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ABSTRACT

This thesis develops an event step simulation that models the Operational
Availability (Ao) of carrier aircraft based on the supply and maintenance of Weapon
Replaceable Assemblies (WRAs). It verifies that WRA allowances, developed by the
Aviation Readiness Requirements Oriented to WRAs (ARROWSs) model, achieve a farget
level of Ao given stated assumptions. It expands on ARROWs by characterizing not just
the expected value of Ao but also its variability and probability distribution function.

The simulation is expanded to include a variety of factors not considered by ARROWs.
Examples of these factors include actual flight schedules, variable and prioritized
requisitioning and repair, and cannibalization. The impact of these factors on the
distribution of Ao is quantified. Simulte.neous examination of all factors reveals that the
full simulation predicts actual Ao approximately as well as ARROWSs. In general, the

full simulation overestimates Ao, and ARROWS underestimates Ao. _
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THESIS DISCLAIMER

The reader is cautioned that_ computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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EXECUTIVE SUMMARY

The Aviation Readiness Requirements Oriented to Weapon Replaceable
Assemblies (ARROWs) sparing model uses a Readiness Based Sparing (RBS) algorithm
to develop allowance levels for major aircraft sub-assemblies. These major sub-
assemblies are referred to as Weapon Replaceable Assemblies (WRAs). ARROWSs
allowance levels are intended to yield a target level of aircraft Operational Availability
(Ao). The target level of Ao is an input to the model. The ARROWS output is a list of
WRA allowances and a point estimate of the mean value of Ao they should provide.

The Ao actually achieved by fleet squadrons is frequently not the Ao predicted by
ARROWs. This should not be surprising because Ao is a random variable. As such it
should be characterized with a probability distribution not a point estimate. This thesis
constructs an event step simulation that generates the probability distribution of Ao based
on the supply and repair of WRAs. The baséline simulation produces a value of Ao equal
to thg point estimate provided by ARROWs, given the same assumptions.

The simulation expands on the ARROWS estimate of mean Ao by quantifying its
variability, and its probability distribution function. Based on the simulation output,
generic formulas are developed that allow ARROWSs users to approximate the
distriBution of Ao without the benefit of a simulation.

While the ARROWSs model necessarily contains a number of simplifying
assumptions, the simulation is not so constrained. As such, the simulation is.expanded to
include a variety of factors that impact Ao but are assumed away by the ARROWs

model. Examples of these factors include, actual flight schedules, prioritized

Xx1



requisitioning and repair, variable order and shipping times, variable repair times and
cannibalization. The use of historical data over assumptions is emphasized.

Each fﬁctor is examined independently by simulation excursions. The simulation
excursions demonstrate how each factor changes the mean and variance of the
distribution of Ao. Changes to the mean value of Ao are reflected by shifts of the Ao
distribution away from the ARROWs point estimate. Changes in variability are reflected
in a squeezing or stretching of the distribution about its mean value.

The ARROWs point estimate of Ao is not an accurate predictor of the Ao
experienced by fleet aircraft squadrons. A final simulation excursion is developed to
simultaneously include all of the functionality examined by the individual excursions.
This full simulation is intended to serve as a forecasting tool for the level of Ao
experienced by fleet aircraft squadrons. Comparison of the full simulation output to
historical Ao data for fleet squadrons reveals that it, like ARROWs, does not accurately
forecast actual Ao.

The full simulation provides estimates of mean Ao that are comparable in
accuracy to ARROWSs. On average, the simulation tends to overestimate mean Ao, and
ARROWs tends to underestimate mean Ao. The full simulation expands on ARROWs
by providing an estimate of Ao variability but that estimate is significantly less than the
Ao variability observed by fleet squadrons.

The simulation developed by this thesis is relatively complex and incorporates a
number of factors not addressed by ARROWSs. Despite this added functionality, the
simulation does not capture the truly complex system of operations, supply and

maintenance taking place onboard an aircraft carrier.

Xx1i



I. INTRODUCTION

A. BACKGROUND

Operational Availability (Ao) is the percentage of time that an equipment or system is
capable of performing its designed mission. This thesis examines the Ao of carrier based
é.ircraft. The strict definition of Ao applies to a single aircraft. However, it is common practice
to use the term Ao in lieu of mean Ao. Mean Ao is the average, or mean value of Ao for a group
of like aircraft. Although most references to Ao actually refer to mean Ao, the term mean Ao is
seldom if ever used. Distinguishing between Ao and mean Ao is important when examining the
statistical properties of each.

In keeping with standard phraseology, this analyses makes frequent use of the term Ao
with regard to carrier based aircraft. In all instances, these references refer to mean Ao. The Ao
of individual aircraft are seldom discussed or. examined. This point will be reiterated in
statistical discussions where its importance is most significant.

Maintaining the Ao of carrier-based aircraft is essential to satisfying the Navy’s
operational requirements and accomplishing assigned missions. In order to achieve required
levels of Ao for its carrier-based aircraft the Navy invests signiﬁcant resources in repair parts and
maintenance capability onboard aircraft carriers.

Carrier-based aircraft, like all weapons systems, are comprised of large numbers of sub-
components. Each sub-component contributes to the aircraft’s overall ability to perform its
designed mission. The failure of any sub-component must be corrected in order to restore the
aircraft to its full capability. Correction of such failures is accomplished by removing the failed
item and replacing it with a Ready For Issue (RFI) unit. RFI items, removed from onboard

supply stocks, are replaced by repair or requisition.




Aircraft sub-components are divided into two primary categories, Weapon Replaceable
Assemblies (WRAs) and Shop Replaceable Assemblies (SRAs). WRAs are complex and very
éxpensive aircraft sub-assemblies. When these units fail they are repaired and reused. SRAs are
smaller, less expensive sub-components. Many SRAs are scrapped after failure. The focus of
this thesis is the supply and maintenance of WRAs. SRAs will only be discussed as they pertain
to WRA:s.

Maintenance of aircraft onboard aircraft carriers is centered around WRAs.
Organizatioﬁal Level (O-Level) maintenance, conducted by squadron level personnel, consists
largely of identifying and removing failed WRAs from aircraft and replacing the failed item with
a Ready For Issue (RFI) WRA. RFI WRAs are obtained in a variety of different ways. The
preferred and fastest method is that an RFI WRA is immediately dra»\;n from the carrier’s Supply

‘Department. The next most desirable situation is that the failed WRA, removed from tht.a
aircraft, can be repaired by the carrier’s Aircraft Intermediate Maintenance Department (AIMD
or I-level maintenance) for expeditious reinstallation on the aircraft. In the event that an RFI
WRA is not available from the Supply Department and the failed item cannot be repaired by the
AIMD, a new WRA must be obtained from off the ship via the wholesale Supply System.

[Ref. 1]

| Each WRA is critical to the aircraft’s ai)ility to accomplish its mission [Ref. 2]. When a
WRA fails, the parent aircraft is considered out of service or down. The duration of this
downtime is determined by the time required to obtain a RFI WRA to remedy the failure. This
downtime detracts from the amount of time the aircraft is capable of performing its mission

(uptime). As downtime increases, the aircraft’s Ao (percentage of total time the aircraft is up)



decreases. In order to maintain aircraft Ao at acceptable levels, the Supply and Maintenance
Departments work together to ensﬁre RFI WRAs are available with the least possible delay.

The number of spare WRAs carried by the Supply Department is obviously a significant
contributor to the availability of RFI WRAs to support carrier based aircraft. If the number of
spare WRAs were sufficiently large, aircraft downtime would be limited to the time required to
remove failed WRAs and replace them with RFI WRAs. The high cost of spare WRAs makes
such a system impractical. In an effort to conserve scarce resources, the Navy seeks to limit the
number of spare WRAs stocked onboard the carrier to the minimum possible number required to
achieve acceptable levels of aircraft Ao.

Supply Department stocking allowances for WRAs are published in the Aviation
Coordinated Allowance List (AV.CAL). AVCAL allowance quantities are developed by the
“Aviation Retail Requirements Oriented to Weapon Replaceable Assemblies” (ARROWs)>
sparing model. ARROWs is a steady state, Readiness Based Sparing (RBS) model [Ref. 2]. It
uses a variety of source data such as WRA failure rates, reéa.ir and re-supply times, air-wing
composition, intended flight hour requirements and WRA unit costs to produce WRA
allowances.

The ARROWSs RBS algorithm attempts to identify the least expensive mix of spare
WRASs that will enable the air-wing to realize a target or prescribed level of Ao. The Ao target is
an entering argument to the allowance computation. This Ao target then serves as' the predicted
level of Ao expected to be realized by the computed set of WRA allowances. This point estimate
of Ao is the only means available for forecasting the level of Ao expected from a given set of
WRA allowances. If correctly computed, the point estimate of Ao is the expected value or mean

Ao produced by the given WRA allowances.




The inventory, maintenance and repair of aircraft sub-assemblies represent a highly
complex and variable system. The ARROWSs computed allowance levels for WRAs do not, in
many instances, result in the target or expected value of Ao being realized. This fact is
unavoidable because Ao is not a fixed quantity but a random variable. In order to provide
meaningful predictions of any random variable, including aircraft Ao, the Probability
Distribution Function (PDF), expected value and variance, must all be characterized.

B. PURPOSE

. This thesis constructs a robust model for forecasting aircraft operational availability based
on the carrier’s WRA allowances. Forecasts are made for each of the Type Model Series (TMS)
embarked on the carrier. The model seeks to improve upon the availability calculations provided

by ARROW:s in two significant areas described below.

1. Characterize the Distribution of Ao

The level of Ao, achieved by carrier based aircraft routinely does not equal the value of
Ao predicted by ARROWSs. This fact should be expected because Ao is a continuous random
variable not a constant. The probability that a continuous random variable will equal any discrete
value is zero. The inability of ARROW:s to characterize the distribution of Ao makes it a less
robust indicator of Ao than is required. Identifying the distribution of Ao along with its mean

and variance will allow forecasting Ao with a confidence interval vice a point estimate.

2. Quantify the Impact of Factors Not Considered in the ARROWs Model.

The primary function of ARROWs is to develop WRA allowances. In order to
accomplish this function, ARROWs, like all models, depends on a variety of simplifying

assumptions. Many of these simplifying assumptions concern factors that have a direct and



significant impact on Ao. Some of these factors are 1) ninety day support period, 2) uniform
flight hour accumulation, 3) no prioritization of maintenance actions and supply requisitions, 4)
mean values used in lieu of random variables for Order and Shipping Timé and Repair Turn
Around Time and, 5) no cannibalization.

By explicitly considering these factors, more meaningful predictions of Ao are possible.

In addition to providing a better overall estimate of Ao, the impact of each of these significant

. contributors to Ao can be quantified.

C. MODEL

This thesis uses simulation to model the system of WRA supply and maintenance
onboard an aircraft carrier. It then characterizes the performance of that system in maintaining
aircraft operational availability. - The simulation is based on data from the OCT97-MAR98
deployment of the USS GEORGE WASHINGTON (CVN-73) and her embarked éir—wing.

Supporting data for the simulation was provided by the Naval Inventory Control Point
(NAVICP), Philadelphia, PA. NAVICP is responsible for the inventory management of all
repairables, including but not limited to WRAs, that support naval aviation. NAVICP operates
and maintains the ARROWSs allowance model and uses resulting z.illowance lists to publish
AVCAL:s for use on the fleet’s aircraft carriefs. Data provided in support of this thesis inciudes
WRA allowances developed for the WASHINGTON’s AVCAL by ARROWS, aircraft
conﬁgurations, and supporting source data. |

This simulation develops Probability‘ Distribution Functions (PDFs) for the level of TMS
Ao achieved by a given mix of WRA allowances. The WRA allowances being examined are
generated by the allowance mode]l ARROWSs. As such, the underlying assumptions of ARROWSs

are examined for potential inclusion in the model. Chapter II of this thesis provides a detailed



examination of how ARROWSs generates WRA allowances and calculates the resulting Ao for
each TMS. In addition, it lists and discusses the use of all source data and underlying
assumptions about the carrier’s supply and maintenance system made in the ARROWSs model. ‘

After the ARROWs model is well understood, the baseline simulation is developed.
Chapter III details the dévelopment of the baseline simulation. The baseline simulation is written
to replicate the ARROWS assumptions and calculated value of Ao, as closely as possible.

Chapter IV discusses the analysis conducted using the simulation. The baseline
simulation attempts to replicate the ARROWs expected value of Ao and improve on it by
characterizing its underlying PDF. This will be accomplished by running the baseline simulation
using the ARROWs calculated WRA allowances and the same raw data and assumptions used in
their determination. By running the simulation multiple times a mean or expected value of Ao
can be determined and compared to that provided by ARROWS. The results of numeréus
simulations will also provide a range of observed values of Ao from which a standard deviation
and a probability density function can be estimated.

ARROWs is an analytic model that uses closed form, steady state mathematical
calculations. The complexity of the math involved dictates that ARROWs make use of
numerous simplifying assumptions. Simulation is not similarly constrained. Once the baseline
simulation and its associated distribution of Ao have been determined, the simulation is used to
quantify the effect on Ao by the more complex factors previously listed.

Chapter IV describes how these more complex factors are incorporated into simulation
excursions. Each simulation excursion independently examines the impact on Ao of a particular
factor or assumption. As in the baseline simulation, each simulation excursion is run numerous

times collecting Ao observations from which a revised distribution of Ao can be determined.



This new distribution is compared to the baseline distribution to determine the impact of the
various factoré on the distribution of Ao.

The final step in the analysis is to calculate the distribution of Ao with all of the
functionality of the simulation operating simultaneously. This distribution of Ao serves as the
best estimator of Ao available from the simulation. It is compared to the distribution of Ao
determined in the baseline simulation, the value of Ao calculated by ARROWs, and the actual
Ao data observed by the USS GEORGE WASHINGTON air-wing. |

Cha‘pter V summarizes the results of the analysis and presents conclusions formed as a
result. It offers recommendations on how these conclusions can be utilized and gives
recommendations for further study and analysis. |
D. SCOPE AND LIMITATIONS

The simulation estimates the distribution of Ao for each TMS in a carrier deckload of
aircraft. These Ao distributions are specific to a given set of WRA allowances. WRA
allowances are developed by ARROWSs based on a candidate file containing a wide variety of
data including failure rates, repair times and prices. This source data is continually being
changed and updated. The candidate file used by this thesis is specific to the USS GEORGE
WASHINGTON’s OCT97-MAR98 deckload. The deckloads and resulting WRA allowances are
different fpr each carrier.

Characterizing the distribution of the random variable Ao allows greater understanding of
the expected performance of a given allowance list. The results of this thesis apply to a specific
air-wing and its associated deckload of aircraft and WRA allowances. However, the GEORGE
WASHINGTON was selected due to the “standard” nature of its deckload. As such, conclusions

will be drawn about the expected distribution of aircraft Ao on other carriers with ARROWs




generated WRA allowances. Quantifying the variance associated with an ARROWs predicted
Ao is of particular interest. Other areas of interest are the overall impact of variations in the,
Flying Hour Program, OST, TAT and Cannibalization on Ao.

The simulation developed by this thesis is fully capable of simulating other carrier
deckloads and WRA allowances. However, the accomplishment of this tasking would be
relatively labor and time intensive. The simulation is not designed for use by persons other than
the author. Data input and output are considered cumbersome. This thesis is intended to
demonstrate the value of simulzition in forecasting aircraft Ao. In the event such a tool is desired

 for recurring analysis, a more user-friendly simulation with improved interfaces is required.



II. NAVICP ARROWS MODEL FOR AVCAL GENERATION

A. OVERVIEW

No dedicated tool for fo-recasting the Ao of carrier based aircraft is currently available for
use by NAVICP or Fleet decision-makers. ‘The only model that relates to Ao is the allowance list
model ARROWSs. ARROW,s‘ uses a target value of Ao as an input parameter. Ao target values
are published in the Weapons System Planning Document [Ref. 3]. ARROWSs develops WRA
allowances that are intended to aéhieve the desired level of Ao z;t the minimum cost using a
Readiness Based Sparing (RBS) algorithm.

For each Type Model Series (TMS) ARROWs provides a minimum cost set of spare
WRAS intended to yield the target value of Ao. This Chapter details the source data, assumptions
and calculations useci by ARROWs in its assertion that the ﬁst of spares it has calculated will
deliver the desired Ao target. Where appropriate, this information is incorporated in the baseline

simulation.

B. ARROWS SOURCE DATA

The source data required for use by the ARROWSs model is detailed in the P.C. ARROWSs
Users Manual, Volume IV [Ref. 2]. These data requirements support a wide range of ARROWSs
capabilities and functions. Only those data elements applicable-to the ARROWSs Type 2.
Availability calculations are ‘discussed here. Although ARROWs includes different
methodologies for calculating Ao, the Type 2 calculation is the only method currently authorized
for allowan'ce development [Ref. 4]. Data used in the Type 2 ARROWs Ao calculation is

described below.



1. The ARROWSs Candidate File

The ARROWs candidate file provides information about all WRAs being considered for
inclusion in the AVCAL. Entries in the candidate file correspond to particular WRA-to-aircraft
combinations. Data in the candidate file is accumulated from a variety of sources including the
Naval Aviation Maintenance and Material Management (AV3M) program and the Naval
Aviation Maintenance Plan (NAMP). The following is a list of data elements associated with

each entry in the candidate file along with a brief description of their use.

* Type Model Series (TMS): TMS is the aircraft type on which an item is installed. If

a WRA applies to an additional aircraft, another entry in the candidate file is required.
Sorting the candidate file by TMS results in a list of all items applicable to a

particular aircraft type (i.e., the TMS configuration).

* National Item Identification Number (NIIN): The NIIN uniquely identifies this item

in the Supply system.

* Maintenance Cycles (MC): MC is the planned number of flying hours, of all aircraft

of this TMS, on this carrier, for 90 days, divided by 100 (one MC equals 100 flying

hours) multiplied by the number of applications per aircraft.

* Maintenance Replacement Factor (MRF): MREF is the expected number of failures

experienced by this item per 100 flying hours that are not able to be repaired by the
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AIMD. Failures of this type must be sent off-ship for repair by a depot maintenance

facility.

* Rotable Pool Factor (RPF): RPF is the expected number of failures experienced by

this item per 100 flying hours that are able to be repaired by the AIMD.

* Tum Around Time (TAT): The average time in days required by the AIMD to repair

this item. TAT includes time for processing, actual repair and time spent awaiting

material.

= Price: The standard price of this item.

2. Site Parameter Data

Site data defines the carrier’s deckload and operating environment. This data applies to

all aircraft or all aircraft of a particular TMS.

*  Order and Shipping Time (OST): The time in days required to fill an off-ship

requisition. OST is currently set at 20 days. This figure applies to all TMS in the

deckload.

