included in the O&S cost

discussed previously and is only identified here as a comparative cost

measure.
E7 E6 ES5 E4 E3
Total Marines 15 17 24 13 26
Composite wage $51,600 $44,594 $36,385 $30,184 $25,786
Total wages $774,000 | $758,098 $873,240 $392,392 $670,436

Table 4. Alternative I and II Annual Direct Maintenance Manpower Cost

The total annual manpower cost associated with direct
maintenance Marines for Alternatives I and II is $3.47M (FY98). Net
present value of this cost over the twenty-year lifecycle is $39M. For
Alternative 1, this represents 7.6% of total O&S cost. For Alternative II,

this represents 8.5% of total O&S cost.

2. Alternative IIla and IIIb Manpower Costs

Under these Alternatives, a cost savings due to a reduction in the
total number of Marines required to maintain the SAR assets is realized.
With contract maintenance for both HV-609 variants, helicopter specific

maintenance is no longer required. As seen in Table 2, a total of 89
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Marines from MCAS Cherry Point, MCAS Beé.ufort, MCAS Iwakuni and
MCAS Yuma fall into the direct maintenance category. These Marines
would not be needed at these sites if contract maintenance were used in
these alternative force structures, resulting in a reduction of 89 billets
once all sites are converted from the HH-46D to the HV-609. This
amounts to annual savings of $3.24M (FY98). While fielding the HV-609,
there would be a reduced manpower cost associated with the

maintenance of the HH-46s still in use. These costs are presented in

Table S.

YRO YR 1 YR 2 YR 3 YR 19

Annual Manpower Cost $2,549,000 [$1,716,000| $919,000 0 0

Table 5. Alternatives Illa and IIIb Annual Direct Maintenance Manpower Costs
Net present value of this annual cost over the twenty-year lifecycle
cost is only $4.5M (FY98) for both Alternative Illa and IIIb. This is

insignificant, as it is only 1.4% of the total O&S cost.

3. Manpower Costs Summary

The manpower cost comparison illustrates potential cost savings
as a result of using contract maintenance for SAR assets. Alternatives I
and II O&S costs include the manpower costs discussed by virtue of the
CH-46E VAMOSC data used. The CH-46E VAMOSC data incorporates
direct maintenance Marines. C-12 VAMOSC data does not incorporate
direct maintenance Marines because Marines are not used to maintain

these assets. The estimated O&S cost of the HV-609 likewise does not
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reflect direct maintenance Marines because of the assumed contract
logistic support.

This comparison highlights the potential manpower changes
available through contract logistic support. If contract maintenance is
used in Alternative Illa and IlIb, the direct maintenance billets can be
eliminated, resulting in the reassignment of 89 Marines to fleet units or a

reduction in total force structure requirements.

E. SENSITIVITY ANALYSIS

By conducting sensitivity analysis of certain variables, the
significance of those variables in formulating total lifecycle cost can be
determined. Sensitivity analysis was performed on the following

variables: new C-12 O&S cost, HV-609 O&S cost and the percentage

used for standard deviation in all costs.

1. O&S Cost Sensitivity

The O&S cost for the new C-12 was originally estimated by
reducing the historic C-12 O&S cost by 30%. A second analysis was
conducted with an O&S cost for the new C-12s equal to the historic 0&S
cost. This was done to reflect the case in which the new C-12s show no
improvement over the old C-12s in terms of operating cost. This analysis
indicated that there is a 90% probability that the NPV of Alternative I
would not exceed $642.6M (FY98), an increase of $77.5M or 13.7% over

the initial analysis. This increase makes Alternative I the second most
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expensive of the four alternatives, behind Alternative Illa. Alternative II
remains the lowest cost alternative, followed by Alternative IlIb.

The operating cost of the HV-609 was estimated relative to the
opefating cost of a new C-12. This provided a cost of $1,121 per hour.
However, Bell claims that the O&S cost will be approximately $850 per
hour. A third analysis was conducted uéing Bell’s estimated operating
cost for the HV-609. This analysis indicated that there is a 90%
probability that the NPV of Alternative Illa would not exceed $601.2M
(FY98), a decrease of $51M or 7.8% over the initial analysis. Likewise
given the previous assumptioﬁs, the analysis also indicates that the NPV
of Alternative IlIb would not exceed $539.5M, a decrease of $57M or
9.5% over the initial analysis. At this level of certainty, Alternative IIIb

costs 2%, or $12M, less than Alternative II.

2. O&S Cost Breakeven Analysis

Breakeven analysis was conducted to determine at what O&S cost
Alternatives I, Illa and IIIb become the least expensive alternative. For
the breakeven analysis, all procurement and conversion costs were held
constant, as were the CH-46E O&S costs. Only the O&S cost for the new
C-12 and HV-609 were considered in the breakeven analysis. The
analysis indicates that the average net present value of Alternative I is
the lowest of all the alternatives when the operating cost of the new C-12
is $915 per hour. Likewise, Alternative IIIb'becomes the least expensive

alternative when the operating cost of the HV-609 is $769 per hour.
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Alternative Illa does not become the least expensive alternative until

operating cost of the HV-600 is $497 per hour.

3. Standard Deviation Sensitivity

Throughout this thesis, a standard deviation of 10% was used in
the abéence of historical data. This allows for a very narrow distribution
of costs. To portray a greater degree of uncertainty in the acquisition
process, a fourth énalysis was conducted using a 25% standard
deviation for all variables except those with historic standard deviations,
namely utilization rates and CH-46E O&S costs. This analysis shows
that while overall cost increases at the 90t percentile due to increased
variability, the relative cost of each alternative remains the same.
Alternative II is still the least expensive alternative, followed by
Alternative I, Alternative IlIb, and finally Alternative Illa. The analysis
indicates that there is a 90% probability that cost would not exceed

$673M (FY98) regardless of the alternative selected.
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V. OPERATIONAL EFFECTIVENESS ANALYSIS

This Chapter evaluates the operational effectiveness of the aircraft
used in each alternative force structure based upon ‘measures of

effectiveness for the OSA and SAR missions.

