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ABSTRACT 

Accurate forecasting of repair turn-around time (RTAT) of United States Navy 

depot level repairable items is critical to achieving optimal service levels while 

minimizing procurement and repair costs. The Navy’s Inventory Control Point has 

developed a forecast model that uses sophisticated Statistical Process Control techniques 

and non-parametric algorithms to forecast RTAT. This thesis attempts to validate the 

Navy’s RTAT forecast model by comparing its performance to those of simple time 

series forecasting methods. It was found that the assumptions implicit in the UICP 

RTAT forecast model have a significant impact on forecast accuracy. In addition to 

documenting these model properties, a goal of this thesis is to identify variables that the 

UICP model does not use in RTAT forecasting which may improve its accuracy. The 

research focuses on data for repairable items that have high dollar value and the greatest 

number of repair transactions per quarter. 

Results show that the Navy’s model is not consistently more accurate than any of 

the alternative techniques examined, and that it tends to ignore many large RTAT 

observations, causing it to under-forecast RTAT. Thesis research also reveals that 

accounting for differences in disparate designated overhaul points may significantly 

improve the prediction of RTAT. Finally it is shown that additional variables, derived 

from a NAVICP Philadelphia database and designed to capture the queueing aspect of the 

repair process, may significantly improve the prediction of RTAT. These findings point 

to the use of queueing information to obtain more accurate RTAT forecasts. 
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EXECUTIVE SUMMARY 

To efficiently manage its stocks of repairable items, the Naval Inventory Control 

Point (NAVICP) must be able to forecast repair times of the items that it sends to 

overhaul points for repair. Because repair turn-around time (RTAT) for several thousand 

items must be forecast on a quarterly basis, NAVICP developed an automated 

forecasting tool, known as the Uniform Inventory Control Program (UICP) RTAT 

forecast model, that uses a common methodology for each item. The research described 

in this thesis considers the accuracy of the model from several different perspectives: 

The prediction accuracy of the UICP RTAT forecast model across a subset of 
repairable items that were chosen to represent high-value, high-volume repair 
activities; 

The accuracy of alternative forecasting methodologies, including exponential 
smoothing, four-quarter moving averaging, and use of the previous quarter 
average RTAT value; 

The validity of assumptions implicit in the UICP RTAT forecast model and 
the impact that these assumptions have on forecast accuracy; 

The ability of additional predictor variables from the same data used in current 
RTAT forecasting to improve the prediction of repair times. 

None of the simple alternative methodologies that are considered in this thesis are 

found to perform better than the UICP RTAT forecast model. Conversely, forecasts 

produced by the UICP model are not consistently more accurate than forecasts produced 

by any of the alternative methodologies. 

The UICP RTAT model forecasts are found to consistently underforecast RTAT. 

One source of underforecasting is the outlier screening used in the UICP model, which 

tends to exclude many more large RTAT values than small ones. It is found that a 

simple, but effective remedy for the problem of excluding disproportionate numbers of 
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large RTAT observations is to apply a logarithm transformation of the RTAT values 

before the UICP RTAT model begins its forecasting. The transformation substantially 

reduces the impact of outliers, but did not solve the under-forecasting problem. The 

benefit of using the logarithmic transformation is that it may reduce or eliminate the need 

for outlier exclusion. Consequently the amount of information discarded may be 

reduced. 

For items that are sent to more than one designated overhaul point (DOP) for 

repair, it is found that accounting for the DOP may significantly improve the prediction 

of repair turn-around times. Some DOPs are found to take longer to repair a given item 

than others. 

Because the UICP model forecasts RTAT based solely on repair transactions that 

have been completed, it ignores the present state of the repair process and the queueing 

aspect of this process. In conducting the thesis research, additional variables are derived 

from a NAVICP database to capture these aspects. It is found that significant 

improvement in the prediction of RTAT may be realized by considering the additional 

variables in a forecasting model. However, no clear or simple means are found by which 

the existing model could be modified in order to realize these gains. Adopting a 

regression approach in the forecasting model may be more difficult than incorporating the 

DOP factor, but in both cases results point to the use of queueing information to obtain 

more accurate RTAT forecasts. 

This thesis makes two recommendations to improve the forecast accuracy of 

Navy repair turn-around times. They are as follows: 

xvi 



1. Incorporate DOP as a predictor of RTAT for items repaired by more than one 
DOP in future model development. 

I 

2. Identify and collect data on variables that capture the queueing aspect of the 
repair process. Incorporate the queueing aspect of the repair process in future 
forecast model development. 
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I. INTRODUCTION 

A. BACKGROUND 

The United States Navy classifies its stocks of spare and repair parts as either 

consumable or repairable. Two Naval Inventory Control Point (NAVICP) sites manage 

Navy repairable items. Naval Inventory Control Point, Philadelphia (NAVICP-Phil) 

manages repairable items that support aviation assets, while Naval Inventory Control 

Point, Mechanicsburg (NAVICP-Mech) manages all other repairable items. Unlike 

consumables (or non-repairable parts), which are discarded at the time of failure, 

repairable items are forwarded to designated overhaul points. Those items identified as 

economically feasible to repair are restored to serviceable condition and those items that 

are not are condemned and processed for disposal. When an overhaul point repairs an 

item and classifies it as ready for issue, it is sent to a stock point to be issued to the next 

requisitioning customer. Repairable items are overhauled and returned to serviceable or 

“ready for issue” condition at costs that are significantly less than replacement costs and 

usually in less time than procurement lead times (Maher, 1993). 