* Mean Time To Repair (MTTR): The average time required by O-level maintenance

personnel to remove a failed WRA and replace it with an RFI WRA. MTTR varies

by TMS.
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* Number on CV: The quantity of a particular TMS in the deckload.

* Fully Mission Capable Goal: Naval Aviation commonly expresses Operational

Auvailability in two ways, 1) Fully Mission Capable (FMC), and 2) Mission Capable
(MC). FMC is the percentage of time an aircraft is capable of pc;,rforming all assigned
missions. MC is the percentage of time an aircraft is available to perform some, but
not all of ifs missions. The ARROWSs Type 2 Ao calculation is equivalent to FMC.

ARROWs uses the FMC goal as the Ao target value. The FMC goal varies by TMS.

C. ARROWS ASSUMPTIONS

Like all models, ARROW:s depends on a variety of simplifying assumptions. In order to
replicate ARROWS to the greatest extent possible, these assumptions are documented and
included in the baseline simulation. Many of ARROW’s assumptions are diétated by the closed
form analytic calculations made by the model. Simulation does not make use of these
calculations allowing relaxation of corresponding assumptions. Listed below are the

assumptions used by ARROWs to develop WRA allowances.

1. ARROWs is a Steady State Model

ARROWSs models the carrier’s supply maintenance system as a stochastic queuing
process. Failed WRAs arrive, await service (which equates to obtaining an RFI WRA) and then
exit the system. Probabilities concerning the number of system arrivals and their service times

are limiting or steady state values.
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2. WRA Failures Form a Poisson Process:

The arrival of failed WRAs to the carrier’s supply-maintenance system is modeled as a
Homogeneous Poisson Process. This implies that the time between WRA failures is
exponentially distributed and that arrivals are always single WRAs. ARROWS requires this
assumption for probability calculations involving the number of system arrivals. Failures of
individual WRAs are independent of one another and are also independent of time spent in the

supply-maintenance system.

3. All Requisition and Repair Times are Constants

ARROWs uses constant values for OST and TAT. These times represent the average or
mean time expected to complete an off-ship requisition or repair action based on historical data.
ARROWs assumes time to complete a stock issue, time to initiate requisitions and time to

initiate repairs are zero. These times are negligible or are embedded in the OST and TAT values.

4. Additional Assumptions and Characteristics of ARROWSs

The ARROWSs Type 2 Ao calculation assumes that WRASs can fail while an aircraft is
down. ARROWS’ calculations place no limit on the repair capacity of the carrier’s AIMD. In
addition, ARROWSs provides no information on the amount of repair capacity required to
maintain the WRA allowances it computes.

The number and types of aircraft are constant in all ARROWSs computations. ARROWs
does not apply flight hours to individual aircraft. The entire flying hour program is applied to the
individual WRAs that make up the TMS configuration. Multiple applications of the same WRA,
on this TMS, are accounted for with an increas.e in flying hours proportional to the number of

installations. A total number of failures for the individual WRA is calculated. Based on total
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failures and the number of spares carried, the availability of individual WRAS (a,) is computed
and used to calculate the Ao of the entire aircraft. The end result is that the flight hour program

is uniformly distributed over all aircraft in a TMS.

D. ARROWS TYPE 2 Ao CALCULATION

The description of the ARROWSs availability calculations described below is provided for
background use only. It is intended to demonstrate the methodology used by ARROWs to
calculate Ao. A more thorough derivation of these concepts is available in the PC ARROWSs

Users Manual [Ref. 2].

1. Overview

The Ao required for each TMS is an ARROWs input. The ARROWSs RBS algorithm

desires an optimal solution to the following problem.

Min: Cost of the WRA allowance list

ST: TMS Availability > Target Ao

ARROWS uses marginal analysis to solve this problem and a true optimal solution may or may
not be obtained. TMS availability is continuously re-evaluated, based on the addition of more
WRA, using the ARROWS Type 2 Ao calculation. When TMS availability exceeds the Ao
target, the solution to the problem is the list of WRA allowances on which the TMS Availability
_is based.

The ARROWS Type 2 Ao calculation is based on two assumptions 1) all WRA failures
are independent, and 2) all WRAs installed on an aircraft are required for that aircraft to be
operational. Operational in this context equates to FMC. The Ao target is the FMC goal

obtained in the ARROWs site parameter data for each TMS.  These assumptions allow the
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aircraft to be modeled as a series structure [Ref. 5:p. 476]. The probability that a series structure
is functioning is then the product of the probabilities that each of its components is functioning.
The Ao for each TMS is computed as follows:
Ao= ﬂ Qo,
i=1
where,
Ao = operational availability for a given TMS;
a,; = operational availability for WRA; (;2111 applications for this
TMS);
n = the number of WRAs in the TMS being examined.

In order to calculate the Ao for a TMS, ARROWSs must first calculate the individual
availability’s of all its installed WRAs. These calculations are based on queuing theory.
Calculations are performed on each type of WRA separately. In other words, each WRA type is
treated as having its own queue. Little’s formula states [Réf. 5:p. 413],

L=A*W
where,
L = the average number of WRAs in the system;
A = the average arrival rate of entering WRAs;

W = the average amount of time a WRA spends in the system.

In this system, L is the average number of failed WRAs, of a given type, in the supply-
maintenance system. This term is commonly referred to as “pipeline”; A is the rate at which

WRAS of this type arrive at the system; W is the average time it takes to provide an RFI WRA.
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Each WRA type has its own unique values for these variables. Given this queuing system and
the assumptions stated in paragraph I1.C.2, the number of WRAs in the system is Poisson
distributed. The probability that N WRAs are in the system at any time is obtained using Palm’s

Theorem as follows:

e l*rr
P(IN=n)=——""
n!
where,

n = number of WRAs, of this type, in the system;

L = pipeline, for this WRA [Ref. 6:p. 460].

2. Pipeline

Pipeline refers to the average number of WRAS in the supply-maintenance system.
Pipeline is divided into two parts, supply pipeline and repair pipeline. Supply pipeline represents
the average number of WRAs, of this type, awaiting the receipt of an off-ship requisition.
Supply pipeline is computed as follows:

_ MRF * MC *OST
- 90Days

Ly

Repair pipeline represents the average number of WRAs, of this type, awaiting repair by the

carrier’s AIMD. Repair pipeline is computed as follows:

_ RPF *MC *TAT
B 90Days

Ly

Total pipeline is simply the sum of supply pipeline and repair pipeline, noted below.

L=L,+L,
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3. Expected Backorders

Failed WRAs arrive at the supply-maintenance system and await an RFI asset to be made
available. If an RFI asset is on-hand in the Supply Department, wait time is zero and the failed
WRA bypasses the queue. Failed WRAs for which no stock is on-hand in the Supply
Department enter the queue and are called backorders. An off-ship requisition or a completed
repair must be received to fill each backorder. Backorders are serviced on a first come first serve
- basis. In the case where no stock is carried, Expected Backorders (EBO) is equal to expected
demand. As the inventory level of each item of stock increases its. depth, the EBO decreases.

ARROWs is an allowance development model. EBO is calculated based on the
allowance for the WRA being examined which is not known at the time the model is run. As
such, ARROWs calculates .the EBO for each item of potential stock carried and saves these
values for later use. EBO is calculated for each item of poténtial stock carried until its value is

negligible. EBO is calculated as follows:

EBO= i(x—S)*P(X=x) ,

x=S+1
where, S = Quantity of WRASs stocked (i.e., allowance quantity).

Substituting Palm’s theorem from above, the equation for EBO becomes,

oo . ~-L *Lx
EBO= Y (x—S)’e——}—'— .

x=5+1

4. Average Customer Wait Time

From Little’s formula, the average waiting time for all WRA failures is the pipeline

divided by the arrival rate of all WRAs. If EBO is substituted for total pipeline then the average
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waiting time for backordered items is obtained. The time required to satisfy a backorder is the

Average Customer Wait Time (ACWT), noted below,

EBO
ACWT = TR

where, A = (MRF+RPF)*MC.
As with EBO, ACWT is dependent on the number of spare WRAs stocked on the carrier.
ACWT is computed for all levels of potential sparing, and these values are saved for use in

allowance development.

5. WRA Operational Availability

WRA Operational Availability (a,) is the percent of time a WRA is available to perform
its mission. Ao is normally calculated at the aircraft or system level but ARROWS examines the
a, of each WRA. WRA a, is a function of EBO. ARROWSs calculates EBO for all levels of
potential stocking and likewise calculates a, for each value of EBO. This range of a,’s is saved

for use in calculating Ao at the TMS level. WRA a, is computed as follows:

1
(Failures * MTTR) + EBO

#ofAircraft

a. =

6. ARROWs Allowance Development

ARROWs is an RBS sparing model. As such, it seeks to minimize the total cost of all
spare WRAs carried subject to achieving the target Ao for each TMS. To accomplish this,

ARROWSs computes a Cost Effectiveness (CE) ratio for each WRA potentially stocked. CE ratio
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is a measure of improved readiness per dollar spent on spares. CE ratio is calculated using the

following equation for each WRA stocking level:

_ Price
(Decrease in ACWT) * (MRF+RPF)*MC

CE

where, Decrease in ACWT = the reduction in ACWT by adding one unit of Stock to thq

allowance list.

Once the CE ratios for a given WRA ﬁnd each level of potential stock, for that WRA, are
computed, the entire process described above is repeated for each WRA in the TMS |
configuration. When all WRAs have been examined each WRA has a CE ratio for each unit of
stock that may potentially be carried. These CE ratios are then ranked from lowest to highest.

This list of stock selections is called the “ARROWS shopping list”.

Using the ARROW:s shopping list, WRAs are selected for stocking based on their CE.
As each item of stock is added, a, for that WRA is increased. This results in a corresponding
increase in the product of all WRA a,’s, raising the overall Ao of the TMS being considered.
When Ao reaches the FMC Goal, (the Ao target selected by the user for this TMS) the process is

complete. For the TMS under consideration, the expected Ao equals the FMC goal.

7. ‘Allowance Development for Multiple TMS

The methodology for calculating WRA allowances to support multiple TMS is not
speciﬁcally identified in the PC ARROWSs Users Manual. In general, the user selects the order in
which ARROWs will spare the various TMSs. The first TMS evaluated is done so according to
the description above. Subsequent TMSs use the allowances computed for previous TMSs as a

cumulative input. For parts common to more than one TMS, the cost and readiness contributions
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are prorated over all applicable TMSs according to their relative demands. If each TMS is being
spared to an Ao target, which is normally the case, this method will create a total WRA mix that

supports higher Ao levels than specified by the individual TMS targets. [Ref. 7:p. 4]
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III. SIMULATION MODEL DEVELOPMENT

A. OVERVIEW

The purpose of this simulation is to characterize the distribution of Ao for carrier based
éircréft. Aircraft Ao is assumed to be solely dependent on the operability of installed WRA .
This simulation models the operation of aircraft to simulate usage and failure of installed WRAs.
Further, it modelé the ability of the supply-maintenance system to provide RFI WRAs when
installed WRAs fail. The effectiveness with.which this is accomplished will determine the

observed Ao of individual aircraft and overall mean Ao for each Type Model Series (TMS).

1. Programming Tools

The simulation is written in Java using the Java Development Kit (JDK) Version 1.2
[Ref. 8]. Javais an object oriented programming language well suited for use in simulation. To
ensure readability by persons with a limited programming background, the simulation
descriptions offered in this Chapter make no references to Java coding or Java specific
terminology.

In addition to the JDK, this simulation utilizes another software package, SIMKIT
Version 1.0 [Ref. 9]. SIMKIT is written in Java and provides a collection of programming tools
used in developing event-based simulations. Event-based simulafions use specific events, not
fixed time increments, to advance through the simulation [Ref 10:p. 3]. SIMKIT provides the

- underlying event list and event handling software to support the simulation.

2. The Baseline Simulation

As previously stated, Java is an object oriented programming language. The Java objects

created in this simulation are easily related to actual objects on the aircraft carrier. These objects
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are aircraft, the air-wing, the Air Tasking Order (ATO), the Supply Department and the Aviation
Intermediate Maintenapce Department (AIMD). The simulation builds these objects to behave
and interact much as they would on an actual aircraft carrier.

The methodology of the baseline simulation is described in this Chapter by describing
each of the simulated objects. References to simulated objects in this Chapter are italicized.
This convention allows the reader to distinguish between simulated objects and the physical
objects they represent. Departures from assumptions used by the ARROWSs allowance model
will be noted as they appear in the object descriptions. The description of each object follows
this format.

» Data Requirements: Describes the source data required to create the object and how

that data is stored and managed for use during the simulation.

* Functionality: Describes what this object does in the simulation and how it is done.

It also describes how this object interacts with other objects and the results of those
interactions.

* System Performance Measures Available for Output: Lists the useful data available

from this object at the conclusion of the simulation.
B. BASELINE SIMULATION OF AIRCRAFT OBJECTS

Each aircraft in the air-wing is modeled as a discrete object. All aircraft are handled by
the simulation in the same manner and share the same functionality. There are nine different
types of aircraft corresponding to the nine different TMSs represented in the carrier deckload.

The number and types of aircraft, along with their ARROWSs Ao target, are provided in Table 1.
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T™MS Name Quantity ARROWs Ao
Target
EA6B Prowler .600
ES3A Shadow 2 .600
RF14B | Tomcat (TARPs) 8 .560
E2C2 Hawkeye 4 560
F14B Tomcat 12 .640
FA18C | Hornet 36 .660
S3B Viking 8 .560
HH60H | Seahawk 2 .600
SH60F | Seahawk 3 .660

Table 1. USS GEORGE WASHINGTON Deckload Compositioh
1. Aircraft Data Requirements

The primary data used to construct an aircraft is the TMS WRA configuration and the
failure rates associated with those WRAs. This data is obtained from the ARROWs candidate
file. Three parallel arrays are created in each aircraft to hold part number, Mean Time To Failure
(MTTF) and Time To Failure (TTF) for each WRA installed in its applicable TMS.

Each element in the parallel arrays corresponds to an installed WRA. If a WRA has
multiple installations, it will appear as an element in the arrays the appropriate number of times.
This is a departure from ARROWs which héndles multiple installations by an appropriate
increase in Maintenance Cycles (MC). The parallel arrays are populated in the following
manner. Part number is a pseudonym to the WRA NIIN assigned for the simulation. MTTF is
calculated by combining the MRF and RPF found in the candidate file. TTF is obtained by

sampling from an exponential distribution with mean value equal to MTTF.

! Tactical Air Reconnaissance Pod (TARPs)
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Other data required by each aircraft are tail number and Mean Time To Repair (MTTR).
Tail numbers are assigned by the air-wing when aircraft are constructed. Tail numbers range
from one to the number of each_TMS in the deckload, for each TMS. The MTTR is constant for

all aircraft of a given TMS and is available in the ARROWs site parameter data.

2. Aircraft Functionality

a. Aircraft Fly Sorties

The priﬁmry function of an aircraft is to fly sorties. Sorties are assigned by the
air-wing and commence at the time of tasking. A sortie is assigned to an aircrafft if, and only if,
that aircraft is in an “up” status. Once a sortie is assigned, the aircraft immediately schedﬁles an
end of sortie event at the appropriate time. At this time, the gircraft applies the flight hours
incurred during the sortie to all of its installed WRAs. This is accomplished by looping through
the aircraft’s array of TTFs and decrementing each by the number of flight hours incurred by the

aircraft.

b. Aircraft Monitor Installed WRAs for Failures

Aircraft remain in an “up” status if the TTF for all installed WRAS is greater than
zero after a sortie. Aircraft remaining in “up” status are immediately available for additional
sortie assignments. Sortie requirements, duration and frequencies are discussed in the air-wing
and ATO objects. In the event one or more TTFs are less than or equal to zero, the applicable
WRAC(s) is considered failed and the aircraft is “down”. Once an aircraft is “down” it cannot be

assigned sorties and therefore its WRAs incur no additional flight hours. As a result, WRAs
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cannot fail while an aircraft is “down”. This is in contrast to the ARROWSs assumption that
WRAS can fail while an aircraft is “down”.

Once an aircraft is “down” it remains so until such time as the replacement
WRAC(s) it requires is provided. The means by which RFI WRAs are made available is described
in detail later in the Chapter. When a RFI WRA is made available to a “down” aircraft, the new
asset is installed by re-sampling from the exponential distribution with the appropriate MTBF for
that WRA. This value is then recorded in the appropriate location in the TTF array. If an
additional RFI WRA is reQuired, the aircraft remains “down” until that asset is made available.
If this was the only replacement WRA required by the aircraft, the aircraft is returned to an-“up”
status in one MTTR.
The minimum time an aircraft can be in a “down” statu; is one MT;I‘R. This

occurs when the RFI WRAC(s) required by the aircraft is available from the Supﬁly Dept. In all

other instances, downtime is the sum of MTTR and the time to furnish the required RFI WRA(s).

3. Aircraft System Performance Measures Available for Output

Each aircraft maintains a record of sorties flown, hours flown and airframe Ap.
Examination of these values is used primarily for troubleshooting. The Air-Wing provides these
same statistics for each TMS as a whole.

C. BASELINE SIMULATION OF THE AIR-WING

The air-wing consists of arrays of aifcraft objects. Each TMS in the deckload has a

corresponding array in the air-wing. The number of aircraft in each TMS array is the number of

that TMS in the deckload. The air-wing also contains an array of “down” aircraft. Aircraft of
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any TMS are added to this array at the time of failure and removed from this array when they are

returned to an “up” status.

1. Air-Wing Data Requirements

The quantity of each TMS in the deckload is required to construct the air-wing. The air-
wing uses these quantities to construct the required aircraft for each TMS. These aircraft are
then used to populate their corresponding arrays. The quantity of each TMS is found ir; the
ARROWs site parameter data. .

Also required for air-wing construction is the sortie duration for each TMS. The air-wing
uses this data in the scheduling of aircraft sorties. This figure is set at two hours for all TMS in

the baseline simulation.

2. Air-Wing Functionality

a. Air-Wing Assigns Sorties to Aircraft

The air-wing receives flight schedule requirements at the start of each day.
Requirements are provided by the ATO in the form of pairs of integers. The first integer
represents the TMS for which the sorties apply and the second is thé number of sorties assigned.
The air-wing loops through the applicable TMS array and attempts to assign sorties. Each
aircraft is queried to determine if it is in an “up” status. If an aircraft is “up”, it is assigned a
sortie and the sorties required quantity is decremented. If an aircraft is “down”, the air-wing
moves on to the next aircraft in the TMS array.

If all sorties for a TMS were satisfied in the first loop through the TMS array, the

air-wing is through with that TMS until the start of the next day. Otherwise, the air-wing saves
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the number of sorties not assigned for assignment later in the day. After waiting one TMS sortie
duration, the air-wing attempts to assign remaining sorties. In the interim, aircraft previously
“down” can be repaired and aircraft assigned earlier sorties can fail. This process continues until
all sorties are assigned or there is no time left in the day to fly them.