A. MEASURES OF EFFECTIVENESS

To assess overall operational effectiveness of each proposed
alternative force structure, suitable measures of effectiveness (MOEs) are
required for the two missions that each alternative force structure must
perform. For the OSA mission, total travel time is the overriding concern
when examining the performance capabilities of the aircraft being
considered. Three separate measures of effectiveness encompass the
entire OSA mission profile: air travel time, total travel time, and landing
site requirements. For the SAR mission, the ability to locate and rescue
survivors in a timely manner is the principle aircraft performance factor.
The MOEs selected for SAR reflect the capability to continue a search for

an extended time in order to successfully rescue survivors: range versus

time on station and payload versus range.

1. Air Travel Time in OSA Missions

A comparison of aircraft range versus time required to travel a
given distance will highlight the effectiveness and gains available through

higher aircraft cruising speeds. For OSA asset comparison, mission
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profiles of SQO and 600 nm were used. Airspeeds used were derived from
the optimum altitude for the distance flown, based on standard day
conditions. Comparisons made here illustrate the actual flight time
required to fly the designated distance, and include the time to climb to
cruising altitude and approach time but exclude ground taxi time and
any potential ground transportation delays. Computations are based on

best cruisihg speed and altitude obtained from aircraft manufacturers.

This comparison is shown in Figure 25.
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Figure 25. OSA Air Travel Time

Based on this comparison, the C-35 used in Alternative II has the
best air travel time across all distances considered. On travel legs of 300
nm, the C-35 is 12 minutes faster than the C-12 and 17 minutes faster
than the HV—609. When the trip distance is increased to 600 nm, the C-

35 is 23 minutes faster than the C-12 and 33 minutes faster than the
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HV-609. As can be seen in Figure 1, the C-12 used in Alternative I is
also faster than the HV-609 used in Alternatives Illa and IIIb across all

distances. If this were the only MOE, Alternative II would offer the best

performances.

2. Total Travel Time in OSA Missions

Although not directly measurable, versatility is a parameter to
consider in comparing aircraft. Traditional fixed wing aircraft require
some sort of prepared runway. In peacetime, these assets operate from
airports and airfields, both civilian and military. In larger metropolitan
areas, these airfields are not always located adjacent to military staff
facilities. For example, a General Officer from the Pentagon must travel
via automobile or helicopter to any one of a number of outlying airfields
to get on a C-12: Andrews Air Fo;'ce Base, Davison Army Airfield, or
Marine Corps Air Facility Quantico. Traffic delays in metropolitan areas
may negate any gains in a higher cruising airspeed. A tiltrotor does not
require a prepared runway or landing site. Like a helicopter, a tiltrotor
can land just about anywhere to pick up passengers, negating the need
for additional transportation, either air or ground. Therefore, applying a
ground transportation delay to the C-12 and C-35 in the scenario
outlined above, more accurately portrays the total travel time.

In the Washington D.C. metropolitan area, the average ground

transportation traffic delay is estimated to be 30 minutes. Additionally,
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sources in the commercial sector utilize 30 minutes as a low estimate
and one hour aé a high estimate for traffic delays applied to each end of
travel in assessing executive transportation requirements. (Ref. 26)
Using the same distances and airspeeds contained in Figure 25 and
applying a normal distribution to a 30-minute ground delay at each end
of the air travel for Alternatives I and II, a forecast for total travel time
can be obtained. Since there are no guarantees that ground travel delays
would never belencountered with the HV-609, a delay of 15 minutes was
factored into the air travel time for Alternatives Illa and IlIb. Figure 26

shows the forecasted average total travel times for each alternative for

flights of 300 and 600nm.
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Figure 26. OSA Total Travel Time
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As seen in Figure 26, when potential ground delays are factored in,
the HV-609 in Alternative Illa and IlIb offers the lowest travel time across
the distances considered. At distances of 300 nm, the HV-609 is 28

~minutes. faster than the C-35 and 40 minutes faster than the C-12.
When the distance is increased to 600 nm, the HV-609 is 12 minutes
faster than the C-35 and 35 minutes faster than the C-12. As can be
seen in Figure 25, the slope of the trend line for the C-35 indicates that
as the mission profile is extended, traffic delays are compensated by the
increased airspeed available in Alternative II. The difference in travel
time between the HV-609 and C-35 decreases from 24% to only 7% when
the distance increases from 300 nm to 600 nm. However, due to the
mission range requirements of only 600 nm, Alternatives IIla and IIIb
provide the best performance relative to total travel time and potential

ground delays.

3. Landing Site Requirements

By examining the entire mission profile for an OSA mission, a more
distinct measure of effectiveness and versatility is obtained. Besides
contributing to potential ground delays, fixed wing aircraft landing site
constraints can also limit access to remote operating areas. Aircraft in
Alternatives I and II are limited to prepared runways with a minimum
length between 3000 and 3300 feet long. The HV-609 used in Alternative
II1 does not require a prepared runway, only a site that provides

adequate prop-rotor clearance and a suitable ground surface. In both
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peacetime and wartime, General Officers and other VIPs are often
transported between airfields and operatidnal field units via helicopters
at the conclusion of the fixed wing portion of travel in OSA missions. The
helicopter assets utilized for these missions are usually fleet assets. The
ability of a tiltrotor to take off and land virtually anywhere allows FMF
helicopter assets to otherwise support FMF units, and not the

operational support airlift mission.