To efficiently manage their stocks of repairable items, NAVICP personnel must 

determine how many items to purchase, when to purchase them, how many items to 

repair, and when to repair them. To optimally calculate these quantities, accurate 

forecasting of several variables must be accomplished. Repair turn-around time (RTAT) 

is one of these variables. RTAT is defined as the actual amount of repair time that an 

item spends in the repair system. RTAT includes waiting time plus actual time needed to 

repair an item. Waiting time may include queuing time and time waiting for parts to 

arrive. 
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To develop an individual forecasting methodology for each of thousands of 

NAVICP managed repairable items would be an extremely large task. Instead, the 

NAVICP sites have jointly developed a program to automatically forecast RTAT for all 

repairable items. The program incorporates several types of time-series forecast 

methodologies that included both quantity-weighted averaging and exponential 

smoothing of historical RTAT data. However, because repair times for some items 

increase or decrease over time or may require special handling for various other reasons, 

the program has evolved into a complex algorithm that addresses contingencies such as 

trends, outliers, changes in the repair process, and situations where historical repair 

transaction data are limited. 

B. MANUAL INTERVENTION IN FORECASTING RTAT 

The Uniform Inventory Control Program (UICP) RTAT forecast model was 

developed to provide automated forecasts of RTAT for several thousand repairable items. 

However, it does not completely eliminate the need for human analysis. Changing the 

value of RTAT in the equations that NAVICP uses to manage its inventories affects 

repair schedules, procurement points, and inventory quantities. Erroneously high 

forecasts may result in unnecessary increases in inventories and thereby raise inventory 

costs, while erroneously low forecasts may result in inventories that are inadequate to 

support fleet requirements. 

The UICP RTAT model therefore prompts for item manager inspection of RTAT 

forecasts under certain conditions. Item manager review is triggered when an RTAT 

forecast is considerably higher or lower than the previous quarter’s forecast. Item 

manager review is also triggered by a value known as the “delta in turn-around time 
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demand value of repair requirement”, which is a function of the RTAT forecast, average 

RTAT from the previous quarter, the repairable item dollar value, and quarterly demand. 

This value is compared against tabled parameters based on average RTAT from the 

previous quarter and the forecast method used by the model. Finally, item managers 

must automatically review the RTAT forecasts of certain items every quarter for various 

other reasons, including items of high mission criticality referred to as “exceptions”. The 

forecasting does not automatically update the RTAT forecast of any item on the 

exception list; instead, updating must be performed manually. 

When a repairable item is identified for review, item managers are required to 

check the validity of the model-generated forecast. The forecast that the model produced, 

the specific methodology that produced it, and all repair observation data are utilized in 

the review. Item managers may decide to use the forecast produced by the program or 

may assign their own. They may use their knowledge of specific repair processes, repair 

schedules, overhaul points, and any other information at their disposal. Personal- 

computer based software known as the Item Manager Toolkit is used to examine 

available repair data at both NAVICP sites. 

This “Man in the LOOP” aspect is an integral and perhaps necessary component of 

RTAT forecasting at NAVICP. Nonetheless, it is recognized that reducing human 

intervention while providing accurate forecasts would be a valuable feature of any 

modification to the RTAT forecasting tool. With the UICP RTAT forecast model, the 

level of item manager review may be controlled through modification of certain program 

parameters. However, neither a complete list of initial parameter values nor specific 
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goals for the number of items identified for review had been determined at the time this 

thesis was written. 

In this thesis we consider the statistical validity of the model components that 

comprise the UICP RTAT forecast model. Possible system improvements achieved 

through item manager review and intervention are not considered in evaluating model 

performance. 

The balance of the thesis is organized as follows. Chapter I1 gives a detailed 

description of the portion of the UICP RTAT forecast model that is studied in this thesis. 

Chapter I11 describes data used by the UICP RTAT forecast model that are also the basis 

of the thesis research. Analyses undertaken for individual repairable items, based on data 

that are described in Chapter 111, are described in Chapter IV. Chapter V presents 

conclusions and makes recommendations of how the thesis research may improve the 

forecasting of repair time. 

C. OBJECTIVES OF THE THESIS 

The forecasts produced by the UICP RTAT forecast model are based entirely on 

the statistical properties of repair turn-around times of completed repair transactions. 

Although the model is intricate, it does not incorporate the queuing aspect of the repair 

system or any information about the repair process other than the date that an item was 

returned from repair, and the time required to perform the repair. In this thesis we 

examine additional sources of information that may improve the prediction of RTAT. 

One use of this information would be to develop a forecasting methodology that uses a 

larger set of variables for prediction. These variables may include the designated 

overhaul point that is assigned to make the repair, or the quantity of items still in repair at 
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the beginning of a quarter. Although this approach would increase the complexity of the 

RTAT forecasting model, more accurate forecasting of RTAT would improve the 

management of Navy inventories and may reduce the considerable amount of human 

intervention needed to apply the incumbent forecasting tool. 

The objectives of this thesis are as follows: 

1) Evaluate the UICP RTAT forecast model for its ability to predict RTAT 
across a range of repairable items. 