The number of sorties an aircraft can be assigned in one day is limited to three.
This is consistent with actual practice. As aircraft in the simulation fail, aircraft in an “up”
status incur additional sorties to meet the required flying hour program. If the sorties are unable
to be assigned on the day scheduled then the sorties are scrubbed. The simulation does not
forward soﬁies to the next flying day. This convention results in a potential decrease in total
flying hours incurred for this TMS throughout the simulated period. If this phenomenon were
significant, it would bias the estimate of Ao by rewarding poor Ao on a given day with reduced
flight hours. Numerous simulation runs revéal that the loss of scheduled sorties is a fare event.
When observed, the percent of total flight hours lost is negligible.

The air-wing attempts to distribute flying hours equitably among all aircraft
within each TMS. Flight hours vary by aircraft because sortie assignment depends on whether
the aircraft is “up” or “down”. Aircraft that are “down” for extended periods incur less flight
hours than aircraft that are not. What can be accomplished is that all aircraft are potentially
assigned the same amount of sorties. - The air-wing accomplishes this by recording where in the
TMS array the last sortie assignment was made. The next time a sortie needs to be assigned, the
air-wing checks the next aircraft in the array, instead of continually checking the early elements
in the array first. Addition of this feature to the simulation markedly improved flight hour

distribution among the aircraft of each TMS.
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b. Air-Wing Tracks “Down” Aircraft

The air-wing is notified when any aircraft is “downed”. At this time, the air-
wing places a copy of this aircraft in the “down” aircraft array and an observation of a time
varying statistic for the number of “down” aircraft for each TMS is made. A similar observation
is recorded when the aircraft is returned to an “up” status. This statistic allows the air-wing to
calculate Ao for each TMS. The “down” aircraft array is also used by the air-wing in the

distribution of RFI WRAs to the aircraft that require them.

c. Air-Wing Distributes RFI WRAs

RFI WRAs are made available to the air-wing not to individual aircraft. This
allows the air-wing to prioritize between two aircraft that require the same WRA. Priority is
given to aircraft that will be returned to an “up” status with receipt of this WRA. If more than
one aircraft fall into this category, preference is given to the TMS with lowest current value of
Ao. If all the aircraft are of the same TMS, the selection is based on position in the “down”
aircraft vector. If no aircraft will return to an “up” status with the receipt of this WRA (i.e.
additional WRASs are required for repair), priority is again given to the aircraft whose TMS has

the lowest current value of Ao.

3. Air-Wing System Performance Measures Available for Output

The air-wing calculates and reports the value of Ao for each TMS. TMS Ao is the
simulation’s primary performance measure. The air-wing also calculates sorties and hours flown
by TMS. These figures are used primarily for troubleshooting. In the majority of simulation
runs, these values are equal to the sorties and flight hours assigned by the ATO. In instances

where these values are not the same, the differences are negligible.
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D. BASELINE SIMULATION OF THE AIR TASKING ORDER (ATO)

The ATO passes daily flight requirements to the air-wing for assignment and execution.

1. ATO Data Requirements

The data required to construct the ATO is the flying hour program for each TMS. The
ARROW:s candidate file contains the Maintenancev Cycles (MC) for each TMS. MC is the
number of flight hours required during a 90 day period by all aircraft of a particular TMS times
100. The ATO distributes these flight hours evenly across the 90-day period. Average sortie
duration is assumed to be two hours for all TMS. Therefore, the number of sorties required by

each TMS per day is,

(MC)(100hrs)

TMS _ Sorties| Day = (2hrs)(Q0days) *

The number of sorties per day must be an integer. In cases where this is not true, the
requirements must be adjusted accordingly. For example, MC for the ES3A is 6. Two ES3As are
available to meet this requirement. TMS_Sorties/Day = 3.33. The most even distribution of
integer values equates to 69 days with 3 sorties and 21 days of 4 sorties. These sortie
requirements aré spread over the 90-day period such that heavy and light flying days are evenly
dispersed.

The final format of the data is a matrix of TMS sortie requirements. Rows in the matrix
represent a day of a month and columns represent TMS. The number of matrices is equal to the

number of thirty-day months being simulated.
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2. ATO Functionality

The function of the ATO is to provide daily sortie requirements, for each TMS. These
requirements are passed to the air-wing for assignment to individual aircraft and execution. At
the start of each day, the ATO passes a groupiﬁg of ordered pairs of integers to the air-wing.
These ordered pairs equate to a TMS type code and a number of sortie requirements for that
TMS. The TMS type code is the column number of the sortie requirement matrix. This process

continues until all requirements have been passed.

3. ATO System Performance Measures Available for Qutput

The ATO does not track or report any system performance measures.
E. BASELINE SIMULATION OF THE SUPPLY DEPARTMENT

The Supply Dept. provides RFI WRAs to the air-wiﬁg for use in repairing aircraft. RFI
WRAS are obtained in one of three ways, 1) issue of an onboard spare, 2) issue of a repaired
WRA carcass, or 3) turnover of a Direct Turn-Over (DTO) requisition received from off-ship.

The Supply Dept. also interacts with the AIMD in managing the repair of failed WRAs.

1. Supply Department Data Requirements

The Supply Dept. is constructed using a list of all WRAs installed on any TMS and an
allowance value‘for those WRAs. The list of WRAs is obtained from the ARROWS candidate
file and allowance values are an ARROWSs output. When the Supply Dept. is constructed, a
matrix is developed to manage and track each WRA. The rows in the matrix correspond to the
WRA part number. WRA part numbers are locally assigned aliases for WRA NIINs. Each

unique WRA is represented by a single row in the matrix regardless of the number installed on
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one or more TMS. The columns in the matrix correspond to WRA specific counters. These
counters include.

*  On-hand balance

= Allowance

* Due in (from an AIMD stock repair or stock requisition)

* Outstanding (OS) DTO requisitions

= EXREPs in AIMD
The allowance counter is never adjusted. This value allows the Supply Dept. to reset itself at the
beginning of each simulation run. On-hand balances, for all WRAEs, are initially set equal to the
WRA allowance value. All other counters are set equal to zero.

The Supply Dept. also requires values for numerous time parameters. The most
significant of these values is Order and Shipping Time (OST). The OST is obtained from the
ARROWs site parameter data and is equal to 20 days in the baseline simulation. This value of
OST applies to both stock and DTO requisitions. Other time parameters include 1) time required
to make an issue, 2) time required to pass material to the AIMD, 3) time to generate requisitions,
and 4) time required to turnover material to the air-wing. Consistent with ARROWS, these

values are all set equal to zero in the baseline simulation.

2. Supply Department Functionality

a. Supply Dept. Issues on-hand Material and Forwards Carcasses to the

AIMD for Repair

Individual aircraft notify the Supply Dept. of WRA failures. This notification

happens with no delay and includes the part number of the failed WRA. Note that all WRA
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requirements are for one each. If multiple WRAs of the same type fail in the same sortie, the
Supply Dept. is notified multiple times. This is a departure from the ARROWSs model in that
multiple failures of the same WRA never occur. ARROWS handles multiple installation of the
same WRA on an aircraft by increasing the rate that item fails proportional to the number of
installations.

The Supply Dept. immediately checks the on-hand balance to determine if an issue
. can be made. If material is available the on-hand balance counter is decremented and the RFI
WRA is passed to the air-wing for distribution to the requiring aircraft. Simultaneously, the
applicable Due in counter is incremented, and the Supply Dept. notifies the AIMD to begin a
stock repair action for the WRA carcass.

If an RFI aséet is not available for issue, the Supply Dept. examines the allowance
value for this WRA to classify the demand as Not Carried (NC) or Not In Stock (NIS). The
failed WRA is then passed to the AIMD to attempt an Expedited Repair (EXREP) and the
EXREPs in AIMD counter is incremer;ted. Note that the Supply Dept. is able to distinguish
between stock and EXREP repairs. This functionality is included for simulation excursions. In
the baseline simulation, like ARROWs, repairs of stock and EXREP carcasses are completed by

the AIMD in one Turn Around Time (TAT).

b. Supply Dept. Generates Requisitions

(1) Generates Stock Replenishment Requisitions

Stock replenishment requisitions are generated by the Supply Dept. when it is

notified by the AIMD that a stock repair action is unable to be performed. This notification
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provides the applicable WRA part number. The Supply Dept. then schedules the arrival of the

stock replenishment requisition in one OST.

(2) Generates Direct Turn-Over (DTO) Requisitions

Direct turnover requisitions are generated when the Supply Dept. is notified
by the AIMD that an EXREP was unable to be effected. The outstanding direct turnover
requisition counter is incremented and the EXREPs in AIMD counéer is decremented. The
receipt of the direct turnover requisition is scheduled in one OST. The Supply Dept.
distinguishes DTO from stock requisitions for use in simulation excursions. In the basélipe_
simulation, like ARROWs, all requisitions, regardless of type, arrive in one Order and Shipping

Time (OST).

c. Supply Dept. Receives and Distributes RFI WRAs

The Supply Dept. receives RFI WRASs from two sources, the AIMD and the
wholesale supply system. Receipts are further distinguished as to whether they are intended for
DTO or stock. Regardless of sdurce or original intended recipient, all WRA receipts are handled
in a similar fashion. This allows the Sitpply Dept. the capability to efﬁciéntly divert s:tock
receipts to fill DTO requirements. DTO requirements can be outstanding DTO requisitions or
EXREPs in the AIMD under repair. Use of a WRA intended for stock to satisfy either type of
DTO requirement is termed a Stock Divert.

Stock Diverts are éritical to achieving the level of Ao calculated by ARROWs.
ARROWS does not link individual WRA failures to a specific receipt time in the future. Instead,
it uses the pipeline concept, described in Chapter II, to evaluate the expected time required for

the next WRA, of this type, to become available from any source. This is consistent with the
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actual supply-maintenance system onboard the aircraft carrier. The AIMD’s Production Control
Officer and the Supply Dept.’s Aviation Support Officer (S-6) manage the use and disposition of
all RFI WRAs to ensure all DTO requirements are satisfied in the most timely manner possible.

The Supply Dept. is notified by the AIMD when a stock repair action has been
completed. The Supply Dept. examines the outstanding DTO and EXREPs in the AIMD counters
to determine if a DTO requirement for this WRA exists. If either counter is greater than zero the
WRA, just received for stock, is required to repair an aircraft. In this case, the Supply Dept.
increments the Stock Diverts counter and passes the WRA to the air-wing for distribution. If no
DTO requirement for this WRA exists, it is received for stock by incrementing the on-hand
balance counter and decrementing the Due In counter. Receipts for stock requisitions'are
handled in the same manner as stock receipts from the AIMD.

The Supply Dept. is notified .by the AIMD of completed repairs to an EXREP
WRA. The Supply Dept. examines the applicable EXREP in AIMD counter to determine if an
EXREP DTO requirement still exists. If so, the Supply Dept. decrements the EXREP in AIMD
counter and forwards the WRA to the air-wing for distribution. If the EXREP in AIMD counter
is equal to zero, the outstanding DTO requisition counter is checked. If a DTO requirement of
thig type exists, the Stock Diverts counter is incremented and the WRA is passed to the air-wing.
Note, use of a completed EXREP to fill an outstanding DTO requisition is a Stock Divert
because the completed EXREP is intended as a payback for a previously diverted WRA. If the
outstanding DTO requisition counter is likewise equal to zero, the WRA is placed in stock by
incrementing the on-hand balance counter and decrementing the Due In counter. Receipt of a
DTO requisition is handled in the same manner as the receipt of a repaired EXREP WRA

through adjusting the corresponding counters.
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3. Supply Department System Performance Measures Available for Output

The Supply Dept. tracks performance through six department total counters. These
counters include,

® Total Issues

* Total NIS

= Total NC

= Total off-ship stock replenishment requisitions

= Total off-;hip DTO requisitions

= Total Stock Diverts
These statistics are reported for each simulation run. The off-ship requisition totals, stock and
DTO, are used as indicators of supply-maintenance system performance in supporting the air-
wing. The totals for issues, NIS and NC are used to compute Supply Net and Gross
Effectiveness. These performance statistics measure the Supply Dept.’s ability to meet demands.

They are calculated as follows:

Total _ Issues
(Total _ Issues) + (Total _ NIS) + (Total _ NC)

Gross _Eff =

Total _ Issues
(Total _ Issues) + (Total _ NIS)

Net _ Eff =

Total Stock Diverts are used to gauge what percent of requirements, not filled by an issue
from stock, are satisfied earlier than would be expected due to the efficient distribution of RFI

WRA assets by the supply-maintenance system.
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F. BASELINE SIMULATION OF THE AIMD

The AIMD receives WRA carcasses from the Supply Dept. for repair. Repair actions are
of two types, stock replenishment and EXREP. If repairs can be effected, an RFI WRA is
returned to the Supply Dept. in one Turn Around Time (TAT) for appropriate distribution. Note
that in the baseline simulation, as in ARROWSs, EXREP and stock replenishment repair action
take the same amount of time to complete. If repairs cannot be made, the Supply Dept. is notified

so the appropriate off-ship requisition can be generated.

1. AIMD Data Requirements

The AIMD is constructed using the same comprehensive list of WRAs developed for the
Supply Dept. WRAs are identified by their locally assigned part numbers. In addition to part
number, the AIMD requires the TAT, Maintenance Replacement Factor (MRF) and Rotable Pool
Factor (RPF) for each WRA. All data réquirements are obtained from the ARROWS candidate |
file. A matrix is constructed to hold the required data. Rows in the matrix correspond to each

WRA. The columns represent TAT, MRF and RPF.

2. AIMD Functionality

a. Repairs WRAs for Return to Supply Dept. Stocks

The AIMD is notified by the Supply Depz. that a failed WRA requires repair for
return to stock. Prior to initiating repair, the AIMD determines if repair is possible. A random
number is generated between zero and one. This number is then compared to the proportion of
total failures, for this WRA, that can be repaired. The proportion able to be repaired is calculated

as follows:
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RPF
RPF + MRF

Pr oportion _Re pairable =

If the random number is less than the proportion repairable, the WRA can be
repaired. The AIMD schedules the delivery of the repaired WRA to the Supply Dept. in one
TAT. If the random number is greater than the proportion repairable, the WRA cannot be
repaired. The general term for this case is Beyond Capability of Maintenance (BCM). In this
instance, the Supply Dept. is immediately notified that the stock replenishment repair action
could not be effected. The Supply Dept. will in turn generate the appropriate requisition to

replace this WRA from off-ship.

b. Repairs WRAs for Inmediate Use by an Aircraft (EXREP) |

EXREP repair actions are handled in the exact fashion as stock repair actions.
The AIMD first determines if repairs can be made. Based on this determination it schedules
delivery of the RFI WRA in one TAT or immediately notifies the Supply Dept. that repair of an
EXREP could not be effected. Stock and EXREP repair actions are differentiated to provide
additional functionality in later variations of the simulation. In the baseline simulation the only
functionality added is that Supply Dept. is able to distinguish between DTO and stock

requirements.

3. System Performance Measures Available for Output

_ The AIMD uses a variety of counters to collect data on repair activities conducted. These
counters are listed below.
=  Total EXREP inductions

* Total EXREP Beyond Capability of Maintenance (BCM)
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= Total EXREP repairs

» Total stock inductions

* Total stock BCMs

=  Total stock repairs
The AIMD also makes use of two time varying statistics, one for stock and one for EXREP.
These statistics are used to measure the average amount of items in the repair process at any

. given time.
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IV. SIMULATION RESULTS AND ANALYSIS

A. OVERVIEW

This Chapter provides analysis of the results of the availability simulation. Each
simulation is run 100 timés. Simulation output is collected and recorded in summary
reports that are provided as Appendices A through L. Summary reports are divided into
three performance sections, 1) Ao, 2) AIMD, 3) Supply Department.

The first half of the Chapter focuses on tﬁe baseline simulation. The baseline
simulation is constructed to replicate the ARROWS estimate of> Ao. The results of the
baseline are used to determine if the WRA allowances established by ARROWs yield the
Ao desired. In addition to quantifying Ao, the baseline demonstrates that Ao is a random
variable. As such, the variance and underlying distribution of Ao are determined.

The second half of the Chapter analyzes each of the simulation excursions.
Simulation excursions examine a variety of factors not éonsidered in ARROWs or the
baseline simulation. Discussion of each excursion includes an explanation of why it was
investigatéd and how the excursion was integrated into the baseline simulation. The
results of each excursion are then compared with the résults of the baseline to determine

-the overall impact of each excursion on the distribution of Ao.

B. ANALYSIS OF THE BASELINE SIMULATION

Appendix A provides a summary report of all baseline simulation output.
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1. Characterizing the Distribution of Ao
The first stated purpose of this thesis is to demonstrate that Ao is a random
variable. As such, it can be characterized with a mean value, a variance and an
underlying distribution.
a. Determining the Mean Value of Ao
The baseline simulation is designed to replicate ARROWs as closely as
possible. As such, the simulated Ao for egch TMS should be approximately equal to the
ARROWs calculated Ao as well as the ARROWSs Ao target. The ARROWs calculated
Ao, for each TMS, is an output of the model resulting from the Type 2 Ao calculation
- described in Chapter II. This value is typically very close to the TMS Ao traget which is
an input to the model.
The simulated mean values of Ao are obtained by averaging the 100
observations of Ao obtained by running the baseline simulation. These values along with
the ARROWs calculated and target Ao’s are provided in Table 2. A graphical

representation is found in Figure 1.

E2C2 | EA6B | ES3A | F14B | FA18C | HHG60H | RF14B | S3B | SH60F

Simulated .604 601 550 .614 .630 .684 596 | .608 | .698
Mean Ao

ARROWs .602 .610 557 584 .638 .660 567 | .601 | .662
Calc. Ao

ARROWs .600 .600 .560 560 .640 .660 560 | .600 [ .660
Target Ao

Table 2. Ao by TMS

40



ARROWSs vs Simulated Ao

0.9
0.8 : BMARROWSs
0.7 Target
o OARROWS
Ao o ] Calculated
0.3 1 B Simulated
0.2
0.1 -
E2C2 EA6B ES3A F14B FA18C HH6OH RF14B S3B  SH6OF

TMS

Figure 1. ARROWs vs Simulated Ao

In five of nine cases, the simulated values of Ao are approximately equal
to the ARROWs calculated and target Ao. The exceptions are the F14B, RF14B, HH60H
and the SH60F which have simulated availability’s higher than either the ARROWSs
calculated or target Ao.