4. Range versus Time on Station for SAR Missions

The overall effectiveness of each alternative force structure must
encompass a measure of how well the proposed force structure can
accomplish the search and rescue mission. Comparing SAR aircraft
range versus time on station, suggests a measure of search and rescue
capability and operational effecti\}eness for each alternative force
structure. For SAR asset comparison, mission profiles of 50 and 125 nm
were used. Since time is considered a critical element in search and
rescue operations, the aircraft’s specified maximum airspeed was used in
comparing range versus time. Based on minimum transit times to and
from specific distances, a loiter time, or time on station (TOS) was
derived and used as a measure for comparison. The data contained in
Table 6 represents data for both the CH-46E and HV-609 in standard

fuel configuration and extended range fuel configurations.
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Fuel load Distance one way Airspeed Total Trans%t Time Time on S_tation
(nm) (kts) (hrs+min) (hrs+min)

standard 50 145 0-+41 2+19

= 1 aux tank 50 145 0+41 3+19

;'r standard 125 145 1+44 1+16

~ 1 aux tank 125 145 1+44 2+16
standard 50 275 0+22 2+38

S aux tank 50 275 0+22 3+38

z standard 125 275 0+55 2+05
aux tank 125 275 0+55 3+05

Table 6. CH-46E and HV-609 Range and Time on Station

By applying a minimum required time on station of 30 minutes to
'each aircraft, maximum ranges can be derived for both aircraft in
different fuel load configurations, delineating a SAR performance
envelope. Airspeeds utilized in this derivation represent maximum
performance; actual performance on any given day would be different.
Figure 27 shows the standard and extended range versus time on station

comparisons for the CH-46E and the HV-609.
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Figure 27. SAR Range versus Time on Station

Figure 27 shows the advantages that Alternative Illa and IIIb offer
in time on station over Alternatives I and II. On shorter range flights,
time on station is comparable. However, the difference in time on station
becomes more pronounced as range increases. At 100 nm, the HV-609’s
time on station is 40% greater than the CH-46E. At 150 nm, the time on
station for the HV-609 without auxiliary fuel is the same as the CH-46Es
time on station with auxiliary fuel. This reflects the rate at which each
aircraft consumes fuel. At greater ranges, the HV-609 will experience
lower fuel consumption because it is flying like a conventional airplane.

Moreover, as consumption goes down, more fuel is available to remain on
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station. The HV-609 need only convert to helicopter operations once the

survivors are actually located and are ready for pick up.

S. Payload versus Range for SAR Missions

A comparison of payload versus range for SAR missions also
determines search capability and effectiveness. Both the CH-46E and
the 'HV-609 utilize auxiliary fuel cells that increase range, but decrease
payload capacity and limit the rescue personnel‘and provisions available
for a rescue mission. For the CH-46E, an increase in range of 210
nautical miles decreases available payload weight capacity by nearly
80%, and decreases seating capacity from 18 to 6. Additional payload
and range tradeoffs as a function of fuel load for the CH-46E and the HV-

609 are provided in Table} 7.

Payload Useful Fuel Fuel burn | Endurance | Airspeed | Available | Range
(Ibs) (lbs) (Ibs/hr} (hrs + min) (kts) seating (nm)
4300 4000 1350 3+00 120 18 360
@ standard fuel
%)
< 2600 1 5600 1400 4+00 120 12 480
o aux tank
O
900 7100 1500 4+45 120 6 570
2 aux tanks
2480 '
o 5500 std fuel load 900 2+45 250 9 750
T | 3875 4105 1000 4+00 250 9 1200
aux fuel load

Table 7. CH-46E and HV-609 Payload Data

The HV-609 experiences a less dramatic decrease in payload
weight capacity in the tradeoff for extended range. With auxiliary fuel

onboard, the HV-609s payload capacity is decreased by 30%. Seating
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capacity is unaffected by the addition of extra fuel; the cabin fuel cell is
an integral fuel cell designed into the aircraft’s fuselage.

Actual aircraft performance will vary with prevailing weather
conditions. Generally, however, as aircraft gross weight increases, fuel
consumption also increases. The figures used in Table 7 represent
averages for the CH-46E and estimated averages for the HV-609 over the
entire spectrum of flight operations. Payload refers to the payload
capacity available with the corresponding amounts of useful fuel.
Airspeed indicates the average cruising speed that most closely

approximates the maximum range airspeed. Figure 28 shows the gains

in range versus the payload lost to the additional fuel for the CH-46E

and HV-609.
— 6_ - S —— — = —
5 - e - S e
X Standard Fuel
w4 N\ e e e meme e
é Auxiliary
3 e Pyl e -
«
2
>.2 - S e e . - — —_——
p‘f 2 Internal Tanks
1 e e e e . e e e o -~ —
O .
200 400 600 800 1000 1200 1400
Distance (nm)

Figure 28. Payload versus Range
Figure 28 illustrates the significance that payload has on the range

of the CH-46E used in Alternatives I and II and the HV-609 used in
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Alternatives Illa and IlIb. A disparity between the two platforms exists;
the extended range of the CH-46E is 180 nm or 31% less than that of the
HV-609 with a standard fuel load. In this regard, Alternatives Illa and

IIIb will always be preferable to Alternatives I and II.

B. OPERATIONAL EFFECTIVENESS ANALYSIS

Operational effectiveness analysis of the four alternatives was

conducted using Logical Decisions for Windows (LDW). LDW is a -

decision support software program that aids in evaluating alternatives for
any decision. LDW uses measures that are either numerical or
descriptive variables to describe the qualities of the alternatives under
consideration. The measures of effectiveness described in the previous

section constituted the measures used in the final analysis.