2) Compare the UICP RTAT forecast model to standard time series forecasting 
methodologies, including previous quarter observed RTAT, four-quarter 
moving average, and exponential smoothing. Accuracy will be determined by 
measuring deviation and bias of the forecasts produced by the various 
methods. 

3) Identify the assumptions implicit in the UICP RTAT forecast model and the 
impact that these assumptions have on forecast accuracy. 

4) Identify additional predictor variables from the same data used in current 
RTAT forecasting, and evaluate their usefulness in predicting RTAT. 

5 



THIS PAGE INTENTIONALLY LEFT BLANK 

6 



11. THE UICP RTAT FORECAST MODEL 

A. BACKGROUND 

The UICP RTAT forecast model forecasts repair turn-around time (RTAT) for a 

repairable item using one of several methodologies. The forecast methodology is chosen 

depending on the total number of repair observations available, the number of quarters 

for which repair observations are available, quarterly demand, and a determination of 

process change or trend. Because this thesis restricts attention to repairable items with 

high volumes of available repair data, the forecasting methodologies designed for items 

with fewer than four repair observations are not examined. A description of the UICP 

RTAT forecast model is provided in this section. This description is summarized from 

the RTAT Narrative (FMSO, 1999), and from personal conversations with NAVICP 

personnel. The portion of the model considered in this thesis is coded as a set of S-Plus 

functions that are produced in Appendix A. A flowchart that illustrates the portion of the 

UICP RTAT forecast model described in this chapter is shown in Figure 2.1. 
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B. MODEL DESCRIPTION 

In this section, portions of the UICP RTAT forecast model are described. 

Discussion of a methodology, computation, or decision explicitly represented by a 

flowchart block from Figure 1 contains a reference to that block number. For example, 

Observation Categorization (CO) refers to block (CO) on the flowchart. 

1. Observation Categorization (CO) 

Current quarter repair observations must be available to run the model. 

Therefore, a new forecast will not be produced if there is no data from which to produce 

it. For each repairable item, only RTAT observations with repair completion dates 

occurring after a cut-off date (called the fence) are considered in RTAT forecast 

computations. The fence is used to demarcate the latest change in the distribution of 

RTAT as the repair process evolves across time. If current quarter observations are 

available for a particular repairable item (Dl), that item is first checked against an 

exception file and a set of exception parameters; it is also checked against an exclusion 

file and a set of exclusion parameters. The exception and exclusion files list repairable 

items for which special management attention is mandated. If an item is determined to be 

an exception or exclusion, the exception or exclusion indicator is set. If an item’s 

exclusion indicator is set, then no new RTAT forecast is computed. Forecasts for items 

identified by the program as exceptions are computed, but must be reviewed by item 

managers before being accepted. 

2. Batch Consolidation (ClA) 

A repairable item not identified as an exclusion and having current quarter 

observations is subject to a process called butch consolidation. Separate observations 
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that have identical repair completion dates, turn-around times (TAT), and designated 

overhaul points (DOP) are consolidated into a single observation, as illustrated by the 

following example: 

Before batch consolidation: 

Quantity TAT observation' Completion Date2 DOP 
1 150 93014 Q24900 
2 150 93014 424900 

After batch consolidation: 

Quantity TAT observation Completion Date DOP 
3 150 93014 Q24900 

Following batch consolidation, all RTAT observations that are outside of an acceptance 

range are discarded from subsequent calculations. It is assumed that these observation 

values are caused by errors in data recording. At the time this thesis was written the 

maximum and minimum allowable values were 998 days and 4 days respectively 

(Jacoby, 1999). 

3. Outlier Exclusion (ClB) and Computation of Quarterly Quantity- 
Weighted Average RTAT (C2) 

If there are four or more (batch-consolidated) repair observations available for an 

item, outlier screening (ClB) is conducted. Observations identified as outliers at this 

stage are excluded from subsequent calculations. 

TAT is measured in days. 

Dates are given in YYDDD format. For example, 93014 is 14 January, 1993. 

10 



Outliers are observations identified as lying outside of a range defined by 

quantities called the Inner Fourth Upper (IFU) and Inner Fourth Lower (IFL). These 

quantities are determined by first calculating the fourth spread (FS) (also known as the 

inter quartile range), which is the difference of the lower fourth (FL, the sample 25'h 

percentile) from the upper fourth (FU, the sample 75'h percentile). The upper and lower 

outlier cutoff values are given by IFU = FU + p*FS and IFL = FL - p*FS, where p is a 

program parameter. At the time this thesis was written p = 1 was used in the UICP 

RTAT forecast model (Jacoby, 1999). Although they are excluded from computations 

for the quarter in which they occur, outliers may be considered in future forecasts and are 

saved to a history file for review by item managers. 