The average simulated Ao is only an estimate of the true simulated mean
value of Ao. The Central Limit Theorem states that the distribution of the estimated |
mean value of a random variable is Nonﬁally distributed regardless of the random
variable’s underlying distribution. This allows for a more rigorous test of the hypothesis
that simulated Ao = the ARROWs calculated Ao, using a Standard Z test. The test is

conducted as follows:

Null Hypothesis (Ho): Simulated Ao = ARROWs calculated Ao

Alt. Hypothesis (Ha): Simulated Ao # ARROWs calculated Ao
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. (Simulated Ao)-(ARROWS Calculated 20)
Test Statistic: z= R ,
S

where,

§ = Standard Deviation of Sample Means;
n = Number of Samples = 100;

Critical Value: Z= + 1.96 = 95% Confidence, two sided test.
Test: If Izl < [Z, then accept Ho. Else, reject Ho.

Tﬁe results of the Standard Z test are mixed. Four of the nine TMS,
namely E2C2, EA6B, ES3A and S3B, pass the test and do not reject the hypothesis that
simulated Ao = ARROW:s calculated Ao. One TMS, FA18C, fails the test based on
sim;llated Ao being too low to accept the hypothesis that it is equal to the ARROWs
calculated Ao. The remaining TMS, F14B, RF14B, HH60H and SH60F, fail the test
based on simulated Ao being too high to equal ARROW:s calculated Ao.

Based on the results of the Standard Z testing, it cannot be confidently
stated that the simulation and ARROW:s calculated mean availability’s are statistically
equivalent. The specific reasons for the differences are not determined. All that can be
stated is that the simulation provides a relatively accurate approximation of ARROWs
with respect to Ao.

b. Determining The Variance of Mean Ao

The simulated variance of Ao is estimated, for each TMS, using the
sample variance of the 100 mean values of Ao resulting from the 100 baseline simulation
runs. Each individual simulation run also represents a mean value of Ao. This mean

value is the Ao estimate for the population of each TMS in the carrier deckload for that
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simulation run. The result is that TMS with high populations in the deckload, like
FA18C and F14B, have signiﬁcéntly more observations of individual aircraft Ao than
TMS with small populations such as ES3A and HH60H.

For example, the FA18C has 36 aircraft operating in each simulation run
and 100 runs are simulated. The result is 3600 individual FA18C aircraft Ao
observations. The ES3A has only two aircraft operating in each simulation run. 100 runs
yields only 200 individual ES3A aircraft Ao observations.

The standard deviation for the 100 observations of mean Ao, for each

TMS, is estimated empirically as follows:

n

Z(Aoi - Ko)2

i=]

§
TMS _ Ao n—1

where,
Stas _ o = O1Ms _ Ao_ for _100_ Runs >

n = 100 Simulation Runs;

Ao, = TMS Mean Ao for one run;

Ao =TMS Mean Ao for 100 runs.

This can be stated differently as

A . _ GTMS_Ao_for_l_Run
STMS-AO - O-TMS_Zo_far_lOO_Runs - \/100

and
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c. _ GTMS_Ao_for_l_Aircraﬁ
TMS _Ao_ for _1_Run —\/TMS _ population .

Substituting the above two equations leaves

O. — GTMS_Ao_for_l_Aircraﬁ ) 1
TMS_‘Ao_for_IOO_ Runs —\/TMS _ population —Jl 00

or

O, — O-TMS—AO_fO"_l_Aircraft . 1
TMS _Ao_ for _100_ Runs J100 JTMS ——e

. O.TMS_ Ao_ for _1_ Aircraft
Setting m equal to a proportionality constant kzs

leaves
O, =Kpps - (T]WS ) ulaz"on)_o'5
TMS _ Ao_ for _100_ Runs ™S — popucat .

The estimate of standard deviation for the 100 simulated mean values of
TMS Ao should be inversely proportional to the square root of TMS population. An
examination of TMS mean Ao standard deviation reveals that it is in fact inversely
proportional lto the square root of TMS population. When TMS population is relatively
high, the corresponding mean Ao standard deviation is relatively low. The converse also
appears true. Simulated mean Ao standard deviation and TMS populations are provided

in Table 3.



E2C2 | EA6B | ES3A | F14B | FA18C | HH60H RF14B S3B | SH6OF
Simulated | 080 | 085 | .106 | 046 | 029 | .110 | 050 |.052| .10
Mean Ao
Std. Dev.
#ofaircraft | 4 4 2 12 36 2 8 8 3

Table 3. Simulated Mean Ao Standard Deviation and TMS Population

Using the equations detailed above the proportionality constants kzys were

solved for and are presented in Table 4.

TMS population k-TMS, 100

Runs

E2C2 4 0.16
EA6B 4 0.17
ES3A 2 0.15
F14B 12 0.16
FA18C 36 0.17
HH60H 2 0.16
RF14B - 8 0.14
S3B 8 0.15
SH60F 3 0.19
Average: 0.16

Table 4. Mean Ao Standard Deviation Proportionality Constants

Analysis of these constants does not reveal a strong relationship with TMS

population. A relationship between these constants and the installed number of WRAs

was also explored but no relationship was found. Assuming that these constants are

equal for an aircraft of any TMS, then the average value serves as the best estimate of the

true, unknown value. The average kgrys for 100 simulation runs is 0.16. Based on the

calculations above, the mean Ao standard deviation, estimated empirically, should be

well modeled by the equation below.

Smms_ao =(0.16) (rMs _ population) ™’
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Non-Linear regression was used to model mean Ao standard deviation as a

function of aircraft population. The following model was developed:
Stus_ao = (0.1585) - (TMS _ population)*** |

Model statistics are as follows:
F-statistic: 0.000
t-statistic: 0.000
R*: 962
R.;: 956
Coefficient of Variance (CV): 1.33%

The best-fit non-linear model above very accurately characterizes the
relationship between mean TMS Ao standard deviation obtained from the simulation and
TMS population. It is also extremely close to the model derived. In the absence of
simulated data, the derived model should serve as a good estimator for the ARROW:s
standard deviation of mean TMS Ao.

c. Determining the Underlying Distribution of Ao

The distribution of Ao for each TMS is best characterized graphi;:ally by
histograms. Histograms have observed values of the random variable being characterized
along the x axis. The random variable being characterized here is Ao. The range of Ao
is partitioned into bins. The y axis represents the number of times the value of Ao was
observed to have occurred inside a particular bin.

The simulated Ao histograms for all nine TMSs are provided in Figure 2
through Figure 10. The range of Ao values for each histogram is 0.275 to 0.925. The

range of the y axis in each histogram is zero to 40. Like scaling of all nine histograms

46



allows meaningful comparison from one histogram to the next. The relative variability of
Ao from TMS to TMS is clearly evident. The ARROWS Ao target is identified on each
histogram by a bold verticql line. Examination of the Ao histograms clearly indicates
how little information about the actual “likely to be realized” Ao is conveyed by the point

estimate of Ao made by ARROWs.
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Figure 2. Histogram of E2C2 Baseline Ao
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Figure 3. Histogram of EA6B Baseline Ao
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Figure 6. Histogram of FA18C Baseline Ao
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Figure 9. Histogram of S3B Baseline Ao
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Figure 10. Histogram of SH60F Baseline Ao

The histograms reveal that Ao for all TMSs is relatively symmetric and
most are centered near the ARROWS target Ao. As stated in Chapter II, each aircraft is
represented by a series‘ system. The individual WRAs in the TMS configuration are the
series elements and the TMS Ao can be calculated as the product of the individual WRA
availabilities, a,;.

Ao= ﬂaoi
i=1

ARROWs obtains TMS Ao by calculating egch of the a,;’s and computing
their product. The simulation does not calculate individual a,;’s but it does model aircraft
as a series system. Each WRA is required to be functioning for the aircraft to function.
The simulation directly observes the value of Ao achieved rather than computing its
value as does ARROWSs. The result is that TMS Ao, although determined differently by
ARROWS and the simulation, is the result of a series system.

The Central Limit Theorem states that if the random variables x; are

positive and independent and the random variable Y is the product of those random
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variables then the distn'bution of Y is approximately Lognormal when the number of x;s,
n, is large [Ref. 11: p. 231].
Y= Hxl. = Lognormal (y, i,0)
i=1
The random variable Y in this analysis is the Ao for a specific Type Model
Series (TMS) aircraft. The random variables x; are the a,;'s of the individual WRAs that
make up the TMS configuration. The number of WRAS/TMS, n, is sufficiently large for
all TMS. It follows that TMS Ao is approximately Lognormally distributed with the
following Probability Density Function (PDF):

(in(Ao)-p)?
26° {Ao20} |

_f(Ao’”’G)=42-7z(a-Ao)e

where, 4 and o are not equal to mean and standard deviation (SD) of Ao, but rather
and o equal mean and SD of In(Ao).

The mean and variance of Ao are

(w7)

E[Ao]=e
and
Var[Ao] = e . (¢% —1) .
Estimates for the E[Ao] and the Var[Ao] are available from the simulation

and are denoted Aos and Varspy respectively. g and o, for each TMS can be

determined as follows:

(we%)

Aoy, =e

and
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0_2
In(Aog,, )= u+ 7 .

Therefore, 4 = In(Aog,,) - _5' (1

and Varg,, = el2re). e -1) .

Substituting, 4 = In(Aog,,)— —2—-

(2-(1:1(,403,” )-9;—)+0'2 J 2
leaves, Vary,, =e -(e® —-1)
Varg, = Aok, -7 (7 ~1)
Varg, = Ao, - (e” —1)
Var,
—ZS’M— +1=e"
Aogy
Var,
Therefore, 0” = In( A ;"M +1) . )
SIM

Using equations (1) and (2) derived above, the applicable x4 and ¢ can be calculated for

each TMS.

Quantile-quantile plots, or ggplots, are used to test whether the simulated

values of TMS Ao do indeed fit a Lognormal( 4, o) distribution [Ref. 12:p. 13]. 1000

random variables are generated from the Lognormal( i, o) for each TMS. A qgplot is

then produced for each TMS using the 100 values of Ao, observed by the simulation, and

the appropriate 1000 random variables produced from the Lognormal( &, o). If the
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observed values of Ao are truly Lognormally distributed, the qqplot should result in a

straight line. The qqplots for the FA18C and the ES3A are provided in Figure 11.

FA18C ES3A

0.55 0.60 0.65 0.70 0.3 0.4 05 0.6 0.7

Figure 11. FA18C and ES3A Quantile-Quantile Plots

The results of qqplot testing for all TMS are well characterized by these
two plots. Plots for the FA18C, S3B, F14B and SH60F closely conform to the
Lognormal distribution across the entire range of Ao. The qqplots for ES3A, E2C2,
EA6B, HH60H and RF14B largely conform to the Lognormal distribution but have
noticeably heavier right tails. Overall, the Lognormal distribution serves as a good
approximation for the distribution of simulated TMS Ao and should therefore serve as a
good approximativon of the distribution of the ARROWS Ao calculation.

" d. Determining Confidence Intervals for Mean Ao

Because the underlying distribution of Ao has been characterized, it is
now possible for confidence intervals to be determined. Upper and lower confidence
limits for the mean value of a Lognormally distributed random variable, based on a

sample of size n, are obtained as follows [Ref 13]:
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_ ) ’/ Ao | 1 (sshop, )
lower,,,; = Aoy, —(ZI\‘/"L{Z |12 ZOTMS +—2—. 35020mys ZOTMS
nJ)\N Ziar ) \ X1arz )

\( A ( A

Y Zar2 ’SSAOWS 1 | ssAop,

uppery,,s = Aop,s + - +o
PP Tas e ( Vn J\ Xiar ) 2 \le—alz J

A Opys = simulated Mean TMS Ao;

n 2
ssAo,,s = the sum of squares of the observations of TMS Ao defined as Z(Ao, -A o) ;

i=1

a =.05 (95% two sided confidence interval);

Z1_q 2 = critical value, standard Normal distribution (Z¢75 = 1.96);

2 . 2
X 1-a 12 = critical value, Chi Square dist., n-1 degrees of freedom ( X 99,975 = 128.42).

Table 5. provides the 95% upper and lower confidence limits for mean Ao,

for each TMS and the calculated ARROWSs Ao.

- Lower 95% Upper95% | ARROWs
Sim Confidence Confidence Calculated Ao
TMS Mean Ao Limit Limit
E2C2 .604 .593 621 .602
EA6B .601 .589 .618 .610
ES3A .550 .536 572 .557
F14B .614 .607 .622 .584
FA18C .630 .625 .635 .638
HH60H .684 .670 .708 .660
RF14B .596 .589 .606 .567
S3B .608 .600 .618 .601
SH60F .698 .684 722 .662

Table 5. Confidence Intervals for Simulated Mean Ao
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Examination of the confidence intervals indicates that ARROWSs
calculated Ao is included in the simulated mean Ao confidence bands for four of the nine
TMS:s. These TMSs include the E2C2, EA6B, ES3A and the S3B. These are the same
four TMS that passed the standard Z test for simulated mean Ao equals the ARROWs
calculated Ao. One ARROWs calculated Ao, FA18C, is higher than the upper
confidence limit for simulated mean Ao. The remaining four ARROW:s calculated TMS
Ao’s, F14B, RF14B, HH60H and the SH60F, are located outside the lower confidence
limit for simulated mean Ao. Again, this replicates the results of the standard Z test for
equal mean Ao estimates.

2. Cdnclusions regarding the Distribution of Ao
ARROWs provides a point estimate for the TMS Ao obtained by a specific WRA
allowance list. The baseline model has, through simulation, partially validated those
mean values. Validation is not exact for five TMS which have slightly different mean Ao
than that calculated by ARROWSs. The differences noted are small.
- Further, the baseline simulation has shown that Ao is a random variable. The

variance of Ao can be approximated by the following equation:

$ arrows_1us_so = (0.16) -(TMS _ population)—o'5

Analysis of the distribution of Ao reveals it is closely approximated by the
Lognormal( £ ,0). The parameters x4 and o, can be determined based on the simulated

mean Ao and the simulated standard deviation of mean Ao using the equations below.

— 0
M = In(Simulated _ Ao)— —2-
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(Std _ Dev_ Ao)?
o=_[Inl—; = +1
(Simulated _ Ao)
In the absence of simulated data, the ARROWs calculated Ao and the

approximation for standard deviation of mean Ao, based on TMS population, can be used
to approximate 4 and o. This provides planners and decision-makers considerably
more data about the expected value of TMS Ao than was pfe\(iously available.

3. Comparison of ARROWs and Simulated Supply Department

Effectiveness

ARROW:s output reports provide expected values for net and gross supply
effecfiveness by Cognizance Symbol (Cog). These figures can be algebraically
manipulated to obtain overall WRA net and gross supply effectiveness for comparison to
the simulated values of these same performance measures. Table 6 provides the |

ARROWs and simulated values for a variety of supply performance measures.

ARROWs Sim Mean Sim Min Sim Max
Demands 8393 8284.6 8053 8567
Issues 7198 7257.5 7073 7508
Not Carried 124 123.8 95 153
Not In Stock 1071 903.2 799 1026
Net Eff. 87.0% 88.9% 87.6% 90.0%
Gross Eff. 85.8% 87.6% 86.2% 88.8%

Table 6. ARROWs vs Simulated Supply Effectiveness

ARROWs predictions and simulated mean values are generally similar but

discrepancies do exist. The most obvious discrepancy between the ARROWSs and

simulated mean values are the number of Not In Stock (NIS) demands. The ARROWSs

expected value of NIS demands is significantly larger than that observed by the

simulation. Note that the maximum number of NIS demands observed in 100 runs of the
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baseline simulation is less than the expected number of NIS demands computed by
ARROWSs. The discrepancy in NIS demands creates a corresponding discrepancy in Net
and Gross Supply effectiveness.

The reason for the discrepancy in NIS demands is not known. It is highly -
probable that this discrepancy is linked in some manner to the simulation producing .
higher Ao valugs for four TMSs than those calculated by ARROWSs. The applicable
TMSs are F14B, RF14B, HH60H and SH60F. These aircraft héve a high percentage of
like WRAs. That is. to say they have very similar configurations because they are
variants of the same aircraft. The ARROWSs documentation is not rigorous in its
description of how WRAs, common to multiple TMS, are handled in the model. It is
suspected that the handling of shared WRAs by ARROWS and the simulation may be
different resulting in the observed discrepancies. Detracting from this notion is the fact
that the ES3A and S3B also have a high percentage of like WRAS, but the simulation and
ARROWs calculated values of the mean Ao are virtually identical.

Like TMS Ao, the results of direct comparisons of ARROWSs and simulated
Supply Department performance measures are mixed. It appears that the simulation is
representative of the ARROWSs model but differences do exist. These differences can be
'quantiﬁed but their cause cannot be accurately described. Again, these measures are
random variables, and differences between simulated values and ARROWS point

estimates should be expected.

C. ANALYSIS OF SIMULATION EXCURSIONS

The baseline simulation and all simulation excursions produce the same output

allowing direct comparison of a variety of system performance measures. Output for all
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simulation excursions and the baseline is summarized in Appendices A through L.
Output is divided into three performance sections, 1) Ao, 2) AIMD and 3) Supply
Department. Discussion of simulation excursions includes a brief description of why the
excursion is being investigated, how it is integrated into the baseline model and
significant differences between the excursion and the baseline simulation.
1. Case 1, Analysis of 180 Day Support Period

' The baseline simulation models the performance 'of a set of WRA allowances in
supporting the air-wing for an operating period of 90 days. Actual carrier deployments
are twice that duration or 180 days. This excursion quantifies the impact on Ao of
operating the simulated system for 180 vice 90 days. Changes to the baseline simulation
are limited to the ATO object. The number of the ATO’s monthly sortie requirements
matrices (as described in Chapter III, Section D) is doubled from three to six. The
additional matrices are populated with the same flying hour program as the original
matrices. The results of Case 1 are summarized in Appendix B. Figure 12 provides a
comparison of TMS Ao observed for a 90-day support period, the simulated baseline, and

the Case 1 180 day support period.
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Case1: Impact of 180 vice 90 Day Support Period
on Mean Ao
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[ Case1l
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T™MS

Figure 12. Case 1, Impact of 180 vice 90 Day Support Period on Mean Ao

The doubling of the s.upport period from 90 to 180 days negatively impacts mean
Ao for all TMSs. The magnitude of these decreases is relatively small averaging just
0.017 across all TMSs. Some decrea;se in mean Ao for a longer support periéd 1S
expected. Also noteworthy is the fact that mean Ao sténdarc} deviation has decreased for
all TMSs due to the increased number of simulated observations. This results in the PDF
of Ao being more concentrated abeut the mean value. This effect is graphically

displayed in Figure 13 for the F14B.
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F14B Distribution of Ao
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Figure 13. Case 1, F14B, Impact of 180 vice 90 Day Support Period on the

Distribution of Ao

Examination of Supply Department and AIMD performance measures (see
Appendix B) reveals no significant changés from the baseline simulation. A very slight
increase in the percentage of NIS demands results in a slight decrease in Net and Gross
Effectiveness resulting in the observed decrease in mean Ao.