Measures are organized under goals. Goals are broadly defined

outcomes that the chosen alternative may impact. Goals and measures
are then organized into a hierarchy, with the broadest goal at the top,
more specific goals in the middle and quantitative or descriptive
measures at the bottom, or lowest level. Goals are used to sum the raw
scores of the measures and sub-goals beneath them. The overall ranking
of alternatives that LDW produces provides a measure of utility, which
can be regarded as an overall measure of effectiveness.

To assess effectiveness, one overall goal was selected, “Best Overall
Option.” Measures for this goal included two sub-goals: “Best OSA

Option” and “Best SAR Option.” Each of these sub-goals represents the
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fwo basic missions each alternative must fulfill. Each sub-goal had
separate measures. Measures for “Best OSA Option” corresponded to the
vMOEs used for OSA: air travel time, total travel time and landing site
requirements. Measures for “Best SAR Option” likewise correspénded to
the MOEs used for SAR: range versus time on station and payload versus

range. Figure 29 depicts the Best Overall Option goals and measures

hierarchy.
Best Overall
Alternative
|
R |
Best OSA ‘ Best SAR
Alternative Alternative
|
I I I l
Air Travel Total Travel Landing Site Range vs. Payload vs.
Time Time Requirements | | Time on Station Range

Figure 29. Effectiveness Measures Hierarchy

Once the hierarchy was established, weights were assigned to the
subgoals and measures. Both the SAR and OSA missions were
considered equally important; the sub-goal weights must sum to 1.0, so
each received a weight of 0.5. Similarly, all the measures under each
subgoal were equally weighted. Since the measures must sun‘i to the
value of the subgoal, OSA measures each received a weighting of 0.167
and SAR measures each received a weighting of 0.25.

The actual analysis of the alternatives was done wusing the

analytical hierarchical process (AHP) function in LDW. AHP allows the
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user to subjectively rank each alternative against the other alfernatives
for each measure. This method was chosen because the MOEs used
were more qualitatiize than quantitative and provided an easy means to
relationally compare alternatives.

The AHP function of LDW provides nine hierarchical rankings,
ranging numerically from “1” to “9” and descriptively from “equal” to
“extreme.” For each measure selected, an “importance strength” is
assigned to each alternative in relation to the other alternatives. Table 8
lists the numerical rankings assigned to 'each Alternative for each
measure of effectiveness and the justification for each relative ranking.
These rankings are subjective in nature and reflect the author’s

interpretation of each alternative’s performance relative to the MOEs

examined.
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Measure: Air Time Travel scale |justification/rationale
Alternative I| > |Alternative Illa & IIIb 3 |moderate advantage
Alternative II| > |Alternative I S |[strong advantage
Alternative [Ila & IIIb] < [Alternative II 6 |very strong advantage
Measure: Total Travel Time
Alternative Il < |Alternative II 3 |moderate advantage
Alternative II} < |Alternative Illa & IIIb 3 |moderate advantage
Alternative Illa & IIIb| > |Alternative I 5 |[strong advantage
Measure: Landing Sites
Alternative I| = |[Alternative II 1 |equal capacity
Alternative II Alternative Illa & IIIb 7 |demonstrated advantage
Alternative Illa & IIIb Alternative I 7 |demonstrated advantage
Measure: Range vs Time on Station
Alternative I| = |Alternative Il 1 |equal capacity
‘Alternative II Alternative IIla & IIIb 3 |moderate advantage
Alternative Illa & IIIb Alternative I 3 |moderate advantage
Measure: Payload vs Range
Alternative I| = [Alternative Il 1 jequal capacity
Alternative II} < [Alternative llla & IIIb S |strong advantage
> |Alternative I 5 |strong advantage

Alternative Illa & IIIb

Table 8. Hierarchical Ranking of Alternatives by Measure of Effectiveness

Table 8 combines Alternatives Illa and IIlb

assessment because they provide identical capability relative to the

MOEs used. While Alternative Illa and IIIb use different numbers of

aircraft, the capability of each aircraft is the same.

hierarchical rankings, LDW assess a utility value for each alternative in

each measure, subgoal and goal.

Table 9 lists the results of the LDW

assessment based on the weights and measures described.

74

in the relative

Based on these



Best Best Air Total Best Payload
Overall |OSA Travel |Travel Landing |SAR Range |VS
Option |Option |[Time Time Sites Option |yvs TOS |Range

weight 1.000 | 0.500 | 0.167 | 0.167 | 0.167 | 0.500 | 0.250 | 0.250

Alternative I
C-12 & CH-46E| 1.070 | 1.099 | 1.992 | 0.679 0.625 1.042 1.250 0.833

Alternative II .
C-35 & CH-46E| 1.941 | 2.839 | 6.370 | 1.524 0.625 1.042 | 1.250 | 0.833

Alternative Illa
HV-609 3.495 | 3.031 | 0.819 | 3.899 4.375 3.958 | 3.750 | 4.167

Alternative Illb
HV-609

3.495 | 3.031 | 0.819 | 3.899 | 4.375 | 3.958 | 3.750 | 4.167

Table 9. Logical Decision for Windows Aircraft Utility Analysis

Each measure, sub-goal and goal has a total utility of “10.” This
value is user defined and can be any scale, i.e. O to 1, O to 10, or even 0
to 100. Accordingly, each column in the Table 9 sums to ten. Table 9
indicates that with the measures and relative ranking of alternatives
used, Alternatives Illa and Illb have the highest overall utility. This
indicates that the HV-609 is the best overall option when considering
both the OSA and SAR mission. When looking only at the OSA mission,
Table 9 indicates that despite the lowest utility for air travel time, the
HV-609 is also the best aircraft for the OSA mission, but only marginally.
Likewise, Table 9 indicates that the HV-609 is a better option for the SAR

mission given the MOEs used in the comparison.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

The object of cost and operational effectiveness is to identify an
alternative that provides the greatest operational effectiveness per dollar
spent. This section discusses general and specific conclusions regarding
the cost and operational effectiveness of the four alternative force

structures examined.