The following example illustrates the outlier identification process: 

1. Setp = 1 

2. RTAT observations (n = 12) sorted from smallest to largest: 7, 10, 14, 15, 20, 
23, 25, 29, 30, 49, 57, 66 

3. Lower Fourth (FL) = (n*.25)'h observation = 3rd observation (RTAT = 14) 

4. Upper Fourth (FU) = (n*.75)'h observation = gth observation (RTAT = 30) 

5. Fourth Spread (FS) = FU - FL = 30 - 14 = 16 

6. IFL = FL -p*FS = 14 - 1*16 = -2 

7. IFU = FU +p*FS = 30 + 1*16 = 46 

8. Identified outliers: RTAT = 49,57, and 66. 

Following the outlier exclusion step, quantity-weighted averages of RTAT are 

computed by quarter, and the number of quarters that have repair observations for the 

item are determined (C2). Weights assigned in computing the quantity-weighted average 

of RTAT are the quantity of repairs completed for each repair observation. 
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4. 

The quantity-weighted average of all RTAT observations from the fence date to 

the last quarter for which data are available is adopted as the RTAT forecast whenever 

too few quarters of data are available to make a determination of a trend or process 

change in RTAT. Process change detection and trend detection are explained later in this 

section. The quantity-weighted average is adopted as the RTAT forecast provided that 

the following conditions are met: 

Quantity-Weighted Average of All RTAT Data (CS) 

The item is not identified as an exclusion (D3) 

The item has four or more repair observations occurring after the fence 

There are fewer than five quarters of repair observation data occurring after 
the fence for the item (D4). 

Suppose that a process change is determined to have occurred in the most recent 

half of six quarters of data. The fence is then reset to the first day of the quarter 

following the detected process change. The forecast for the following quarter is then a 

quantity-weighted average using only the last four quarters of data. 

5. Process Change Detection (D5) 

A process change is defined as an abrupt change in the distribution of repair 

times. For instance, if RTAT averages 100 days over several quarters, but then drops to 

thirty days over several quarters, a process change may have occurred. The UICP model 

requires that at least 5 quarters of repair observations be available for process change 

computations. Specifically, process change detection (D5) is conducted on any item that 

satisfies all of the following conditions: 
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The item is not identified as an exclusion in step (D3) 

The item has four or more repair observations occurring after the fence 

The item has five or more quarters of repair observation data occurring after 
the fence (D4). 

To determine if a process change has occurred, up to ten of the most recent quarterly 

RTAT averages are utilized in the manner described below: 

Process Change Detection Algorithm 

1. Assign as A l  the average of the oldest half of the quarterly RTAT averages. 

2. Assign as A2 the average of the most recent half of the quarterly RTAT 
averages. If an odd number (n) of quarters of data are available after the 
fence, the average of the most recent quarterly averages is computed using the 
most recent (n - 1)/2 + 1 quarters, and the average of the oldest quarterly 
RTAT averages is computed using the remaining quarters. 

3. Assign as Diflerence the quantity (A2 - Al)/Max(Al, A2). 

4. If the absolute value of Difference is greater than an adjustable parameter, 
then a process change is considered to have occurred. 

The following example illustrates the process change detection procedure: 

Dzflerence parameter = 0.15, fence = 1 July 1997 

0 Quarterly quantity-weighted averages of RTAT are shown in Table 2.1. 

A l  = average of the older half of RTAT data = (56+39+49+55+67)/5 = 53.2 

A2 = average of the recent half of the data = (67+72+70+59+75)/5 = 68.6 

Difference = (A2 - Al)/max(A2, A l )  = (68.6 - 53.2)/68.6 = 0.224 

Since 0.224 is greater than 0.15, a process change is assumed. 
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Table 2.1: Average RTAT Sorted By Quarter 

1997 Qtr 3 
1997 Qtr 4 
1998 Qtr 1 
1998 Qtr 2 

1999 Qtr 1 
1999 Qtr 2 
1999 Qtr 3 
1999 Qtr 4 

6. Quantity-Weighted Average of Most Recent Half of Data (C9) 

The quantity-weighted RTAT average of the most recent half of the data is 

assigned as the candidate RTAT forecast if: 

The item is not identified as an exclusion in step (D3) 

A process change is detected in step (D5). 

The fence is then reset to the first day of the most recent half of the data. 

7. Kendall Trend Detection (C3) 

Kendall trend detection is a rank correlation method used in the UICP RTAT 

forecast model to detect increasing and decreasing trends in repair times. It is based on 

Kendall’s S statistic, which is calculated by subtracting the number of pairs (x, y )  for 

which y is less than x from the number of pairs for which x is less than y .  Here, x and y 

refer to quantity-weighted RTAT averages for quarters in which x occurs before y .  

Larger positive, or negative, values of S give stronger indications of an upward, or 

downward, trend across time. Values of Kendall’s S are referred to probability tables 

(e.g. Kendall and Gibbons, 1990) to determine if the null hypothesis of no trend should 

be rejected. 
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Kendall trend detection (C3) is performed when: 

The item is not identified as an exclusion in step (D3) 

The item has four or more repair observations occurring after the fence 

The item has five or more quarters of repair observations occurring after the 
fence (D4). 

A process change is not detected in step (D5). 

Kendall trend detection is conducted as follows: 

Kendall Trend Detection Algorithm 

1. Arrange quantity-weighted RTAT averages by quarter in reverse time order. 

2. Assign to QTRCENT the number of quarters containing RTAT data for the 
item. 

3. Set the first window size W = 5. The window size W defines the number of 
consecutive quarters of repair data, going back from the current quarter, over 
which trend detection will occur. 