Overall, the ARROWs WRA allowances appear to provide a relatively consistent
level of support for a typical aircraft carrier deploymeﬁt period of 180 days. Doubling

‘the support period is expected to have some negative impact on Ao based on a fixed
allowance of spare WRAs. An average decrease in mean Ao of 0.017 for all TMSs is
noted.

2. Case 2, Analysis of Actual Vice Notional Flight Schedule

The actual flying hour program, executed by the USS GEORGE WASHINTON

air-wing, differs significantly from the notional flying hour program developed for the

60



baseline simulation. The notional flying hour program uses a wartime flying hour
program and distributes those flight hours as evenly as possible across the 90 day period.
The actual flying hour program is different in three major ways. First, total flying hours
required are significantly less than the wartime requirement; second, flight hours are not
evenly distributed from day to day; and third, average TMS sortie durations are not two
hours. |

The impact of these scheduling changes on Ao is quantified by changing the ATO
object’s sortie requirements matrix to reflect the actual vice notional sortie requirements.
The quantity and day to day distribution of actual sortie requirements is available from
the Aviation Material Readiness Reports (AMRRs) filed by the USS GEORGE
WASHINGTON’s air-wing while deployed. The middle 90 days of this data is used to
develop actual sortie requirements for use by the ATO object. Use of 90 days of
deployment data allows direct comparison with the baseline simulation. The middle 90
days were selected to exclude beginning and end of deployment aberrations in the flight
schedule. Average sortie duration for each TMS is also computed using the data
available in the AMRR. These observed sortie durations are substituted into the air-wing
object for the previously assumed values of two hours. The; complete results of Case 2
can'be found in Appendix C. Figure 14 compares the observed mean TMS Ao achieved

by the baseline simulation and Case 2.
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Case 2: Impact of Actual vice Notional Flight
Schedule on Mean Ao
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Figure 14. Case 2, Impact of Actual vice Notional Flight Schedule on Mean Ao

The usé of actual flight schedule data significantly improves mean Ao for the
~majority of TMS. The average mean Ao improvement across all TMS is 0.178. The
standard deviation of TMS mean Ao is consistently reduced and the minimum observed
values of TMS Ao are significantly increased. This impact is expected due to the lower
peacetime flying hour requirements. The exception is the HH60H which flew slightly
more flight hours than the war-time requirement. HH60H mean Ao was virtually
unchanged from the baseline. Table 7 provides a direct comparison of the totai flight

hours modeled in the baseline simulation and Case 2.
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War Time Peace Time Actual
Notional (90 Days)

(90 Days)
E2C2 1000 728.2
EA6B 900 692.5
ES3A 600 586.6
F14B 2700 970.3
FA18C 7500 4396.7
HH60H | 600 646.3
RF14B 1800 579.7
S3B 2100 1280.9
SH60F 900 719.4

Table 7. Wartime Notional arid Peacetime Actual Flight Hours

To ensure the USS GEORGE WASHINGTON’s flight schedule is representative
of typical carrier peacetime flight schedules, it is compared to the flight schedules of four

other carrier air-wings. The results of that comparison are presented in Figure 15.

Air-Wing Peace-Time Flight Hours
Per Deployment

M JFK
W IKE
OGW
NIM
§ CON

Flight Hours

Figure 15. Air-Wing Peacetime Flight Hours Per Deployment

Figure 15 demonstrates that the USS GEORGE WASHINGTON’s peacetime flying hour

program is typical of deployed carrier air-wings.
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Examination of Supply Department and AIMD performance measures (see
Appendix C) reveals a significant reduction in total demands due to the reduced flying
hour program. This results in much lower percentage of NIS demands explaining the
increase in mean Ao. AIMD loading is also significantly reduced.

3. Case 3, Analysis of Prioritized Order and Shipping Time (OST)

The baseline simulation assumes an OST of 20 days for bdth Direct Turnover
(DTO) and stock replenishment requisitions. This assumption fails to capture the fact
that the OST for DTO (hi-priority) requisitions is considerably shorter than the OST for
stock replenishment (routine priority) requisitions. Use of a 20-day OST for both routine
and hi-priority requisitions is dictated by ARROW'’s inability to use differing values for
these parameters.

Analysts at the Naval Inventory Control Point (NAVICP) believe more realistic
estimates of mean OST are 9 days for hi-priority requisitions and 27 days for routine
requisitions [Ref 14]. The impact of these differing OST’s on Ao can be examined by
substituting these estimates of OST for the appropriate time parameter values located in
the Supply Dept. object. Appendix D provides a summary of the results of Case 3.

Figure 16 compares the achieved mean Ao for this excursion to the baseline.
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Figure 16. Case 3, Impact of Prioritized OST on Mean Ao

The impact of prioritized OST on mean TMS mean Ao is seemingly negligible.
The benefits of hi-priority material arriving at the carrier, quickly, are largely offset by
stock replenishment arriving more slowly. ‘This is true for mean Ao but a closer
examination of TMS Ao (see Appendix D) reveals some benefits from prioritized OST.
Prioritized OST reduces the variability of mean Ao for seven of nine TMSs and increases
the minimum Ao observed in six of nine TMSs. The magnitude of these improvements is
relatively small.

The explanation for why prioritized OST has so subtle an impact on Ao is found
in the percentage of total demands impacted by hi-priority OST. On average,
approximately 87% of all WRA demands are satisfied with a storeroom issue. This is
true for both the baseline and Case 3. Note that the increase in routine-priority OST from
20to 27 days is not large enough to significantly impact supply effectiveness.

Of the remaining 13% of demands, the majority, 87%, are satisfied by an AIMD

EXRERP repair action. This results in only 1.2% of total demands being satisfied by a hi-
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priority off-ship requisition. The impact is further reduced by the fact that almost 60% of
these demands will be satisfied prior to receipt of the hi-priority requisition by a stock
diversion. ;I‘he end result is that only about 41 WRA demands per 90 days (or about .5%
of total WRA demands) are impacted by changes to hi-priority OST. This phenomenon
is further explored in Case 4, Variable OST.

4. Case 4, Analysis of Prioritized, Variable OST

OST is a random variable not a fixed value. As such, obtaining values for OST is
most appropriately accomplished by sampling from a distribution. The Center for Naval
Analysis (CNA) has researched the distribution of OST for hi-priority and routine
priority, aviation related, deployed aircraft carrier generated requisitions. The results of
this analysis were presented in a brief to NAVICP [Ref 15].

The analysis independently examined the observed OSTs of two aircraft carriers.
Based on histograms of the observe& data, OST is assumed exponentially distributed and
Maximum Li'kelihood Estimation (MLE) is used to determine the distribution parameter,
6 (6 =mean). The results of this analysis reveal mean values of 41 and 36 days for
routine OST and 34 and 22 days for priority OST. The notion that OST can be -
characterized by an exponential distribution is widely accepted, but the MLE estimates of
mean value are believed by NAVICP to be higher than actual. This belief is based on the
possible inclusion of non-aviation requisitions in the data analyzed [Ref. 16]. Analysis
by CNA and NAVICP into this subject is ongoing.

Examining the impact of variable OST on this simulation and the resulting TMS
availability is desired. In the absence of a better distribution, and based on the CNA

study previously mentioned, the exponential distribution is used. The mean values for
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the distribution of high and routine priority OST are debatable so three sub-cases are

simulated.

Case 4a: In this case, an expected value of 20 days for both routine and hi-
priority requisitions is utilized. These mean values are the same values as the
point estimates used in the baseline simulation allowing the impact of OST
variability to be isolated.

Case 4b: This case uses an expected value of nine days for hi-priority OST
and 27 days for routine priority OST. These are the point estimates
recommended by NAVICP and simulated in Case 3. Once again, this allows
direct comparison to a simulation with the same expected values but no
variability.

Case 4c: This case uses the MLE estimates determined in the CNA OST
analysis. Although these estimates may Be high, they are based on actual
observed OST data. The more optimistic of the two models developed is
selected. The mean OSTs are 22 days for hi-priority requisitions and 36 days

for routine priority requisitions.

Incorporation of variable OST in the simulation requires modification of the

Supply Dept. object. When requisitions are generated, the Supply Dept. assigns an OST.

Instead of assigning the point estimate used in the baseline or Case 3 scenarios, a sample

is drawn from an exponential distribution with the appropriate mean value. To preclude

unrealistically short OSTs, the exponential distributions are shifted by 4 days. For

example, the mean value for hi-priority OST in Case 4a is 20 days. This is modeled as

OST =4 + Exp(16) where mean = € = 16. The expected value equals 20 days, but
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receipt prior to 4 days is precluded. The results of Cases 4a, 4b and 4c¢ are summarized in
Appendixes E, F and G, respectively. The impact of variable OST on mean TMS Ao is

provided in Figure 17.

Case 4: Impact of Variable OST on Mean Ao
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Figure 17. Case 4, Impact of Variable OST on Mean Ao

The impact of Cases 4a and 4b on Ao are largely negligible. The magnitude and
variance of the changes to OST, both hi-priority and routine-priority are not significant
enough to change the performance of the overall system.

In Case 4c however, changes in OST magnitude and variance are significant and
have had a corresponding impact on the system as a whole. Average decrease in mean
Ao across all TMSs in Case 4c is 0.08. Figures 18 and 19 show that in addition to
decreasing mean Ao, Case 4c has significantly increased system variability resulting in

lowered minimum observed values of Ao for all TMSs.

68



Case 4c: Impact of Variable OST on Minimum
Observed Ao
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Figure 18. Case 4c, Impact of Variable OST on Minimum Observed Ao

Case 4c: Impact of Variable OST on Mean Ao
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- Figure 19. Case 4c, Impact of Variable OST on Mean Ao Standard Deviation

Case 4c obtains hi-priority OST values by sampling from a shifted exponential
distribution with expected value equal to 22 days. This value of OST does not represent
a significant change from the baseline where OST for all requisitions is 20 days. It does

however add variability to the system.
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The significant change in OST comes from routine-priority OST. Case 4c obtains
routine-priority OST values by sampling from a shifted exponential distribution with
expected value equal to 36 days. This represents an average increase of 80% for the time
required to fill storeroom deficiencies and interjects even greater variability into the
system.

The significant negative impact of longer and more variable OST for stock
replenishment is not evident from examining Net and Gross Supply Effectiveness. Each
of these performance indicators drop only 1% from baseline levels (see Appendix G).
However, this small drop in overall supply effectiveness represents a 9% increase in the
number of NIS demands and an 8% increase in the number of EXREPs. The most
negative impact is felt by the AIMD. In the baseline simulation 93.1% of all EXREPs are
repaired by the AIMD. This represents a BCM rate of 6.9%. In case 4c the EXREP
BCM rate jumps to 12.2%, a 76% increase from the baseline. This increase in EXREP
BCMs results in 2 91% increase in the number of off-ship, hi-priority, DTO requisitions.

The reason for this dramatic impact on the supply-maintenance system is subtle
but can be explained subjectively. ARROWs assumes a fixed OST of 20 days for all
requisitions. ARROWSs computes WRA allowances based on tﬁis OST and information
about the percentage of failures that can be repaired by the AIMD. In so doing, it is more
likely to stock WRAs that have a low chance of being repaired by the AIMD. WRAs that
have a high AIMD repair rate are less likely to be stocked.

| As the NIS rate increases (caused by longer and more variable stock
replenishment OST) the mix of WRASs being inducted into the AIMD as EXREPs

changes. The universe of EXREP items now contains a greater percentage of WRAs
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with low repair rates. As such, a moderate increase in the NIS rate results in significantly
more EXREP BCMs. The result in Case 4c is that the number of off-ship DTO
requisitions almost doubles, and Ao is negatively impacted. The overall effect is that the
PDF of Ao is flattened and stretched to the left increasing the probability of low Ao.

Figure 20 graphically illustrate this effect.
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Figure 20. Case 4c, EA6B, Impact of Increased OST Vai'iability on the Distribution

of Ao

The EAGB was chosen for presentation because it most dramatically captures the
stretching of the Ao PDF. Note that the maximum observed value of Ao for Case 4c is
actually greater than the max value of Ao observed in the baseline. The PDF is not
simply shifted but is stretched towards lower Ao. This stretching effect is the result of
increased system variability. Note that the Case 4c average decrease in min Ao observed
is almost 0.14 for all TMSs. The corresponding average decrease in max observed Ao is

only 0.02. The probability of high Ao in Case 4c is not precluded,; it is simply reduced.
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5. Case 5, Analysis of Prioritized Turn Around Time (TAT)

ARROWs and the baseline simulation do not distinguish between EXREPs and
stock replenishment repair actions. Both of these repair types are completed by the
AIMD in one TAT. This is unrealistic in that EXREPs are completed much more quickly
than stock repienishment repairs. EXREPs constitute approximately 12% (baseline .
simulation) of all AIMD repair activity but play a highly significant role in maintaining
aircraft Ao on an actual carrier. Inclusion of this fact in the simulation and a
quantification of ‘its~ impact on Ao is desired.

The carrier’s AIMD uses a variety of means to accelerate EXREP repairs.

* EXREPS are repaired prior to stock replenishment repairs. The AIMD

functions much like a queue. Failed WRAs arrive, await service and depart.
EXREPs are afforded front of the line service in this system.

= EXREPs receive first priority in the allocation of AIMD resources. This
includes manpower, test equipment and repair parts.

* Material not available to complete an EXREP repair is requisitioned as hi-
priority. Material requisitioned to complete stock replenishment repairs is
assigned only a routine priority.

The baseline AIMD object is not designed with sufficient sophistication to
capture this process as described. The simulated AIMD object completes all repairs in
one TAT. However, EXREP TAT can be reduced by an improvement factor. EXREPs
are typically completed in 30 to 40 percent of the time required for a stock replenishment
repair [Ref. 17]. As a conservative estimate, simulated EXREP repairs are completed in

one half the normal TAT. Prioritized repair using a TAT improvement factor is easily
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incorporated into the simulation. The AIMD schedules EXREP repair completions in
(0.5)*(TAT) vice one TAT. Complete results of Case 5 can be found in Appendix H.

Figure 21 compares the mean Ao for this excursion with the baseline.
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Figure 21. Case 5, Impact of Prioritized Repair on Mean Ao

The incorporation of prioritized repair has a uniformly positive and significant
impact on Ao. Mean Ao is improved an average of 0.08 for all TMSs. Corresponding
increases of 0.06 and 0.05 were observed for minimum and maximum values of observed
Ao respectively. Standard deviation of mean Ao was reduced for seven of nine TMS, the
exceptions being RF14B and SH60F (see Appendix H).

The reason for this dramatic positive impact on Ao is twofold. First,
improvement in EXREP TAT impacts a large percentage of all demands not satisfied by
an issue. Of all demandé not satisfied by a stock issue, approximately 93% will be
satisfied by an EXREP if that EXREP repair is completed quickly enough.

This point requires elaboration. In Case 5, the average number of EXREP repairs

was 790 and the average number of stock diversions was 459. Stock diversions were
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decreased by about 25% from the baseline quantity of 614. This reduction of 155 stock
diversions represents the number of times a stock asset was not diverted to fill an EXREP
requirement because the EXREP was completed more quickly. This was the intention of
Case 5. In addition, some EXREPs never benefited from the diversion of stock. This
number is roughly 177 and is comprised mainly of the EXREPs resulting from the 123
NC demands incurred over the support period (stock diversions are not possible for NC
demands). These 177 EXREPs also correctly benefited from the prioritized TAT tested
in Case 5.

The second (unintended) reason for improved Ao involves the 459 stock
diversions that did occur. A percentage of these 459 stock diversions may have occurred
to satisfy requirements for DTO requisitions. The average number of DTO requisitions
generated in Case 5 was 70 (see Appendix H). At the time a stock repair action is
completed, the simulation checks to see if a DTO recjuirement for this WRA exists. This
requirement could be a DTO requisition or an EXREP in repair. If the WRA intended for
stock can be used to prematurely satisfy a DTO requirement, off-ship requisition, or
EXREP, then the simulation immediately diverts the material to satisfy the DTO
requirement. Say conservatiirc]y, all 70 DTO requirements were satisfied with a stock
diversion. This leaves 389 stock diversions for EXREP requirements.

The second reason for increased Ao is a significant but unintended decrease in the
time required to get RFI WRAs back on Supply Department shelves. The payback WRA
for each of the 389 stock diversions is an EXREP which will be repaired in half the time.
In an actual AIMD, the AIMD Production Control Officer would downgrade the payback

EXREP WRA to a routine repair status. The Supply Department would then wait a
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routine TAT to receive its payback WRA. The simulation was not programmed to catch
this subtlety. The simulated Supply Department incorrectly benefits from this error in
that it receives all payback WRASs in a priority TAT. The result is an appreciable
decrease in NIS demands. In Case 5, the averagé number of NIS demands was 756. This
represents a 16% decrease from the baseline. This decrease has a significant positive
impact on Ao.

It is not possible from the output available to quantify what percentage of Ao
improvement is attributabl€ to the correct application of prioritized TAT. Case 5, does
however provide significant insight into the simulation and ARROWSs. First, Ao is
highly sensitivg to changes in TAT. The 50% improvement in TAT for EXREPs
modeled by Case 5 applies to only 12% of all AIMD repair actions yet has a dramatic
positive impact on Ao. Second, the ARROWSs allowances are well engineered. Eveh
with a 50% reduction in TAT for EXREPs; over half of all EXREPs are still satisfied, as
ARROWs intended, with an asset emerging from the repair process as a result of an
earlier repair action. ARROWS has chosen allowances that do not preclude NIS demands
but minimizes their impact through efficient and planned use of the AIMD.

6. Case 6, Analysis of Variable TAT

The time required to complete a WRA repair is a random variable. This random
variable is estimated in ARROWs and the baseline simulation by a point estimate, Turn
Around Time (TAT). TAT represents the average time to complete repairs for a given
WRA. TAT is a data element in the ARROWS candidate file and is based on historic

repair data.
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Because TAT is a random variable, obtaining its value from a distribution is most
appropriate. Obtaining values from a distribution vice using a point estimate allows the
variability of the WRA repair process to be incorporated in the simulation. Case 6
incorporates this functionality. The impact of TAT variability on Ao can then be
determined by comparing the results of Case 6 with those of the baseline simulation.

TAT varies significantly by WRA. ARROWs develops individual WRA
allowances based on the TAT for each WRA. For this reason a general distribution for
the TAT of all WRAs is inappropriate. A unique distribution for each WRA must be
obtained. This is accomplished by developing empirical Cumulative Distribution
Functions (CDFs) for the TAT of each WRA.