1. General Conclusion

In Chapter IV, net present values of the twenty-year lifecycle costs
~ were estimated for each alternative.. Effectiveness analysis in Chapter V
provided a measure of utility or overall effectiveness. Dividing the overall
effectiveness or utility by the total cost yields a measure of cost
effectiveness for each alternative. This ratio not only indicates how much
utility is provided per dollar spent, or how much each unit of utility
costs, but also which alternative is the best value. Costs used in Table

10 represent 90t percentile costs for each alternative.
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Cost($M FY98) | Effectiveness
B 90% UCL (Utility) $M/ Utility Utility/$100M
Alternative I 565.1 1.070 528 0.189
Alternative II 545.3 1.941 281 0.356
Alternative Illa 652.1 3.495 187 0.536
Alternative IIb 596.5 3.495 170 0.587

Table 10. Alternative Force Structure Cost Effectiveness Ratios

Given sufficient resources, the highest marginal benefit, or utility

to cost ratio, indicates the preferred alternative. Additionally, if a specific

minimum utility value or cost threshhold is given, then the preferred

alternative may also be identified. This is more easily visualized if utility

is plotted against cost, as seen in Figure 30.

4.00

1.00

Utility (Effectiveness)

0.00

3.00 }

2.00

Cost in $M (FY98) 90% UCL

Figure 30. Cost Versus Utility
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Given the assumptions in the model, Table 10 and Figure 30 show
that Alternative IIIb offers the greatest operational effectiveness per 100
million dollars of lifecycle cost. Alternative IlIb is correspondingly the
most cost-effective alternative proposed to fulfill both the OSA and SAR
missions. While Alternative IIIb offers the greatest operational
effectiveness, the higher utility comes at a much higher cost relative to

Alternatives I and II.

2. Specific Conclusions

a. Alternative Aircraft Characteristics

The C-12, C-35 and HV-609 all possess sufficient airspeed,
range and seating capacity to adequately fulfill the operational support
airlift mission as defined by the Joint Requirement Study and
USTRANSCOM. The HV-609 and the CH-46E both possess sufficient
speed, range and payload capacity for the Marine Corps’ search and

rescue mission.

b. Procurement and Conversion Cost

Based on net present value, Alternative I has the lowest
procurement and conversion cost of all four alternatives. This'will hold
true as long as the procurement cost of each C-12 is less than that of the
C-35. Alternatives Illa and Illb will always have higher procurement

costs relative to Alternatives I and II because the procurement price of
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the HV-609 is substantially greater than the conversion cost for the CH-

46E.

c. O&S Costs

With the values used in the analysis, Alternatives Illa and
IlIb have the lowest estimated O&S costs of the alternatives. These
alternatives provide lower O&S costs because of the high O&S cost for
.the CH-46E. The CH-46E operating cost is 390% higher than that of the
estimated HV-609 hourly operating cost. Alternative II O&S cost is 10%
less than Alternative I O&S cost due to the C-35’s lower hourly operating
cost. -

d. Total Lifecycle Costs

Alternative II has the lowest overall LCC, followed by
Alternative I. Alternative I O&S cost constitutes 88% of total LCC at a
90% UCL. Alternative II O&S cost consfitutes 80% of total LCC at a 90%
UCL. Alternative Illa O&S cost constitutes 45% of total LCC at a 90%

UCL. Alternative IIIb O&S cost constitutes 50% of total LCC at a 90%

UCL.

e. Manpower Costs

If contract maintenance is utilized in Alternative Illa and IlIb,
the direct maintenance billets are eliminated, resulting in the savings of

89 Marine billets and a reduction in total force structure requirements.
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I Sensitivity Analysis

Sensitivity analysis of O&S costs indicates that when hourly
operating cost of the C-12 are reduced from $1019 to $496, Alternative I
replaces Alternative II as the least expensive alternative. Alternative IIIb
achieves the lowest lifecycle cost when the HV-609 has an O&S cost
reduction from $1121 to $769 per hour. Changing the standard
deviation from 10% to 25% had no Signiﬁcant effect on the relative life
cycle costs at the 90% UCL.

g. Operational Effectiveness

Alternatives Illa and IlIb have the highest overall utility using
the MOEs of air travel time, total travel time, landing site requirements,
range versus time on station, and payload versus range. As a result,
given sufficient funding, the HV-609 is the best overall option when
considering both the OSA and SAR mission and for each mission

individually.

B. RECOMMENDATIONS

The following recommendations are made:

1. Further consideration should be given to examining alternative
force structures that utilize multi-role aircraft to fulfill distinctly different
tactical and non-tactical missions, particularly tiltrotors.

2. Additional sensitivity analysis should be conducted on the goals
and measures used in assessing overall effectiveness to determine the

breakeven point for the relative ranking of LDW measures.
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3. A detailed sensitivity analysis on the effectiveness of the HV-
609 for both the SAR and OSA mission should be conducted using the .
Logical Decisions for Windows software program to quantify breakeven

points in the subgoals and measures weighting.

C. AREAS FOR FURTHER RESEARCH

1. Further research should be conducted on specific force
structure requirements for the HV-609 to identify other potential factors

and economies of scale for Alternative IlIb (two SAR HV-609s for every

three SAR helicopters).