4. Compute Kendall’s S using the formula: 

w-1 w 
S = c c (if (Ri > R,  ) then 1, else if (Ri c R j  ) then - 1, else 0) 

i=l j=i+l 

where R, represents most recent (current) quarterly average RTAT. 

5. Use Table 2.2 to find upper (Tplus) and lower (Tminus) bounds on S. 

6. The test is resolved as follows: 

If (S I Tminus or S 2 Tplus) then a trend has been detected. 

If (Tminus < S < Tplus) then check QTRCENT. 

If W = QTRCENT, then no trend has been detected - Stop. 

If W < QTRCENT, set W = W + 1. Recompute S, and compare to the 
upper and lower bounds obtained from the Table 2.2. 
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Continue incrementing W and recomputing S until either a trend is 
detected or W = QTRCENT. 

Table 2.2: Bounds on Kendall's S 

w = 5  W = 6  w = 7  w= 8 w = 9  w=  10 
TnI,, 7 6 9 10 13 15 18 

I Trninus -6 -9 -10 -13 -15 -18 

If a trend is detected, the fence is set to the first day in the trend window. Setting the 

fence to this date will prevent the UICP forecasting tool from considering repair data with 

completion dates occurring before the period in which the trend was detected. 

The following example illustrates the application of the Kendall trend detection 

procedure. Quantity-weighted RTAT averages to be used in the example are provided in 

Table 2.3: 

Table 2.3: Average RTAT in Reverse Time Order 

I YearQtr I AvgRTAT I 
1999 Qtr 4 75 
1999 Otr 3 69 

I 1999 Qtr2 I 70 
1999 Qtr 1 
1998 Qtr 4 
1998 Qtr 3 
1998 Qtr 2 
1998 Qtr 1 49 
1997 Otr4 39 

I 1997Qtr3 I 56 

Set W = 5 .  Since W = 5, only the most recent five quarterly averages are used in 
the calculation. 

Calculate S.  A pairwise comparison is done between each of the RTAT values in 
the five-quarter window such that each quarterly RTAT is compared only to those 
quarterly RTAT values that occurred before it. Table 2.4 is an illustration of the 
results of such comparisons in a five-quarter window. 
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Table 2.4: Kendall Trend Detection Results - 5 Quarter Window 

Index Year Qtr 

1) 199904 
2)  1999 03 
3 )  1999 02 
4)  199901 
5 )  199804 

Avg RTAT i = 1 i = 2  i = 3  i = 4  

75 NC NC NC NC j =  1 
69 1 NC NC NC j = 2  
70 1 -1 NC NC j = 3  
7 2  1 -1 -1 NC j = 4  
67 1 1 1 1 j = 5  

S = 4, W = 5. In order for a trend to be detected in window size W = 5, S must be 
greater than or equal to 6, or less than or equal to negative six. A trend was not 
detected in this case. 

1 represents incrementing S 
- 1 represents decrementing S 

Since a trend is not detected, increment W to six. 

w=5 
s = 4  

Calculate S. Table 2.5 is an illustration of the results of the calculation and 
comparisons for a six-quarter window. 

1 represents incrementing S 
(- 1) renresents decrementing. S 

S = 9, which equals Tplus in a six quarter window. A positive or upward trend in 
RTAT is detected. 

W=6 
s = 9  

Reset the fence to 1 July 1998 (the first day of the last quarter in the window). 

Table 2.5: Kendall Trend Detection Results - 6 Quarter Window 

NC in a block indicates that no comparison may be made between quarterly RTAT 
values represented by that block (RTAT i must occur before RTATj in all comparisons) 
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8. Sen Median Regression (C10) 

Sen median regression RTAT forecasts are determined by computing a linear 

regression formula from the quarterly quantity-weighted averages of RTAT calculated in 

step (C2). Sen median regression allows a trend in repair times to be incorporated into 

RTAT forecasts. It is used under the following conditions: 

The item is not identified as an exclusion in step (D2) 

0 A trend is detected in step (D6). 

To calculate the Sen median regression RTAT forecast, the final quantity W from the 

Kendall trend detection step (C3) is used: 

Sen Median Regression Algorithm 

1. Arrange the W quantity-weighted quarterly averages of RTAT in reverse time 
order R,, ..., Rw, where R, is the most recent (current) quarterly average. Let 
k denote the median of these averages, and let q denote the median of the 
numbers { 1, 2, ..., W}.  

2. Compute the slopes of the lines connecting each quarterly average RTAT to 
every other prior quarterly average RTAT: 

R, - Ri M.. = 
1/ j - i  

where: i c j 

Let fi denote the median of these slopes. 

3. Compute the regression line's estimated intercept (Po) using the formula 

4. Compute the Sen median regression RTAT forecast using the formula: 

RTAT forecast = p,, + fi w 
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If the forecast computed in this step is between the minimum (D11) and 

maximum (D10) quarterly quantity-weighted average RTAT value, assign it as the RTAT 

Quarter (i orj) 
1 

forecast. Otherwise, compute an iterative exponential smoothing forecast (C 1 l), which is 

described below. 

R (Quarterly Average RTAT) 
54 

The following example illustrates the application of Sen median regression. 