A database containing all WRA repair actions for carrier AIMDs, for calendar
year 1998, was obtained from NAVICP Philadelphia. Each repair action inciudes the
TAT in which the repair action was completed. The value of TAT is recorded in days
and ranges from one to 32. TATs of greater than 32 days are extremely rare. They are
reported as equal to 32 days so that they will not exert disproportionate influence on
mean TAT values computed from this data. [Ref. 16]

The data is manipulated to obtain counts for the nur.nber of repairs completed in
oné day, two days... etc., up to the maximum TAT of 32 days. This is done for each
WRA in the simulation. The result is a matrix with 3,519 rows and 32 columns. Each
row corresponds to a unique WRA represented in the simulation. Columns represent the
range of possible TATs, one through 32. The elements of the matrix represent the count
associated with each WRA-TAT combination. Figure 22 graphically displays the

contents of a single row in the matrix corresponding to an individual WRA.
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Figure 22. Distribution of TAT for WRA 00-085-7707

For this WRA, there are 127 observations of TAT. These 127 observations are
distributed among the 32 possible values of TAT as indicated on the graph. Note that for
this WRA, the average TAT is slightly higher than the TAT obtained from the ARROWs
candidate file. This is a common occurrence. -

From the contents of any row in the matrix, an empirical CDF of TAT can be
constructed for the appropriate WRA. The empirical CDF for WRA '00-085-7707’ is
presented in Figure 23. Empirical CDFs are computed as required and are not stored by

the simulation.
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Figure 23. Empirical CDF for the TAT of WRA 00-085-7707

Variable TAT is incorporated in the simulation by embedding the matrix of TAT
observations in the AIMD object. When a TAT is required by the simulation, a random
variable is generated from the Uniform(0,1) distribution. The AIMD object then enters
the TAT matrix at the row appropriate to the WRA being repaired with the value from the
Uniform(0,1). The AIMD begins incrementing through the calculated empirical CDF
from left to right until it reaches the number of days whose cumulative probability is less
than the value selected from the Uniform(0,1). The point on the CDF where this occurs
serves as the number of days required for this WRA répajr. The AIMD schedules a
repair completion at the appropriate time.

WRASs with less than 10 observations of TAT are excluded from the variable
TAT calculation due to lack of data. TAT for these WRAs defaults to the point estimate
for TAT used by ARROWS and the baseline simulation. This restriction applies to 3,128
of the 3,519 unique WRA: in the simulation leaving only 391 eligible for variable TAT

assignment. At first glance, it appears that variable TAT will rarely be used. However
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this is not the case. Only 1,322 of the 3,519 total WRASs can be repaired by the AIMD.

The simulation reveals that the 391 WRAs eligible for variable TAT assignment

constitute 81% of all AIMD repairs. This is judged to adequately incorporate variable

TAT. Appendix I provides the summary report for Case 6. Figure 24 compares the Ao

for this excursion with the baseline.
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Figure 24. Impact of Variable TAT on Mean Ao

The effect of variable TAT on mean Ao is largeiy negative. Five of nine TMSs

suffer reduced mean Ao. Mean Ao for the other four TMSs remain relatively constant.

This change in mean Ao is the result of actual TAT expected values differing from those

used by ARROWSs and the baseline. This indicates that the values of TAT used by

ARROWSs may be optimistic when compared to actual repair records of TAT.

The primary focus of Case 6 is to investigate the impact of increased variability

on the distribution of Ao. As expected, the introduction of TAT variability has increased

the variability of mean Ao. Figure 25 graphically illustrates the increase in mean Ao

standard deviation for all TMSs.
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Figure 25. Case 6, Impact of Variable TAT on Mean Ao Standard Deviation

The minimum observed values of Ao are decreased for all TMSs in Case 6. This
decrease is caused partially by increased variability and partially by the higher expected
values of actual TAT data described above. Change to the maximum observed values of
Ao is mixed. Five TMSs experience an increase in maximum observed Ao and four
experience a decrease.

The overall impact of variable TAT on Ao is similar to that described in Case 4c.
The increased variability of the system has resulted in a flattening and stretching of the
PDF of Ao. Figure 26 and Figure 27 graphically illustrate the impact of increased

variability on Ao.
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Figure 27. Case 6, FA18C, Impact of Increased Variability on the Distribution of

Ao

The EA6B and FA18C clearly demonstrate the flattening of the Ao PDF due to
increased variability. These TMSs are selected because of the small change in their mean

Ao, isolating the impact of variability.
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7. Case 7, Analysis of Cannibalization

Cannibalization is the removal of an RFI item from an aircraft that is already
down for use in repairing another aircraft. Cannibalization occurs when the supply-
maintenance system fails to provide RFI material in a timely enough fashion to meet the
requirements of aircraft operators and maintainers. Operators and maintainers use
cannibalization to increase Ao by consolidating material deficiencies to a small number
of aircraft.

Cannibalization is not considered in the ARROWs allowance model. An unstated
goal of ARROWs is to prevent or minimize the need for cannibalization by providing
adequate allowances of spare WRAs. Despite this fact, cannibalization plays a
significant part in maintaining the level of Ao required by fleet operators and maintainers.
Given that éannibalization takes place, it is desired to characterize and quantify its impact
on Ao. This is accomplished by incorporating cannibalization into the simulation and
comparing the resulting TMS Ao’s with those of the baseline.

The level of cannibalization intended to be added into the simulation is light to
moderate as opposed to heavy. Heavy cannibalization is characterized by down aircraft
that are never returned to an “up” status. Instead, these aircraft act solely as a source of
RFI WRAs for other aircraft. Light cannibalization is characterized by situational use
only. The intent of light cannibalization is to improve overall TMS Ao without
relegating individual aircraft to a perpetual down state. To control the level of
ca{nnibalization included in the simulation, the following guidelines are established.

® An aircraft is only eligible to receive a cannibalized WRA if the number of

WRAS required to return that aircraft to an up status is equal to one.
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* Cannibalization is limited to aircraft among a single TMS. For example, a

WRA cannot be cannibalized from an F14B to return an FA18C to an up

status.

The number of cannibalized WRAs that can be taken from any aircraft is

limited to three per downtime.

Simulated cannibalization is a function of the air-wing object. At the conclusion

of each flying day, the air-wing object examines each aircraft in the down aircraft vector

to determine if cannibalization can be applied using the guidelines listed above. If a

cannibalization occurs, the appropriate WRA and its embedded Time To Failure (TTF)

are moved from the giving aircraft to the receiving aircraft. The air-wing then records the

cannibalization by incrementing a TMS specific counter. Total cannibalizations, by

TMS, are available in the simulation output report, Appendix J. Figure 28 compares the

mean Ao for this excursion with the baseline.
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Figure 28. Case 7, Impact of Cannibalization on Mean Ao
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The introduction of cannibalization positively impacts Ao. Cannibalization raises
the mean Ao and reduces the standard deviation for eight of the nine TMSs. The average
increase in mean Ao across all TMS is 0.07. The only TMS that did not see measurable
improvement as a result of cannibalization is the HH60H. HH60H mean Ao and standard
deviation remains largely unchanged from the baseline.

Appendix J includes specific details on the level of cannibalization taking place in
the simulation. This data is summarized in Table 8. Also included in Table 8 is
cannibalization data from five carrier air-wing deployments. Both simulated and actual
cannibalization data has been normalized on a “per aircraft per 90 day” basis to allow for

easier direct comparison.

E2C2 | EA6B | ES3A | F14B | FA18C | HH60H | RF14B | S3B | SH60F

simulated | 351 43 | 35 | 68 | 63 | 15 | 25 |60 | 16
HistData | 5371 188 | 100 | 120 | 98 | 19 | No |77 25
Data

Table 8. Cannibalizations per Aircraft per 90 Days, Simulated Values and Historical

Record of Five Carrier Air-Wings

The simulated level of cannibalization is considerably more modest than that
observed in actual air-wings. The simulation has also failed to capture the fact that the
cannibalization rate is highest among TMSs with small populations. Even with this
highly conservative estimate, cannibalization has considerable positive impact on Ao.

Examination of Supply Department and AIMD performance measures (see
Appendix J), as expected, reveals no significant departures from the baseline due to the

incorporation of cannibalization.
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8. Case 8, Analysis of AVCAL Allowances

The WRA allowances determined by ARROWs are subject to review prior to
publication in the Aviation Coordinated Allowance List (AVCAL). Reviews are |
generally referred to as provisioning conferences. Provisioning conferences are held so
representatives from the fleet along with technical and maintenance personnel can review
the ARROWs WRA allowances and recommend necessary changes.

Reasons for altering the ARROWs WRA allowances are many and diverse. They
include, past allowance levels, demand data, recent failure rates, current technical issues,
configuration changes and safety stock levels for mission critical, low failure rate

material. Figure 29 provides a summary of the changes made to the ARROWs WRA

allowances prior to their publication in the AVCAL for the USS GEORGE

WASHINGTON air-wing.

AVCAL Changes to ARROWs WRA
126 343 Allowances

523

\ 596 0 Range Increase (343)

| Totél [JDepth Increase (596)
ARROWSs O No Change (1931)
WRA Range Decrease (523)

Population
1931 is 3,519 B Depth Decrease (126)

Figure 29. AVCAL Changes To ARROWs WRA Allowances

Changes in range apply to whether or not an item is stocked at all. A range
increase indicates that ARROW:s established an allowance of zero for a particular WRA,
|
\
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and that allowance was increased in the AVCAL to some number greater than zero. A
range decrease implies ARROW: established an allowance greater than zero, and that
allowance was changed to zero in the AVCAL.

Changes in depth apply to WRAs whose allowance is greater than zero for both
/ARROWs and the AVCAL. A depth increase indicates that the AVCAL WRA
allowance is greater than the ARROWs allowance. A depth decrease indicates that the
AVCAL allowance is less than the allowance determined by ARROW:.

The intent of changes to the ARROWs WRA allowz;nces is to increase supply
effectiveness and improve Ao. This is done primarily through the supplementing of
ARROW:s allowances through range and depth increases based on more accurate
information than is available in the ARROWS candidate file.

The majority of range and depth decreases are th;e result of changes to aircraft
configurations. Typically, a new WRA, not included in the ARROWSs candidate file or
allowances, is added to the AVCAL in lieu of the WRA removed. The net effect is that
WRA allowances are not actually decreased; just changed to reflect configuration
changes. Visibility of these type changes is not possible with the data available.

Case 8 examines the impact of supplements to the ARROWS allowances only.
Decreases in WRA allowance range and depth are assumed to be the result of
configuration churn not actual reductions in allowance levels. To lend a sense of
~ proportion, the ARROWSs WRA allowances are characterized by a total range of 2,013
and a total depth of 3,236. The supplemented AVCAL WRA allowances are

characterized by a total range of 2,356 and a total depth of 4,466. The results of Case 8
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are summarized in Appendix K. Figure 30 compares the mean Ao achieved by the

AVCAL WRA allowances and that of the baseline. [Ref. 18]

Ao
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Figure 30. Case 8, Impact of AVCAL vice ARROWSs Allowances on Mean Ao

The impact of supplementing WRA allowance quantities is, not surprisingly,

uniformly positive. Mean Ao and minimum observed Ao increase an average of 0.11 for

all TMSs. Maximum observed Ao increases an average of 0.08 for all TMSs. Mean Ao

standard deviation is reduced for eight of the nine TMSs. The HH60H experienced a

small increase in standard deviation.

The reason for the improvement in Ao is a dramatic reduction in NC and NIS

demands (see Appendix K).V The quantity of NC demands is reduced 69% from the

baseline simulation. The number of NIS demands is decreased by 29%. These

reductions explain all other system departures from the baseline simulation.
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9. Case 9, Analysis of Simulation with full Functionality

This excursion combines all of the functionality described in Cases 1 through 8
into a single simulation excursion. Case 9 is characterized by;

= The 180 day actual flight schedule flown by the USS GEORGE

WASHINGTON?’s air-wing
* Prioritized, variable OST based on the OST analysis conducted by the Center
for Naval Analysis (CNA)

= Variable TAT based on one year of afloat maintenance actions

= Modest cannibalization

* Actual AVCAL allowances

Prioritized repdir is not incorporated into Case 9 due to its unintended impact on
Supply effectiveness as described in paragraph IV.C.5. The results of Case 9 are
summarized in Appendix L.

a. Comparison of the Full Simulation to the Baseline Simulation
The baseline simulation is constructed using the ARROWSs assumptions

and provides estimates of mean Ao that are very close to those calculated by ARROWs.
The full simulation includes a variety of functionality not iﬁcluded in ARROWs due to
sirﬁplifying assumptions. The differences between the baseline simulation and the full
simulation can be characterized as the “cost”, in terms of Ao, of the ARROWSs
assumptions. Figure 31 compares the baseline/ARROWSs mean Ao with that achieved by

the full simulation.
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Case9: Impact of Full Simulation on Mean Ao

- M Baseline
|| IEICase 9

E2C2 EA6B ES3A F14B .FA18C HH6OH RF14B  S3B  SH6OF
TMS

Figure 31. Case 9, Impact of Full Simulation on Mean Ao

Simultaneous inclusion of all simulation functionality dramatically
improves mean Ao for all Tl;/ISs with the exception of the HH60H. Average
improvement in Ao across all TMSs. is 0.20. The standard deviation of mean Ao is
reduced fbr seven of nine TMSs. The overall result is a shift in the Ao PDF towards
higher Ao and tightening of the PDF around mean Ao.- This effect is presented

graphically in Figure 32 for the FA18C.
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Case 9: FA18C, Impact of the Full Simulation
on the Distribution of Ao
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Figure 32. Case 9, FA18C, Impact of the Full Simulation on the Distribution of Ao

The reasons for this dramatic increase in Ao are reduced flight hours and
supplemented WRA allowances. In the full simulation, gross supply effectiveness is
95.2% compared to 87.6% in the baseline simulation. This increase equates to a 63%
reduction in the number of WRA failures not satisfied with a Supply Department issue.
This reduction combined with a very modest level of cannibalization results in the
overwhelming majority of aircraft downing WRA failures being satisfied within hours.
In the baseline simulation, 12.4% of total demands were satisfied with an EXREP, DTO

‘requisition, or stock diversion.

b. Comparison of the Full Simulation to Actual Fleet FMC

The results of the baseline and full simulation are now compared to the
actual Ao achieved by the USS GEORGE WASHINGTON air-wing during the
deployment modeled. This comparison is used to determine if either simulation is a good

predictor of the Ao actually achieved by the air-wing modeled.

90



Fleet Ao data is of two types, Full Mission Capable (FMC) and Mission
Capable (MC) as described in Chapter I. ARROWS and the simulation model FMC so
comparisons will not addrgss MC. The fleet FMC data used in thié analysis is obtained
from the Subsystem Capability and Impact Reporting (SCIR) database. SCIR FMC
observations are provided on a per squadron per month basis. Note that RF14Bs are
excluded from this analysis because no SCIR data is available for this TMS.

Figure 33 prov1des the mean values of Ao for the baseline 51mu1at10n
(representative of ARROWS), the full simulation (Case 9), and the SCIR FMC data for

the USS GEORGE WASHINGTON’s air-wing.

Baseline Mean Ao vs Case 9 Mean Ao vs
Actual USS GEORGE WASHINGTON Air-wing
FMC ‘
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Figure 33. Case 9, Baseline Mean Ao vs Case 9 Mean Ao vs Actual USS GEORGE

WASHINGTON Air-Wing FMC

Neither the baseline nor the full simulation serve as a particularly accurate
predictor of actual air-wing FMC. Discrepancies in mean Ao between simulated and
actual data vary by TMS. In general, the baseline (and ARROWs) tendé to underestimate

actual FMC and the full simulation tends to overestimate actual FMC. ARROWSs and the
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baseline simulation underestimate actual FMC in six of eight TMSs. Likewise, the full
simulation overestimates actual FMC in six of eight TMSs.

In addition to forecasting mean Ao, the full simulation attempts to model
the variability of Ao by in¢luding variable OST and TAT into the model. To examine
how well variability has been captured, the FA18C is examined in greater detail. The
FA18C is presented for three reasons.

= FAI18Cs constitute a large percentage of the air-wing and are therefore of high
interest. |

® There are three FA18C squadrons in the air-wing. All other TMSs have only
one squadron. SCIR FMC is’ reported on a per squadron per month basis. As
such, there are 18 observations of FA18C actual FMC for the six month
deployment. All other TMSs have just six observations.

= The FA18Cis characteﬁstic of most TMSs in that the baseline simﬁlation
underestimates true mean FMC and the full simulation overestimates true
FMC.

Figure 34 provides a side by side comparison of the Ao histograms for the
FA18C resultiné from the baseline simulation, the full simulation and the SCIR FMC
data. The histograms are presented in this fashion to allow easy comparison of the
mean/median Ao and the relative variability present in the observations. Direct
comparison of actual Ao counts per bin is not possible due to the differences in total
observations presented.

The SCIR FMC data represents 18 observations. Each simulation

represents 100 observations. In order to present the data in the most meaningful way, the
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“y” or “count” axis has been truncated at 10. This prevents the 18 SCIR FMC
observations from being “drowned out” by the more numerous simulated observations.
The actual heights of the baseline and full simulation histograms are the same as

presented in Figure 32.

Distribution of FA18C Ao
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Figure 34. Case 9, Distribution of FA18C Ao, Simulated vs Actual FMC

Figure 34 indicates that the true variability of FA18C Ao is not well
captured by either simulation. Effofts to capture the overall variability of Ao through the
incorporation of variable OST and TAT are masked by other factors. Cannibalizations,
reduced flying hours and supplemented allowances all reduce the variability of Ao.

The full simulation is unsuccessful it its attempt to provide a highly
accurate estimation of the mean and variance of actual Ao. The full simualtion is
relatively complex when compared to ARROWS or the baseline simulation. However,
the system being modeled, an operational air-wing and its supporting supply-maintenance

infrastructure, is infinitely more complex.
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The full simulation yields distributions of Ao that are characterized by an

overestimation of mean Ao and an underestimation of the variability of mean Ao. Three

subjective explanations are offered to explain this discrepancy.

Significant factors that impact FMC are Excluded from the Simulation:
The number of factors that could be listed here are infinite. Crew skill and
training levels, ship’s schedule and test bench availability all impact FMC but
are not incorporated in the simulation. Inefficiencies in the movement of
failed and RFI WRAs between squadron level maintainers, supply and the
AIMD could also significantly impact actual fleet FMC but are assumed to be
zero in the simulation.

WRA Failures Rates: The simulation creates WRA allowances based on the
assumption that the time between WRA failures is exponentially distributed
with a mean value based on point estimates for Maintenance Replacement
Factor (MRF) and Rotable Pool Factor (RPF). Variations from this WRA
demand rate are likely. Variations could be the result of some WRA failures
not being exponentially distributed, errors in the point estimates of MRF and
RPF or WRA wear out due to repeated repair. ’I;he impact of higher than
anticipated demand is reflected in the distribution of actual fleet FMC. The
simulation however, is immune to unanticipated demands.