2. Further research can be conducted into additional mixes of
fixed wing OSA assets and future SAR replacement aircraft beyond the

scope of this thesis.
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APPENDIX A. AIRCRAFT CHARACTERISTICS

BA-609 Data and characteristics

e 60 fi(18.3 m)————————n}

26 ft diameter
7.9m)

i

ISt
(4.5 m)

|

3fom

)

! 19 ft (5.8 m)

441133 m) ———————i

From Ref. 32
Dimensions, external Dimensions, internal
Length overall 44 ft Cabin length 17 ft 6 in
Width overall 60 ft - Width, maximum 5ft 05in
Height overall 15.5 ft Height, maximum S ft 0 in
Proprotor diameter 26 ft

Weights

Performance Max takeoff weight 16,000 Ibs
Max cruise speed 275 kts STOL takeoff weight 18,000 Ibs
Standard range 750 nm Empty weight 10,500 lbs
Ceiling 25,000 ft Useful load 5,500 lbs
Hoist capacity 600 Ibs Auxilliary fuel 1625|Ibs
Capacities Power plant
Required crew 1-2 (2) Pratt & Whitney
Passengers 6-9 PT6A-67C turbo props
Baggage (cubic feet) 50 (1940 shp each)
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C-35 Data and Characteristics

From Ret: 33

Dimensions, external Performance

Length overall 48 ft { 10.75 in Max cruise speed 431 kts
Wwingspan 52 ft 2 in Standard range 2,000 nm
Height overall 15 ft 2.4 in 1Ceiling 45,000 ft
Dimensions, internal Power plant

Cabin length 22 ft| 7.25in (2) Pratt & Whitney

Width, maximum 4 ft110.75 in PW535 turbo fans
Height, maximum | 4 ft 7 in (3,360 Ibs thrust each)
Weights Capacities

Max takeoff weight 16,630 lbs Required crew 1-2
Empty weight 9,977 lbs Passengers 7-8
Useful load 6,653 lbs Baggage (cubic feet) 41

From Ref. 33
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C-12 Data and characteristics

* From Ref. 34

Dimensions, external Performance
Length overall 43 ft 10 in Max cruise speed 292 kts
Wingspan 54 ft| 6 in Standard range 1,883 nm
Height overall 15 ftf Oin Ceiling 35,000 ft
Dimensions, internal : Power plant
Cabin length 22 ft| Oin (2) Pratt & Whitney
Width, maximum 4 ft| 6 in PT6A-42 turbo props
Height, maximum 4 ft| 9in (850 shp each)
Weights Capacities
Max takeoff weight 12,500 lbs Required crew 2
Empty weight 8,192 lbs Passengers 7-9
Useful load 4,308 lbs Baggage (cubic feet) 54

From Ref. 34
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CH-46E Data and characteristics

From Ref. 35

Dimensions, external Performance
Length overall 84 ft{4 in Max cruise speed 145 kts
Width overall 51 ft|{0 in Standard range 365 nm
Height overall 16 ft| 8 in Ceiling ' 10,000 ft
Dimensions, internal Power plant
Cabin length 4 ft{2in (2) General Electric
Width, maximum 6 ft|0in T58-GE-16 turboshaft
Height, maximum 6 ft{0 in (1,870 shp each)
Weights Capacities
Max takeoff weight 24,300 lbs Required crew 4-5
Empty weight 20,000 lbs Passengers 18
Useful load 4,300 lbs Baggage (cubic feet) n/a
Hoist capacity 600 lbs Auxilliary fuel 470 lbs

From Ref. 35
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APPENDIX C. CRYSTAL BALL FORECAST DATA

Crystal Ball Report
Simulation started on 3/15/00 at 18:43:53
Simulation stopped on 3/15/00 at 18:46:46

Forecast: NPV of Alternative Il Alternative Il LCC Model
Summary:
Display Range is from $250,000.00 to $650,000.00 $K(FY98)

Entire Range is from $248,765.71 to $706,127.75 $K(FY98)
After 2,000 Trials, the Std. Error of the Mean is $1,651.35

“Forecast NPV of Altermative Il
2,000 Trials Frequency Chart 12 Outliers
)
45
2 o
= . ) o
@ - _;.,,.....lmhliﬂ "”] Illl.hhlml,ur o
250,000 00 $350.000 00 $450.00000 $550,000 0 $650,000.00
KEFYE)
Percentiles:
Percentile SK(FY98)
0% $248,765.71
10% $353,511.56
20% $384,483.85
30% $406,511.11
40% $423,930.97
50% $442,529.05
60% $464,662.73
70% $486,198.63
80% $510,698.19
90% $545,308.43
100% $706,127.75
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Forecast: NPV Alternative Il Procurement Cost

Summary:
Display Range is from $65,000.00 to $115,000.00

Entire Range is from $58,965.96 to $118,696.31
After 2,000 Trials, the Std. Error of the Mean is $193.03

Alternative Il LCC Model

Forecast NPV Altemative Il Procurement Cost

2,000 Trials Frequency Chart 9 Outliers
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Percentiles:
Percentile Value
0% $58,965.96
10% $77,210.33
20% $81,258.85
30% $83,955.76
40% $86,136.73
50% $88,209.59
60% $90,503.11
70% $93,036.36
80% $95,842.63
90% $99,818.62
100% $118,696.31
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Forecast: NPV Alternative Il O&S Cost Alternative I LCC Model

Summary:
Display Range is from $150,000.00 to $550,000.00
Entire Range is from $158,350.56 to $626,595.69
After 2,000 Trials, the Std. Error of the Mean is $1,641.60

Forecast NPV Atermative 1§ GBS Cost
2,000 Trials Frequency Chart 13 Outliers
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Percentiles:
Percentile Value
0% $158,350.56
10% $264,489.98
20% $292,895.76
30% $318,489.24
40% $336,721.92
50% $355,451.29
60% $374,351.74
70% $398,605.42
80% $422,151.46
90% $456,654.42
100% $626,595.69
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Forecast: NPV of Alternative llla Alternative llla LCC Model

Summary: A
Display Range is from $350,000.00 to $750,000.00 $K(FY98)