Quantity-weighted RTAT averages to be used in the example are provided in Table 2.6: 

2 
3 

Table 2.6: Data for Sen Median Regression Example 

I W = 5  

40 
77 

4 
5 (current auarter) 

115 
139 

1. The median quantity-weighted average of RTAT is k = 77, and the median 
quarter is i j  =3.  

2. Calculate the slopes of the lines connecting each quarterly average RTAT to 
R j  - R, 

each prior quarterly average RTAT, M, = . The calculation results 
j - i  

are listed in Table 2.7. 

= 27.5 31+24 
2 

3. Calculate the median slope: &? = 

4. Calculate the regression line’s estimated intercept: 
Po = 2 - $ i j  = 77 - 27.5(3) =-5.5 

5. Calculate the RTAT forecast: forecast = a + &? W = -5.5 + 27.5(5) = 132. 
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Table 2.7: RTAT Slopes (Mi$ 

RI = 54 
Rz = 40 

Ri on rows, R j  on columns (i < . j )  (median bold) 
Rz = 40 R3 = 77 R4= 115 RS= 139 

-14 11.5 20.3 21.3 
37 37.5 33 

R3 = 77 
R4 =115 

38 31 
24 

9. Iterative Exponential Smoothing (C11) 

Iterative Exponential Smoothing (C1 1) is used when the forecast generated using 

Sen median regression is either greater than or less than all of the quantity-weighted 

quarterly averages of RTAT used in the forecast calculation (D10, D1 1). The smoothing 

weight has been coded as a program parameter and may be modified. Currently, the 

smoothing weight is a = 0.40. 

To calculate the RTAT forecast using iterative exponential smoothing, the value 

for W obtained in the final step of the Kendall trend detection procedure (C3) is used. 

The candidate RTAT forecast value is determined by exponentially smoothing the most 

recent W quarterly averages of RTAT. 

Algorithm for Iterative Exponential Smoothing 

1. Let 'R, denote the quantity-weighted RTAT average for quarter t, where t = 1 
represents the first quarter used in calculating forecasts. Let Rr denote the 

RTAT forecast for quarter t. Define R, = R, . 

2. For t = 2, . . . recursively define k, = aRr-l + (1 - a&-, . 

3. Round the final forecast to the nearest integer. 
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Table 2.8 illustrates the application of exponential smoothing: 

Table 2.8: Exponential Smoothing Example 

1 
2 

I Parameters: a = .4. w = 5 I 

- 
54 54 
40 (.4*40) + (.6*54) = 48.4 

Rr 
Average RTAT) 

3 
4 

77 
115 

(.4*77) + (.6*48.4) = 59.6 
(.4* 115) + (.6*59.6) = 82 

I 5 (current quarter) 1 139 ] (.4*139) + (.6*82) = 104.8 I 
Assign 105 as the candidate RTAT forecast for quarter 6 (.5 rounding is used only on the 

final result). 

10. Quantity-Weighted Average of RTAT Observations Occurring After 
the Fence (C4) 

The quantity-weighted average of all RTAT observations occurring after the fence 

(C4) will be used as the forecast value under the following conditions: 

The item is not identified as an exclusion in step (D3) 

The item has four or more repair observations occurring after the fence 

There are five or more quarters of repair observations occurring after the fence 
for the item (D4) 

A process change is not detected in step (D5) 

A trend is not detected in step (D6). 

When the quantity-weighted average is calculated, four Statistical Process Control 

(SPC) tests are conducted (C12). At least one of the four tests must produce a failure in 

order for the quantity-weighted average to be assigned as the candidate RTAT forecast. 

If none of the four SPC tests produces a failure, the item’s RTAT is considered stable and 

the RTAT forecast is assigned the same value as last quarter’s forecast (the file RTAT). 
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Whenever RTAT is determined to be stable, the quantity-weighted average of all 

observations is assigned as the forecast tracking mean (FTM) for the quarter in which it is 

produced. The term “SPC quarter” refers to the number of successive quarters in which 

RTAT is considered stable for an item. For instance, if RTAT is considered stable for 

three consecutive quarters, three FTMs will be available for use in the SPC calculations 

corresponding to quarters one, two, and three. The four SPC tests are described in the 

following subsection. 

11. Statistical Process Control Tests (C12) 

a. SPC Test I - Bias Test 

Bias percent is calculated using the formula: 

(quantity - weighted average of all RTAT observations - file RTAT) 
file RTAT 

Bias percent = 

where: file RTAT = previous quarter RTAT forecast 

If Bias percent isless than or equal to lower bias percent or greater than or equal to upper 

bias percent, then the test fails. Lower and upper bias percent are coded as program 

parameters and may be modified. If the bias test fails, the quantity-weighted average of 

all observations after the fence (C4) is assigned as the candidate RTAT forecast. 

The following example illustrates the application of the bias test: 

Bias percent parameters are -. 15 and .15 

SPC OTR FTM file RTAT bias percent 

1 82.8 90.9 -.09 

2 74.3 90.9 -. 18 (Bias Test failure) 
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b. 

The “runs test” uses the Bias percent value calculated in the bias test 

SPC Test 2 - Runs Test 

described in section ll(a). Adjustable parameters called “runs parameters” are used to 

determine when to increment, decrement, or reset a counter called the file mean counter 

(MC). When the file MC is equal to an upper or lower bound determined by MC 

parameters, a test failure occurs. 