Impact of Zero Failure WRAs: The ARROWs candidate file, on which the
simulation is based, identifies 3,519 unique WRAs in the air-wing deckload.
Of these, 1,576 have a zero failure rate. This means that 45% of all WRASs are

precluded from failure in the full simulation. In actuality, nothing has a zero
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failure rate. It is worthy of note that the AVCAL provides allowances for 361
of these zero failure rate WRAs. These allowances are commonly referred to
as “insurance items”. The impact of failures to all these items is reflected in

actual fleet FMC levels but is omitted from the full simulation.
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V.  CONCLUSIONS AND RECOMMENDATIONS

The goals of this thesis are to characterize the distribution of Operational
Availability (Ao) and to quantify the impact on Ao of various factors not included in the

ARROWSs model. These goals are successfully achieved.

A. CHARACTERIZING THE DISTRIBUTION OF Ao WITH THE BASELINE

SIMULATION

1. Summary of Findings for the Baseline Simulation

The baseline simulation developed for this thesis has closely approximated the
point estimate for mean Ao provided by ARROWs for a specific allowance list of WRAs.
Further, it has dernonstrated that Ao is a random variable and improves on the ARROWSs
point estimate by quantifying the variability and characterizing the Prébability Density
Fﬁnction for mean Ao.

The standard deviation of mean Ao is based on the simulated mean Ao values.
The calculated values of the standard deviation for mean Ao are well approximated by

the following non-linear model:

s =(0.16) ~(TMS _ population)-o’5

ARROWs _TMS _Ao

Equation 1.

The simulated values of mean Ao are shown to be distributed Lognormal( x, o).
The parameters 4 and o for this distribution are determined using the mean value for

Ao and the standard deviation of mean Ao obtained from the simulation and the

following formulas:
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— o
M = In(Simulated _TMS _Ao) - —5-

Equation 2.

§ 2
Simulated _TMS _Ao

(Simulated _TMS _ Ao)® "

1

Equation 3.

2. Conclusions Regarding the Baseline Simulation

The baseline simulation incorporates the assumptions on which the ARROWs
allowance model is based and closely approximates the mean value of Ao calculated by
ARi{OWs. By the Central Limit Theorem, the theoretiqal distribution of the ARROWSs
mean Ao is approximately Lognormal( &, 0). The baseline simulation generates
simulated values of mean Ao that are consistent with a Lognormal( # , ) distribution.
Based on these findings, the distribution of ARROWSs mean Ao is characterized as
Lognormal( u, o).

The distribution of ARROWSs mean Ao can be approximated without the use of

the simulation and is accomplished as follows.
= Substitute the ARROWSs calculated mean value of Ao for the simulated mean
Ao.
= Estimate the ARROWS standard deviation of mean Ao using the non-linear
model, Equation 1. Substitute this value for the simulated standard deviation

of mean Ao.
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* Determine the estimates for the parameters 4 and o for the Lognormal
distribution using the ARROWs calculated mean value of Ao, the estimated
ARROWs standard deviation of mean Ao, and Equations 2 and 3.
The resulting PDF serves as an approximation of the baseline simulation
developed by this thesis. Figure 35 presents the approximated PDF for FA18C mean Ao
and the PDF developed by the éimulation. The vertical dotted line is the target value of

Ao used as an input to the ARROWSs model.

Approximate PDF for FA18C Mean Ao vs
Simulated PDF for FA18C Mean Ao

ARROWSs Target Ao =.640
20.00 .
18.00 APPROXIMATE PDF
16.00 ARROWS Calc Mean Ao=.638
Est Std Dev Mean Ao =.027
14.00 a Distribution~Lognormal
5 1200 - (mean=-.44997, Std Dev =.03338)
< 10.00 - F
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6.00 . Simulated Mean Ao =.630
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Figure 35. Approximate PDF for FA18C Mean Ao vs Simulated PDF for FA18C

Mean Ao

Figure 35 demonstrates that the approximate PDF closely resembles the PDF
deveioped as a result of the simulation. The simulated mean Ao for the FA18C is 0.008
less than the mean Ao calculated by ARROWS resulting in a corresponding shift in the

PDF. The estimate of standard deviation used in the approximate PDF is slightly less
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than that observed in the simulation resulting in a corresponding tightening of the
approximate PDF about its mean value.
These conclusions provide the ARROWSs user with considerably more

information about the calculated ARROWSs mean Ao than a point estimate.

B. QUANTIFYIN G THE IMPACT ON Ao OF VARIOUS FACTORS NOT
INCLUDED IN THE ARROWS MODEL WITH SIMULATION

EXCURSIONS

1. Summary of Findings for the Simulation Excursions

ARROWs uses closed form equations to estimate the mean or expected value of
Ao based on a specific mix of spare WRAs. This estimate is based on a variety of
simplifying assumptions that treat all random variables as constants with the exception of
WRA failure times. Due to mathematical complexity, ARROWs is unable to deviate
from these assumptions. The simulation developed for this thesis is not similarly
constrained. The baseline simulation has been expanded to include a variety of more
complex faqtors. Comparison of the results of these scenarios against the baseline allows
the resulting impact on Ao td be quantified.

Table 9 summarizes the various excursions in terms of their impact on mean Ao
and the standard deviation of mean Ao. The data in this table represents change in air-
wing Ao. Impact of the various scenarios on individual 'Type Model Series (TMS) has

been normalized to summarize the impact on the air-wing as a whole.
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Baseline: "MeanAo | MeanAo | S.D.Mean S.D::I)ean
Ag-w;ng Mean Ao = .621 Change % Change | Ao Change | % Change
Air-wing S.D. Mean Ao = .049 From From From From
Baseline Baseline Baseline Baseline

Casel: 180 vice 90 Day Support Period 20014 2.2% 20.011 22.5%
Case2: Actual Flight Schedule (90 -

Days) 0.224 36.1% -0.018 -37.1%
Case3: Prioritized Requisitioning (Static) .

(hi-pri 9 Days, routine 27Days) 0.001 0.2% -0.006 -11.8%
Caseda: Variable Order and Shipping Time

(hi-pri exp(20), routine exp(20)) 0.013 2.0% 0.003 6.3%
Case4b: Variable Order and Shipping Time

(hl-pl‘l exp(9),‘routine exp(27)) 0.016 2.6% ) ‘0.005 -9.5%
Casedc: Variable Order and Shipping Time

(hi-pri exp(22), routine exp(36) -0.071 -11.5% 0.017 35.4%
Case5: Prioritized Repair 0.099 15.9% -0.005 9.7%
Case6: Variable Turn Around Time (TAT) 0.031 5.1% 0.018 3729

-0. -3.1% . 2%
Case7: Cannibalization 0.100 | 162% | -0014 | -28.5%
: i W

Casel: AYCAL vice ARROWs WRA 0.134 | 21.6% | 0009 | -17.6%
Cased: Full Stmulation 0268 | 432% | 0019 | -383%

Table 9. Impact of the Various Simulation Excursions On Mean Ao and the

Standard Deviation of Mean Ao

2. Conclusions Regarding The Simulation Excursions

The simulation has shown that varying the assumptions and parameters upon

which the model is based has the effect of é]tering the PDF of Ao. Impacts to mean Ao

shift the PDF along the Ao axis. Impacts to the standard deviation of mean Ao stretch or

contract the PDF of mean Ao about its mean value. The magnitude of changes to the

PDF of mean Ao varies with the particular excursion being examined. The following

conclusions apply without exception:
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* Mean Ao is positively impacted by reductions in flying hours, increases in
WRA allowances and cannibalization.

* The variability associated with Order and Shipping Times (OSTs) and repair
Turn Around Times (TATs) increases the variability of Ao.

* Mean Ao is more sensitive to changes in TAT than in OST. This is a result of
the fact that the majority of Ready For Issue (RFI) WRAs, for use in the repair
of aircraft or to re-supply the Supply Department, are furnished by the AIMD

" not by off-ship requisitions.

* Changes in OST impact Ao but the impact is mixed.

* Decreasing the OST for hi-priority, DTO requirements positively impacts Ao.
These benefits are offset by increases in routine priority OST for stock
replenishment requisitions which negatively impact Ao.

= The negative impact of increased OST for stock replenishment requisitions is
felt in two ways. First, because stock is not replaced in a timely fashion, the
number of Not In Stock (NIS) demands increases. Second, the increased NIS
rate impacts the mix of WRAs requiring Expedited Repair (EXREP) resulting
in a higher EXREP Beyond the Capability of Maintenance (BCM) rate.

The conclusions described above are intuitively compelling and are consistent

with the actual performance of the supply-maintenance system onboard an aircraft

carrier.
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C. GENERAL CONCLUSIONS

1. The Full Simulation

The baseline simulation is constructed on the assumptions of the allowance model
ARROWSs. Additional functionality was incrementally added to more accurately reflect
the operationé of a carrier air-wing and the supply-maintenance system that supports it.
The full simulation, with all functionality included, is intended to provide an accurate
tool for forecasting the FMC levels of operational aircraft squadrons.

Analyses of the results of this simulation indicate that neither the full simulation
nor ARROWs (baseline simulation) accurately forecasts FMC. The full simulation
overestimates fleet FMC, and ARROWSs underestimates FMC. Both the baseline and the
full simulation underestimate the variability associated with actual FMC rates. It appears
that this relatively complex simulation has not adequately captured the highly complex
system of aircraft, their WRAs, WRA failures and replacements, repair and
requisitioning, and people. The simulated results are of the correct order of magnitude

but lack the precision required for accurate forecasting.

2. ARROWSs Assumptions

The simulation developed for this thesis makes every effort to include actual data
vice assumptions whenever possible. To this end, all ARROWS assumptions are closely
investigated and compared to actual data if possible. The following ARROWSs
assumptions are inconsistent with actual data.

= ARROWS assumes a 90 day support period when actual carrier air-wing

deployments are approximately 180 days in duration.
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* ARROWs assumes a flight hour program significantly greater than those
being executed by actual carrier air-wings.

* ARROWSs develops WRA allowances based on a Readiness Based Sparing
(RBS) algorithm. These allowances are significantly supplemented prior to
publication in the AVCAL indicating 1) a lack of faith in the ARROWs RBS
allowances and or 2) a lack of discipline in the allowance development
process that allows operators to significantly increase WRA allowances.

*  ARROWs assumes that WRA failure times are exponentially distributed with
a Mean Time Between Failure indicated by point estimates for Maintenance
Replacement Factor (MRF) and Rotable Pool Factor (RPF). Inaccuracy in
either the distribution selection or parameter estimation has serious
implications for both allowance computation and Ao. Increased emphasis on

individual WRA reliability appears warranted.

D. RECOMMENDATIONS FOR FURTHER RESEARCH

This thesis has demonstrated that Ao is a random variable with a distribution,
mean and variance. This chmacteﬁzation of Ao provides signiﬁcantiy more information
about Ao than is available from ARROWSs. However, the need for a robust Ao
forecasting tool for fleet aircraft squadrons has not been satisfied by this thesis. Such a
tool is still considered highly desirable. The simulation in this thesis, like ARROWS,
attempts simply to model FMC. A more useful tool would distinguish between WRA
failures that result in Partially Mission Capable (PMC) failures and Non Mission Capable
(NMC) failures so that Mission Capable (MC), in addition to FMC rates, could be

forecast.
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The allowance model ARROWS and the simulation developed for this thesis rely
on the assumption that WRA failures occur like events in a Homogeneous Poisson
Process. This assumption appears to be driven by the stochastic calculati§ns performed
by ARROWs and a lack of rel.iability data for WRAs.‘

It is intuitively appealing that allowances for spare parts, as important and as
expensive as aircraft WRAs, be developed on reliability data, not on aésumptions rr}ade
for mathematical convenience. This thesis has attempted to demonstrate that simulation
is capable of incorporating a wide variety of very complex functionality precluded by
stochastic models such as ARROWSs. The incorporation of actual reliability data into the
allowance development process is the natural successor to the first generation RBS
models such as ARROWSs. Use of simulation and WRA reliability data for actual

allowance development should be further examined.
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Appendix A. Baseline Simulation Results

Simulation Setting§

107

Support Period 90 Days Variable TAT: No - Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Static 20 Days
Priority Repair: No Routine OST: Static 20 Days
Cannibalization: No WRA Allowances: ARROWs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
Mean . 0.604 0.601 0.550 0.614 0.630 0.684 0.596 0.608 0.698
Std Dev 0.080 0.085 0.106 0.046 0.029 - 0.110 0.050 0.052 0.110
Median 0.611 0.608 0.554 0.615 0.633 0.689 0.604 0.610 0.701
Min © 0.418 0.402 0.290 0.473 0.550 0.440 0.473 0.457 0.396
Max 0.768 0.763 0.767 0.708 0.700 0.893 0.699 0.714 0.918
AIMD Statistics )
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions .Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 72575 5§550.4 1443.6 271.0 1027.0 911.1 70.9 44.3
Std Dev 80.5 66.5 40.1 34 52.3 48.3 114 2.3
Median 7256.5 5546.5 1447.5 271.0 1024.0 908.5 71.0 443
Min 7073.0 5331.0 1339.0 261.2 918.0 - 803.0 50.0 39.1
Max 7508.0 5746.0 1538.0 280.5 1147.0 1031.0 107.0 49.7
Supply Dept. Statistics
Not Not In DTO Stock Net Gross Stock
Demands Issues Carried Stock Reqgns Reqgns Eff Eff Diversions
Mean 8284.6 7257.5 123.8 903.2 70.9 1443.6 0.889 0.876 613.9
Std Dev 100.1 80.5 121 50.5 1.4 40.1 0.005 0.006 28.2
Median 8291.0 7256.5 122.5 898.5 71.0 14475 0.890 0.877 617.5
Min 8053.0 7073.0 95.0 799.0 50.0 1339.0 0.876 0.862 546.0
Max 8567.0 7508.0 153.0 1026.0 107.0 1538.0 0.900 0.888 671.0
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Appendix B. Case 1: 180 vice 90 Day Support Period

Simulation Settings

Support Period 180 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Static 20 Days

Priority Repair: No Routine OST: Static 20 Days

Cannibalization: No WRA Allowances: ARROWSs

Target Ao

Mean
Std Dev
Median

Min
Max

Mean
Std Dev
Median

Min
Max

Mean
Std Dev
Median

Min
Max

Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60OH RF14B  S3B SHE0F

0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
0.584 0.570 0.530 0.608 0.617 0.661" 0.594 0.587 0.674
0.065 '0.059 0.067 0.027 0.025 0.084 0.040 0.047 0.084
0.586 0.574 0.526 0.605 0.621 0.666 0.594 0.592 0.682

0.403 0.405 0.337 0.539 0.558 0.367 0.503 0.479 0.401
0.709 0.707 0.681 0.684 0.676 0.838 0.680 0.700 0.862

AIMD Statistics

Time Time

Avg # of ' Avg # of

Stock Stock Stock Stock EXREP EXREP EXREP EXREPs

Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
14475.4 11349.6 2864.2 274.2 2088.7 1894.5 150.4 45.7

101.3 86.7 53.1 24 80.2 74.8 17.6 1.9

14481.0 11351.0 2861.5 2743 2084.5 1888.5 149.0 45.7
14216.0 11097.0 2747.0 268.2 1932.0 1740.0 116.0 41.8
14725.0 11567.0 3016.0 280.3 2310.0 2098.0 221.0 50.3

Supply Dept. Statistics

Not Not In DTO Stock Net Gross Stock

Demands Issues Carried Stock Reqgns Reqgns Eff Eff Diversions
16564.2 144754 248.3 1840.5 150.4 2864.2 0.887 0.874 1264.0
128.7 101.3 16.6 78.9 17.6 53.1 0.004 0.004 48.1

16582.56 14481.0 248.5 1836.5 149.0 2861.5 0.887 0.874 1264.5

16148.0 14216.0 220.0 1666.0 116.0 2747.0 0.875 0.862 1185.0
16816.0 14725.0 287.0 2051.0 221.0 3016.0 0.897 0.882 1376.0
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Appendix C. Case2: Actual Vice Notional Flight Schedule

Simulation Settings

Support Period 90 Days Variable TAT: No Runs: 100

Flight Schedule: Actual Hi-Priority OST: Static 20 Days
Priority Repair: No Routine OST: Static 20 Days
Cannibalization: No WRA Allowances: ARROWs

Ao Statistics
E2C2 EA6B  ES3A  F14B  FA18C HH60OH RF14B  S3B  SH6OF

Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660

Mean 0.783 0.738 0.644 = 0.937 0.840 0.683 0.947 0.826 0.795
Std Dev 0.060 0.064 0.089 0.016 0.018 0.099 0.016 0.039 0.087
Median 0.788 0.743 0.640 0.939 0.843 0.691 0.949 0.828 0.797
Min 0.650 0.567 0.411 0.894 0.795 0.326 0.878 0.679 0.595
Max 0.925 0.869 0.815 0.971 0.886 0.885 0.973 0.912 0.956
AIMD Statistics
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs  In Repair
Mean 4088.0 3056.7 872.4 151.9 280.9 244.3 253 124
Std Dev 64.9 54.8 33.2 2.9 19.7 20.0 5.6 1.0
Median 4094.5 3060.5 868.0 151.9 281.0 2425 26.0 123
Min 3890.0 2921.0 806.0 144.2 238.0 207.0 11.0 104
Max 4231.0 3215.0 ~ 958.0 159.5 326.0 294.0 46.0 153

Supply Dept. Statistics

Not Not In DTO Stock Net Gross Stock

Demands Issues Carried Stock Reqns Reqns Eff Eff Diversions
‘Mean - 4368.8 4088.0 72.0 208.8 253 8724 0.951 0.936 167.5
Std Dev 71.9 64.9 9.4 17.6 5.6 33.2 0.004 0.004 144
Median 4370.0 4094.5 71.0 208.0 26.0 868.0 0.952 0.935 165.0
Min 4128.0 3890.0 49.0 170.0 11.0 806.0 0.943 = 0.926 128.0
Max 4528.0 4231.0 98.0 251.0 ~ 46.0 958.0 0.959 0.946 203.0
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AppendixD. Case3: Prioritized Order and Shipping Time