Entire Range is from $345,046.95 to $827,291.55 $K(FY98)
After 2,000 Trials, the Std. Error of the Mean is $1,608.45

Forecast NPV of Altermative llla

© 2,000 Trials Frequency Chart 16 Outliers
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Percentiles:
Percentile $K(FY98)
0% $345,046.95
10% $468,788.79
20% $502,404.59
30% $525,490.74
40% $543,742.04
50% $561,864.22
60% $581,246.87
70% $600,206.79
80% $624,886.12
90% * $652,143.29
100% $827,291.55
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Forecast: NPV Aliternative llla Procurement Cost Alternative llla LCC Model

Summary:
Display Range is from $150,000.00 to $500 000. 00
Entire Range is from $138,443.01 to $504,980.89
After 2,000 Trials, the Std. Error of the Mean is $1,225.86

Forecast NPV Alternative llla Procurement Cost
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Percentiles:
Percentile , Value

0% ’ $138,443.01
10% $238,443.68
20% $264,743.87
30% $281,517.57
40% $296,673.59
50% $310,985.16
60% $324,387.43
70% $339,819.80
80% $358,919.42
90% $379,299.26

100% $504,980.89
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Forecast: NPV Alternative llla O&S Coét Alternative lila LCC Model

Summary: C : .
Display Range is from $125,000.00 to $400,000.00
Entire Range is from $96,055.81 to $429,874.87
After 2,000 Trials, the Std. Error of the Mean is $1,069.06

Forecast NPV Altemative llla O8S Cost

2,000 Trials Frequency Chart 13 Outtiers
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Percentiles:
Percentile Value
0% ) $96,055.81
10% $192,894.16
20% $212,079.56
30% $226,499.75
40% $237,768.66
50% $250,600.85
60% $263,402.17
70% $276,111.26
80% $293,428.17
90% $315,912.86
100% $429,874.87
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Forecast: NPV of Alternative | Alternative | LCC Model

Summary: _
Display Range is from $250,000.00 to $700,000.00 $K(FY98)

Entire Range is from $242,801.16 to $737,297.81 $K(FY98)
After 2,000 Trials, the Std. Error of the Mean is $1,769.45

" Forecast NPV of Altermative |
2,000 Trials Frequency Chart 5 Outtiers
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Percentiles:
Percentile $K(FY98)
0% $242 801.16
10% $360,299.69
20% $396,151.03
30% $418,969.42
40% $439,081.70
50% $458,153.22
60% $480,442.06
70% ' $505,822.21
80% $528,184.25
90% $565,115.69
100% $737,297.81
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Forecast: NPV Alternative | Procurement Cost Aliternative 1 LCC Model

Summary:
Display Range is from $40,000.00 to $67,500.00

Entire Range is from $33,726.81 to $72,108.18
After 2,000 Trials, the Std. Error of the Mean is $114.74

Forecast NPV Altemative | Procurement Cost

2,000 Trials Frequency Chart 14 Outliers
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Percentiles:
Percentile | Value
0% $33,726.81
10% $47,077.12
20% . $49,193.94
30% $50,592.72
40% $51,837.55
50% $53,251.39
60% $54,632.35
70% $56,057.07
80% $57,603.30
90% $60,136.25
100% $72,108.18
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Forecast: NPV Alternative | O&S Cost Alternative | LCC Model

Summary:
Display Range is from $200,000.00 to $650,000.00
Entire Range is from $186,975.65 to $685,931.38
After 2,000 Trials, the Std. Error of the Mean is $1,766.24

"~ Forecast NPV Altermative | O8S Cost
2,000 Trials Frequency Chart 4 Outiiers
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Percentiles:
Percentile Value
0% | $186,975.65
10% $306,371.07
20% $342,056.08
30% $365,666.12
40% $386,542.10
.50% $405,345.32
60% $425,458.34
70% $453,051.34
80% $476,695.00
90% $511,739.30
100% $685,931.38
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Forecast: NPV of Alternative lilb

Summary:
Display Range is from $300,000.00 to $700,000.00 $K(FY98)
Entire Range is from $315,379.20 to $739,904.69 $K(FY98)
After 2,000 Trials, the Std. Error of the Mean is $1,428.36

Alternative llib LCC Model

" Forecast NPV of Altemative lllb

2,000 Trials Frequency Chart 5 Outliers
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Percentiles:
Percentile SK(FY98)
0% $315,379.20
10% $431,595.73
20% $459,522.26
30% $478,867.40
40% $498,050.31
50% $512,956.64
60% $528,250.97
70% $546,300.38
80% $567,109.71
90% $596,546.41
100% $739,904.69

104




Forecast: NPV Alternative Ilib Procurement Cost Alternative lllb LCC Model

Summary:
Display Range is from $125,000.00 to $375,000.00
Entire Range is from $122,257.87 to $424,405.18
After 2,000 Trials, the Std. Error of the Mean is $1,016.47

Forecast NPV Alterative lllbProcurement Cost
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Percentiles:
Percentile Value
0% $122,257.87
10% $200,388.78
20% $218,134.64
30% $232,388.94
40% $245,838.39
50% $257,024.61
60% $269,074.58
70% $281,598.34
80% $297,077.08
90% $314,408.08

100% : $424,405.18
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Forecast: NPV Alternative lllb O&S Cost Alternative lllb LCC Model

Summary:
Display Range is from $125,000.00 to $400,000.00

Entire Range is from $100,580.20 to $422,085.16
After 2,000 Trials, the Std. Error of the Mean is $1,026.11

Forecast NPV Altermative lllb O8S Cost
2,000 Trials Frequency Chart 9 Outliers
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0% $100,580.20
10% $199,122.63
20% $217,554.85
30% ‘ $231,056.36
40% $243,181.10
50% $254,448.50
60% $266,605.31
70% $280,592.53
80% $296,961.70
90% $317,147.95
100% $422,085.16
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Assumptions