The file MC is incremented, decremented or reset after each bias percent 

calculation based on the following rules: 

Reset file MC to zero when 

1) Bias percent is within the runs parameters and 

2) Bias percent has the opposite sign as the file MC 

Reset file MC to 1 (if bias percent is positive) or -1 (if bias percent is 
negative) when 

1) Bias percent is outside of the runs parameters and 

2) Bias percent has the opposite sign as the file MC 

Increment file MC when 

1) Bias percent is greater than or equal to the upper runs parameter and 

2) Current file MC is positive or zero 

Decrement file MC when 

1) Bias percent is less than or equal to the lower runs parameter and 

2) Current file MC is negative or zero 

If the bias test does not produce a test failure, but the runs test does, the quantity- 

weighted average RTAT of all observations is assigned as the candidate RTAT forecast. 

Table 2.9 illustrates the application of the runs test: 
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Table 2.9: Runs Test Example 

runs parameters are -.05 and .05, and mean counter parameters are -3 and 3 
SPC QTR file MC Bias Percent MC New file MC 

1 0 -.09 -1 -1 
adjustment ----- 

2 -1 -.04 Reset to 0 0 
3 0 -.09 -1 -1 
4 -1 .18 Reset to 1 1 
5 1 .18 +I  2 
6 2 .02 0 2 
7 2 .18 +1 3 (test failure) 

C. SPC Test 3 - Cumulative Bias Test 

There must be at.least 3 SPC quarters to perform the cumulative bias test. 

This test also uses the bias percent values calculated in the bias test. A cumulative 

average bias percentage is computed by dividing the cumulative bias percentage by the 

number of SPC quarters. If the cumulative average bias percentage is outside of bounds 

determined by cumulative average bias parameters, the test produces a failure. If the 

cumulative bias test results in the first SPC test failure, the quantity-weighted average 

RTAT of all observations is assigned as the candidate RTAT forecast. 

Table 2-10 illustrates the application of the cumulative bias test: 

Table 2.10: Cumulative Bias Test Example 

Cumulative average bias parameters are -. 1 and . 1 
SPC QTR Bias 5% cum bias % 1 Cum average bias % 

1 -.09 -.09 
2 -.09 -.18 
3 -.18 -.36 -. 12 (test failure) 

d. SPC Test 4 - Confidence Interval Test 

There must be at least 3 SPC quarters available to perform the confidence 

interval test. Either a 90 or 95 percent confidence interval may be specified. The 
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confidence interval is based on the Student t Distribution and the standard error of 

quarterly forecast tracking means. A failure occurs when the file RTAT (last quarter’s 

forecast) is outside of this confidence interval. If the confidence interval test results in 

the first SPC test failure, then the quantity-weighted average RTAT of all observations is 

assigned as the RTAT forecast. 

The following formulas are used in the confidence interval test: 

Lower Confidence Interval Limit = current quarter FTM - t value* SD 

Upper Confidence Interval Limit = current quarter FTM + t value*SD 

The following example illustrates the confidence interval test: 

1. assume that a 90% confidence interval will be used, SPC quarters = 3, and file 
RTAT = 90.9 (file RTAT is last quarter’s RTAT forecast) 

2. Average FTM = (82.8 + 83.0 + 74.3)/3 = 80.0 

(82.8 - 80.0)2 + (83.0 - 80.0)2 + (74.3 - 80.0)2 
3 

= 4.06 3. SD= 

4. Lower Confidence Interval Limit = 74.3 - 2.92*4.06 = 62.4 

5. Upper Confidence Interval Limit = 74.3 + 2.92*4.06 = 86.2 

6. A failure occurs because 90.9 is outside of the confidence interval limits. 

12. Automatic Update 

The UICP RTAT forecast model contains several tests used to identify items for 

item manager review. RTAT values for items identified for review are not automatically 

updated by the UICP forecast model. The tests evaluate the need for review based on the 
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magnitude of the differences between the previous quarter’s RTAT forecast and the 

candidate RTAT forecast, quarterly item demand, and repairable item cost. Review is 

also mandatory for all items which are listed in an exception file or which meet exception 

parameters. 

If any of the automatic update tests fail, then the UICP RTAT forecast model 

prompts for item manager review. If none of the automatic update tests indicate that the 

item manager review is necessary, then the model will update the file RTAT with the 

candidate RTAT forecast. 
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111. DATA DESCRIPTION 

In this chapter, the database provided by NAVICP-Phil is described. Because 

NAVICP manages several thousand repairable items, data for all items could not be 

analyzed within the scope of this thesis. Therefore, a subset of 15 NAVICP-Phil 

managed items is chosen. That subset is described in this chapter. 

The UICP RTAT forecast model produces separate forecasts for items identified 

by a National Item Identification Number (NIIN). Quantities used in computing the 

forecasts are the repair turn-around times (RTATs) of completed repair transactions and 

the completion dates. Assumptions of the UICP RTAT forecast model implied by using 

only these data elements are addressed in Section B. 

A. DATA 

The data used to conduct the analyses described in this thesis consist of individual 

repairs completed in calendar years 1996, 1997, and 1998 on repairable items that 

support naval aviation assets. The data were provided by NAVICP-Phil. Approximately 

130,000 observations were available for each of the three calendar years. Appendix B 

gives a detailed description of each of the 13 fields that comprise the NAVICP-Phil 

database. 