Simulation Settings

Support Period 90 Days Variable TAT: No Runs: . 100
Flight Schedule: Wartime Hi-Priority OST: Static 9 Days
Priority Repair: No Routine OST: Static 27 Days
Cannibalization: No WRA Allowances: ARROWSs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
Mean 0.617 0.615 0.549 0.603 0.637 0.685 0.588 0.594 0.717
Std Dev 0.067 0.079 0.090 0.041 0.024 0.090 . 0.050 0.053 0.086
Median 0.619 0.623 0.545 0.602 0.638 0.693 0.584 0.594 0.721
Min 0.456 0.339 0.319 0.517 0.563 0.473 0.467 0.417 0.511
Max 0.745 0.818 0.784 0.693 0.698 0.884 0.715 0.697 0.911
AIMD Statistics
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair inductions Repairs BCMs In Repair
Mean 7218.0 5545.1 1410.0 270.9 1079.6 930.9 103.0 452
Std Dev 72.4 64.5 34.9 35 54.7 513 13.1 25
Median 72155 5540.5 1409.5 270.7 1082.5 938.0 103.5 45.2
Min 7026.0 5381.0 1315.0 263.4 952.0 825.0 69.0 40.2
Max 7401.0 5705.0 1495.0 279.9 1236.0 1087.0 133.0 51.9
Supply Dept. Statistics
Not Notin  DTO  Stock Net Gross  Stock
Demands Issues Carried Stock Reqns Regns Eff Eff Diversions
Mean 8297.6 7218.0 122.6 957.0 103.0 1410.0 0.883 0.870 627.5
Std Dev 975 - 72.4 9.5 52.8 13.1 34.9 0.006 0.006 29.2
Median 8309.5 7215.5 123.0 963.5 10385 1409.5 0.883 0.869 630.5
Min 8033.0 7026.0 95.0 841.0 69.0 1315.0 0.867 0.854 545.0
Max 8512.0 7401.0 148.0 1112.0 133.0 1495.0 0.896 0.883 726.0
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Appendix E. Caseda: Variable Order and Shipping Time

Simulation Settings

Support Period 90 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Var: 4 + exp(16) = mean 20 Days
Priority Repair: No Routine OST: Var: 4 + exp(16) = mean 20 Days
Cannibalization: No WRA Allowances: ARROWSs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
Mean 0.630 0.628 0.568 0.625 0.639 0.698 0.611 0.622 0.708
Std Dev 0.090 0.087 0.108 0.042 0.035 0.103 0.052 0.055 0.108
Median 0.637 0.632 0.577 0.631 0.641 0.705 0.615 0.623 0.722
Min 0.359 0.397 0.309 0.520 0.533 0.427 0.468 0.462 0.400
Max 0.814 0.811 0.755 0.735 0.726 0.905 0.709 0.736 0.913
AIMD Statistics
Time Time
. Avg # of Avg # of
Stock Stock Stock  Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7280.5 5562.3 1453.5 271.7 1014.4 904.7 64.0 44.0
Std Dev 83.6 74.0 38.6 3.9 49.6 47.4 10.2 2.3
Median 7282.5 5559.5 1456.5 2714 "1014.0 904.5 64.5 442
Min 7041.0 5376.0 1374.0 263.8 886.0 768.0 30.0 37.6
Max 7520.0 5770.0 1541.0 282.9 1126.0 1009.0 92.0 49.0
. Supply Dept. Statistics
Not Notin DTO Stock Net Gross Stock
Demands Issues Carried Stock Reqgns Reqns Eff Eff Diversions
Mean 8295.0 7280.5 122.3 892.2 64.0 1453.5 0.891 0.878 596.8
Std Dev 100.7 83.6 11.8 48.8 10.2 38.6 0.005 0.005 285
Median 8294.5 7282.5 122.0 890.5 64.5 1456.5 0.891 0.878 600.0
Min 8025.0 7041.0 92.0 769.0 30.0 1374.0 0.879 0.865 515.0
Max 8536.0 7520.0 155.0 988.0 92.0 1541.0 0.905 0.893 653.0
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Appendix F. Cased4b: Variable Order and Shipping Time
Simulation Settings
Support Period 90 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Var: 4 + exp(5) = mean 9 Days
Priority Repair: No Routine OST: Var: 4 + exp(23) = mean 27Days
Cannibalization: No WRA Allowances; ARROWSs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
Mean 0.630 0.621 0.556 . 0.631 0.647 0.695 0.611 0.612 0.736
Std Dev 0.076 0.088 0.101 0.036 0.027 0.083 0.045 0.055 0.080
Median 0.646 0.632 0.547 0.630 0.649 0.701 0.613 0.620 0.743
Min 0.399 0.360 0.361 0.554 0.577 0.505 0.490 0.492 0.477
Max 0.790 0.822 0.761 0.701 0.715 0.881 0.737 0.727 0.880
AIMD Statistics
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7252.0 5566.4 1422.5 271.8 1046.7 911.6 88.3 446
Std Dev 78.3 68.0 33.8 3.6 46.1 40.0 13.5 2.1
Median 7250.5 5565.5 1421.5 272.0 10455 905.0 87.5 44.4
Min 7080.0 5359.0 1308.0 261.6 951.0 806.0 59.0 39.7
Max 7442.0 §704.0 1507.0 280.0 1181.0 1019.0 139.0 50.5
Supply Dept. Statistics
Not Not In DTO Stock Net Gross Stock
Demands Issues Carried Stock Reqns Reqns Eff Eff Diversions
‘Mean 8298.7 7252.0 124.9 921.8 88.3 1422.5 0.887 0.874 604.3
Std Dev 87.6 78.3 10.2 44.8 13.5 33.8 0.005 0.005 24.6
Median 8298.5 7250.5 126.0 919.0 87.5 14215 0.888 0.874 604.0
Min 8045.0 7080.0 100.0 820.0 59.0 1308.0 0.871 0.858 539.0
Max 8536.0 7442.0 144.0 1052.0 139.0 1507.0 0.898 0.884 672.0
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Appendix G.

Simulation Settings

Casedc: Variable Order and Shipping Time

Support Period 90 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Var: 4 + exp(18) = mean 22 Days
Priority Repair: No Routine OST: Var: 4 + exp(32) = mean 36 Days
Cannibalization: No WRA Allowances: ARROWSs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 | 0.640 0.660 0.560 0.600 0.660
Mean " 0.541 0.543 0.475 0.527 0.571 0.585 0.514 0.524 0.593
Std Dev 0.111 0.118 0.096 0.064 0.038 0.127 0.085 0.080 0.124
Median 0.537 0.546 0.473 0.533 0.571 0.588 0.523 0.530 0.595
Min 0.269 0.276 0.178 0.368 0.468 0.286 0.265 0.312 0.238
Max 0.774 0.814 0.713 0.669 0.652 0.866 0.660 0.706 0.865
AIMD Statistics -
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7125.3 5505.7 1361.8 268.5 1111.1 926.9 135.5 45.3
Std Dev 844 74.4 30.9 4.2 57.8 53.7 204 - 2.9
Median 7126.0 5504.5 1364.5 269.0 1115.0 927.5 136.0 45.4
Min 6917.0 5308.0 1295.0 254.6 951.0 794.0 83.0 39.2
Max 7316.0 5711.0 1444.0 282.4 1232.0 1044.0 190.0 52.7
Supply Dept. Statistics
Not Not In DTO Stock Net Gross Stock
Demands Issues Carried Stock Regns  Reqns Eff Eff Diversions
Mean 8236.4 7125.3 1241 987.0 1355 1361.8 0.878 0.865 637.0
Std Dev 105.6 84.4 12.0 56.4 20.4 30.9 0.006 0.006 31.3
Median 8248.5 7126.0 125.0 992.5 136.0 1364.5 0.878 0.865 639.5
Min 8005.0 6917.0 93.0 838.0 83.0 1295.0 0.866 0.852 558.0
Max - 8460.0 7316.0 154.0 1112.0 190.0 1444.0 0.895 0.882 739.0
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Appendix H.

Simulation Settings

Case5: Prioritized Repair

Support Period 90 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Static 20 Days
Priority Repair:  Yes, EXREP = .5*TAT Routine OST: Static 20 Days
Cannibalization: No WRA Allowances: ARROWSs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
Mean 0.686 ' 0.662 0.650 0.717 0.746 0.685 0.699 0.698 0.721
Std Dev 0.076 0.077 0.087 0.036 0.026 0.107 0.051 0.041 0.120
Median 0.696 0.668 0.663 0.720 0.747 0.684 0.708 0.700 0.731
Min 0.484 0.469 0.406 0.628 0.684 0.321 0.513 0.542 0.424
Max 0.822 0.818 0.801 0.784 0.797 0.906 0.790 0.776 0.930
AIMD Statistics
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7420.4 5709.8 1443.2 278.4 878.1 790.1 70.3 19.2
Std Dev 77.0 63.8 34.1 3.3 40.4 37.6 12.0 1.0
Median 7420.0 §704.5 1442.0 277.9 876.5 789.5 70.0 19.3
Min 7266.0 5572.0 1360.0 2715 776.0 683.0 47.0 16.5
Max 7643.0 5868.0 1531.0 286.8 1008.0 903.0 102.0 22.0
Supply Dept. Statistics
Not Not In DTO Stock Net Gross Stock
Demands Issues Carried Stock Reqns Reqns Eff Eff Diversions
Mean 8298.5 7420.4 122.6 755.5 70.3 1443.2 0.908 0.894 458.9
Std Dev 89.1 77.0 12.2 374 12.0 34.1 0.004 0.004 23.3
Median 8293.0 7420.0 121.0 755.5 70.0 1442.0 0.907 0.894 4545
Min 8109.0 7266.0 94.0 671.0 47.0 1360.0 0.898 0.880 413.0
Max 8536.0 7643.0 163.0 852.0 102.0 1531.0 0.917 0.906 528.0
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Appendix .

Case6: Variable Turn Around Time

Simulation Settings

Support Period 90 Days Variable TAT: Yes Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Static 20 Days
Priority Repair: No Routine OST: Static 20 Days
Cannibalization: No WRA Allowances: ARROWs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH6OH RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.560 0.640 0.660 0.560 0.600 0.660
Mean 0.606 0.601 0.552 0.526 0.631 0.659 0.505 0.540 0.646
Std Dev 0.092 0.101 0.108 0.053 0.046 0.121 0.077 0.094 0.123
Median 0.609 0.614 0.544 0.529 0.630 0.664 0.521 0.540 0.660
Min 0.285 0.295 0.256 0.369 0.491 0.320 0.311 0.308 0.313
Max 0.781 0.869 0.800 0.621 0.740 0.891 0.668 0.789 0.868
AIMD Statistics
Time Time
Avg # of ) Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7176.1 5464.1 14443 256.8 11014 971.8 70.0 48.6
Std Dev 88.3 76.2 33.0 5.0 64.2 59.1 10.6 4.0
Median 7183.5 5473.0 1440.5 256.3 1104.5 975.5 70.0 48.5
Min 6895.0 §237.0 1362.0 246.8 889.0 794.0 47.0 35.5
Max 7402.0 5670.0 1533.0 270.9 1275.0 1133.0 98.0 57.4
Supply Dept. Statistics
Not Not in DTO Stock Net Gross Stock
Demands Issues Carried  Stock Reqns  Reqns Eff Eff Diversions
Mean 8277.5 7176.1 122.5 979.0 70.0 14443 0.880 0.867 4443
Std Dev 98.6 88.3 111 61.9 10.6 33.0 0.007 0.007 27.6
Median 8282.0 7183.5 123.5 978.0 70.0 1440.5 0.880 0.867 440.0
Min 8069.0 6895.0 96.0 762.0 47.0 1 362.0 0.862 0.849 378.0
Max 8490.0 7402.0 145.0 1131.0 98.0 15633.0 0.905 0.891 540.0

Note: 81% of all repair actions used Variable TAT based on >= 10 Observations
19% of all repair actions used Static TAT from ARROWSs based on < 10 Observations
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Appendix J.

Simulation Settings

Case7: Cannibalizatior

Support Period 90 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Static 20 Days
Priority Repair: No Routine OST: Static 20 Days
Cannibalization: Yes WRA Allowances: ARROWSs
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Mean 0.680 0.683 0.588 0.688 0.767 0.678 0.684 0.682 0.739
Std Dev 0.053 0.063 0.099 0.029 . 0.017 0.114 0.041 0.040 0.081
Median 0.685 0.691 0.585 0.688 0.769 0.691 0.684 0.679 0.749
Min 0.552° 0.426 0.313 0.616 0.730 0.351 0.552 0.570 0.416
Max 0.791 0.878 0.825 0.757 0.807 0.895 0.762 0.787 0.939
Cannibalization Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Mean 14.0 17.3 7.5 81.8 226.2 2.9 50.0 48.1 4.9
Std Dev 5.0 6.6 4.0 11.0 174 2.5 105 9.8 3.2
Median 14.0 17.0 7.0 82.5 225.0 2.0 50.0 47.5 4.0
Min 2.0 " 4.0 0.0 60.0 181.0 0.0 25.0 23.0 0.0
Max 27.0 37.0 19.0 106.0 272.0 12.0 88.0 73.0 15.0
AIMD Statistics
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs  In Repair
Mean 7340.8 5618.7 1459.9 274.4 1005.9 891.5 71.9 435
Std Dev 76.3 74.8 37.2 3.7 45.2 43.4 10.7 21
Median 7342.5 5619.5 1456.5 274.6 1009.5 892.5 72.0 43.5
Min 7120.0 5438.0 1352.0 265.7 876.0 780.0 48.0 38.6
Max 7510.0 5788.0 1569.0 282.3 1107.0 1003.0 115.0 48.9
Supply Dept. Statistics
Not Not in DTO Stock Net Gross Stock
Demands Issues Carried  Stock Regns  Reqns Eff Eff Diversions
Mean 8346.7 7340.8 124.0 881.9 71.9 1459.9 0.893 0.880 609.6
Std Dev 89.4 76.3 11.6 41.4 10.7 37.2 0.005 0.005 26.0
Median 8356.5 73425 122.5 882.0 72.0 1456.5 0.892 0.879 603.5
Min 8092.0 7120.0 95.0 765.0 48.0 1352.0 0.881 0.868 5440
Max 8562.0 7510.0 160.0 979.0 115.0 1569.0 0.904 0.892 680.0
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Appendix K. Case8: AVCAL vice ARROWSs Allowances
Simulation Settings
Support Period 90 Days Variable TAT: No Runs: 100
Flight Schedule: Wartime Hi-Priority OST: Static 20 Days
Priority Repair: No Routine OST: Static 20 Days
Cannibalization: No WRA Allowances: AVCAL
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Target Ao 0.600 0.600 0.560 0.5§0 0.640 0.660 0.560 0.600 0.660
Mean 0.662 0.739 0.663 0.728 0.778 0.734 0.717 0.800 0.798
Std Dev 0.072 0.066 0.096 0.039 0.023 0.120 0.038 0.041 0.082
Median 0.654 0.742 0.673 0.737 0.776 0.758 0.723 0.803 0.811
Min 0.503 0.521 0.457 0.625 0.708 0.348 0.597 0.631 0.543
Max 0.839 0.863 0.841 0.808 0.829 0.914 0.784 0.882 0.937
AIMD Statistics
Time Time
. Avg # of Avg # of
Stock Stock Stock _ Stock EXREP EXREP EXREP EXREPs
inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7626.5 5882.7 1468.0 287.3 679.1 599.7 51.0 29.4
Std Dev 73.8 62.7 37.6 3.1 42.4 38.7 8.9 1.9
Median 7618.5 5876.0 1469.5 287.5 - 675.5 598.5 51.0 291
Min 7436.0 5744.0 1381.0 280.2 595.0 510.0 33.0 25.3
Max 7800.0 6043.0 1555.0 294.3 793.0 706.0 80.0 33.8
. Supply Dept. Statistics
Not Not In DTO Stock Net Gross Stock
Demands Issues Carried Stock Regns Reqns Eff Eff Diversions
Mean 8305.6 7626.5 38.2 640.9 51.0 1468.0 0.923 0.918 470.4
Std Dev 88.8 73.8 6.1 421 8.9 37.6 0.005 0.005 26.4
Median 8300.5 7618.5 38.0 638.0 51.0 1469.5 0.923 0.919 469.5
Min 8067.0 7436.0 27.0 554.0 33.0 1381.0 0.910 0.905 410.0
Max 8541.0 7800.0 §7.0 751.0 80.0 1555.0 0.932 0.928 527.0
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Appendix L. Case9: Full Simulation

Simulation Settings

129

Support Period 180 Days Variable TAT: Yes | Runs: 100
Flight Schedule: Actual Hi-Priority OST: Var: 4 + exp(18) = mean 22 Days
Priority Repair: No Routine OST: Var: 4 + exp(32) = mean 36 Days
Cannibalization: Yes WRA Allowances: AVCAL
Ao Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH6E0F
Mean 0.781 0.813 0.653 0.949 0.915 0.636 0.951 0.877 0.787
Std Dev 0.058 0.061 0.120 0.020 0.013 0.114 0.025 0.034 0.081
Median’ 0.781 0.817 0.678 0.956 0.916 0.642 0.959 0.880 0.807
Min 0.643 0.634 0.367 ‘ 0.889 0.876 0.412 0.849 0.780 0.493
Max 0.915 0.922 0.827 0.973 0.940 0.874 0.979 0.945 0.911
Cannibalization Statistics
E2C2 EA6B ES3A F14B FA18C HH60H RF14B S3B SH60F
Mean 12.8 11.8 8.6 6.6 96.4 7.9 2.9 12.0 5.4
Std Dev 5.8 5.9 4.9 4.3 14.4 45 2.9 6.1 3.9
Median 13.0 11.0 7.5 6.0 96.0 8.0 2.0 11.0 5.0
Min 0.0 2.0 1.0 0.0 66.0 0.0 0.0 2.0 0.0
Max 33.0 27.0 24.0 24.0 133.0 22.0 17.0 27.0 17.0
AIMD Statistics
Time Time
Avg # of Avg # of
Stock Stock Stock Stock EXREP EXREP EXREP EXREPs
Inductions Repairs BCMs In Repair Inductions Repairs BCMs In Repair
Mean 7390.4 5817.0 1550.3 142.8 376.6 315.8 60.6 8.8
Std Dev 78.4 74.8 37.3 3.0 32.8 30.8 10.0 1.1
Median 7385.0 58215 1651.0 142.8 376.5 318.0 59.5 8.8
‘Min 7210.0 5643.0 1436.0 136.1 320.0 257.0 38.0 6.2
Max 7626.0 5971.0 1640.0 149.6 472.0 417.0 91.0 11.8
Supply Dept. Statistics
Not Not In DTO Stock Net Gross Stock
Demands Issues Carried  Stock Reqns Reqns Eft Eff Diversions
Mean 7767.0 7390.4 41.2 335.4 60.6 1550.3 0.957 0.952 186.3
Std Dev 84.7 78.4 6.9 31.4 10.0 37.3 0.004 0.004 ' 154
Median 7775.5 7385.0 40.0 335.0 595 1551.0 0.957 0.951 185.5
Min 7557.0 7210.0 28.0 276.0 38.0 1436.0 0.945 0.940 154.0
Max 7988.0 7626.0 57.0 430.0 91.0 1640.0 0.964 0.959 236.0
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