Assumption: Old C-12 O&S cost
Normal distribution with parameters:
Mean 1.456
Standard Dev. 0.146
Selected range is from - -Infinity to +Infinity
Mean value in simulation was 1.457
Assumption: OSA utilization rate
Normal distribution with parameters:
Mean 815.51
Standard Dev. 176.58
Selected range is from -Infi inity to +Infinity
Mean value in simulation was 817.52
Assumption: Proc. cost per C-12
Normal distribution with parameters:
Mean 4,110
Standard Dev. 411
Selected range is from -Infi inity to +Infinity
Mean value in simulation was 4,101
Assumption: C-35 Procurement cost
Normal distribution with parameters:
Mean v 6,928
Standard Dev. 693

Selected range is from -Infinity to +Infinity
Mean value in simulation was 6,906
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Assumption: HV-609 O&S cost Cell: F30

Normal distribution with parameters:
Mean v 1.121
Standard Dev. 0.112

Selected range is from -Infinity to +Infinity
Mean value in simulation was 1.123

Assumption: HV-609 cost (OSA version) Cell: F34

HV-609 cost (OSA version)

Normal distribution with parameters:
Mean 12,000 :
Standard Dev. 3,000 :

Selected range is from -Infinity to +Infinity
Mean value in simulation was 12,049

Assumption: HV-609 cost (SAR version) Cell: F37

HV-509 cost (SAR version)

Normal distribution with parameters: —- -
Mean 15,000 :
Standard Dev. 3,750 :

Selected range is from -Infinity to +infinity e mm o mERE
Mean value in simulation was 15,044

Assumption: A/C 3 conversion cost Cell: F13

Uniform distribution with parameters: AG3 comversion cost
Minimum $87,647
Maximum $310,922

I |
i
! |

567.647 5143465 $199285 5255103 5310972

Mean value in simulation was $198,654
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Assumption: A/C 5 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $198,344

Assumption: A/C 7 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $197,893
Assumption: A/C 9 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $198,954
Assumption: A/C 1 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $202,731
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AJC 5 converslon cost
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Cell: F15

AJC 7 conversion cost
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Cell: F16

AIC 9 conversion cost
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Cell: F12

AJC 1 conversion cost

87647 5143466 5199285 5245103 5310922




Assumption: A/C 11 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $196,191

Assumption: A/C 2 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $199,245

Assumption: A/C 4 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum ' $310,922

Mean value in simulation was $198,752
Assumption: A/C 6 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $196,274

110

Cell: F17

AJC 11 conversion cost
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Cell: G12

AJC 2 converslon cost
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Cell: G13

AJC 4 conversion cost
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Cell: G14

AJC 6 conversion cost
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Assumption: A/C 8 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum $310,922

Mean value in simulation was $198,476

Assumption: A/C 10 conversion cost
Uniform distribution with parameters:

Minimum $87,647
Maximum . $310,922

Mean value in simulation was $200,524

Assumption: AIC 12 conversion cost
Uniform distribution with parameters:

Minimum 387,647
Maximum $310,922

Mean value in simulation was $199,709

Assumption: CH-46E O&S cost per flight hour
Normal distribution with parameters:

Mean 5.49

Standard Dev. 1.24

Selected range is from -Infinity to +Infinity
Mean value in simulation was 5.49

111

Cell: G15

AIC 8 conversion cost
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Cell: G16

A/C 10 conversion cost
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AJC 12 conversion cost
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Assumption: HH-46 O&S cost per flight hour
Normal distribution with parameters:
Mean 6.35
Standard Dev. 0.64
Selected range is from -Infinity to +Infinity
Mean value in simulation was 6.36

Assumption: SAR utilization rate

Normal distribution with parameters:
Mean 273.8
Standard Dev. 53.6

Selected range is from -Infinity to +Infinity
Mean value in simulation was 272.9
Assumption: new C-12 O&S cost
Normal distribution with parameters:
Mean 1.019
Standard Dev. 0.102
Selected range is from -Infinity to +Inﬁhity
Mean value in simulation was 1.018
Assumption: Site Activation Cost (per site)
Normal distribution with parameters:
Mean 154,074

Standard Dev. 15,407

Selected range is from -Infinity to +Infinity
Mean value in simulation was 153,626
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Assumption: C-35 O&S cost
Normal distribution with parameters:
Mean $0.658
Standard Dev. $0.066
Selected range is from -Infinity to +Infinity
Mean value in simulation was $0.655
Assumption: alt llib HV-609 utilization rate
Normal distribution with parameters:
Mean 410.7
Standard Dev. 411

Selected range is from -Infinity to +Infinity
Mean value in simulation was 410.4

End of Assumptions
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APPENDIX D. CH-46E CONVERSION COST ESTIMATE

CH-46E Conversion Cost Estimate
provided by the CH-46E program office

all costs in $FY00

system components unit cost labor kit
Search light $4,000 $2,000
Light $6,240
Junction box $2,275
control $1,115
gimble $3,580
$13,210
Loud Hailer
controller &
speakers $11,079 $4,000 $2,000
Commercial
V/UHF
Radio
radio & ant. $25,000 $4,000 $2,000
Doppler
unit $125,000 $4,000 $2,000
Doppler
controller
control box $30,000 $4,000 $2,000
$204,289 $20,000 $10,000
NRE total=$200,000 $20,000 per aircraft
based on 10 conversions
min cost per plane excluding paint: $50,000
max cost per plane excluding paint: $254,289

SAR paint
scheme

overpaint labor

& material $41,635
strip and paint

labor &

material $70,780

absolute min cost including paint

absolute max cost including paint
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