In this thesis a subset consisting of 15 items from the 11,759 repairable item 

NAVICP-Phil database is identified for most of the analyses conducted (seven additional 

items are used in regression analyses conducted in Chapter IV). The first ten items of the 

15 item subset are selected to meet the following criteria: 

The items have at least ten repair observations available in each of the twelve 
quarters spanning the three-year period from 1 January 1996 through 31 
December 1998. 
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The items represent high-dollar value repairable activities, with respect to the 
quantity repaired and the per-unit value of the items. 

The criteria are chosen to ensure that analysis is performed on items that represent a large 

proportion of the entire database with regard to total dollar value, and have enough repair 

observations occurring in each quarter to permit meaningful analysis. The first ten items 

are chosen based on extended standard price, which is the product of the per-unit price of 

the item and the total quantity of the item repaired. The ten items with the highest 

extended standard prices over the three-year period from 1996 through 1998 are selected. 

The remaining five items are chosen based on quantity of repairs only. They are 

those items having the highest quantities of repairs completed over the three-year period, 

ignoring those items already selected based on extended standard price. The items 

contained in the 15 item subset are listed and described in Appendix C. Additional 

information regarding quantities repaired, the products of quantity repaired and repair 

turn-around time, and extended price is also summarized for the fifteen items in 

Appendix C. 

B. ISSUES CONCERNING MEASUREMENT OF RTAT 

The UICP RTAT forecast model produces forecasts entirely through examination 

of individual repair turn-around times of completed repair transactions. Information on 

repairs that are ongoing but not completed is not incorporated into prediction 

methodologies. The underlying model assumption is that repair turn-around times of 

items inducted into the repair system may be predicted entirely by examining the 

statistical properties of completed repairs. In this section, the implications of this 

assumption are explained. 
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Let t refer to a fixed point in time; let Rf,c denote the RTAT of a repair transaction 

completed at time t; and let Rf,l denote the RTAT of a repair transaction inducted at time 

t. The model assumption states, in essence that R,c and R,I have the same probability 

distribution; in other words, the distribution of RTAT is “time reversible.” This 

assumption, however, is not valid in general, and the conditions under which it is 

reasonable are rather restrictive. In fact, the distributions of R,c and R J  can be quite 

different even when the underlying repair process is stationary with respect to time. In 

this thesis, the repair time of an item completed in a particular quarter will be referred to 

as a completion RTAT, and the repair time of an item sent out for repair will be referred to 

as an induction RTAT relative to that quarter. 

The simplest example of a situation in which time reversibility exists is the 

classical M/M/l queue. A comprehensive discussion of M/M/1 and other queueing 

systems can be found in Baccelli and Bremaud (1994). In an M/M/1 queue, both the 

times between arrivals to a single server system and the service times themselves are 

distributed exponentially, independently of each other but with possibly different 

parameters. 

The assumption of exponentially distributed repair times is often regarded as 

unrealistic, because the “memoryless” property of the exponential distribution implies 

that the time needed to complete a repair is probabilistically unaffected by the length of 

time that the item has already spent on repair. The assumption of exponentially 

distributed interarrival times is equivalent to items entering the repair queue according to 

a Poisson process. It can be shown that time reversibility also holds if repairs follow a 

general probability distribution that is stationary with respect to time, provided that 
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interarrivals are exponentially distributed and the system has been in operation for a long 

time. This type of queueing system is known as the M/G/l queue. (Ross, 1997) 

There are two respects in which NAVICP repair times violate the conditions 

needed for time reversibility: nonstationarity of repair times and nonrandomness of repair 

arrivals. These issues are discussed separately in the subsections that follow. 

1. 

Repair time distributions for NAVICP managed repairable items are not 

inherently stationary; indeed, an important purpose of the UICP RTAT forecast model is 

to detect changes in RTAT distributions. The UICP RTAT forecast model uses two 

methodologies for detecting departures from stationarity - Kendall trend detection and 

process change detection, which are described in Chapter 11. 

Non-stationarity of Repair Turn-Around Time Distributions 

To illustrate how non-stationarity effects time reversibility, suppose that a 

problem in the repair system occurring at a point in time causes repair times that 

previously were stable to increase significantly. It is conceivable that none of the 

completion RTATs received in the same quarter were affected by the problem. The 

distribution of completion RTATs in that quarter will be different (it will have a smaller 

mean) than the distribution of induction RTATs in that same quarter. Since the UICP 

RTAT forecasting model considers only completion RTATs in its methodologies, the 

forecasts for future quarters will underestimate the true mean repair time until repairs 

affected by the problem enter the data stream and dominate the forecasts. A latency 

period will be required before either the Kendall trend detection or process change 

detection procedures that are integrated into the UICP RTAT forecast model are able to 
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identify the change. Until the change in distribution is detected, past data with low 

completion RTAT values will influence predictions. 

A similar situation exists for decreasing trends in repair time. Suppose that a 

problem resulting in unusually long repair times is corrected. As the system flushes 

backlog, large completion RTAT values may be observed. These large completion 

RTAT values will affect forecasts until enough time passes for the forecast method to 

detect the changed circumstances. 

Both of the above examples illustrate that forecasts based on completion RTAT 

values lag behind changes in the distributions of repair times. Induction RTAT values, 

by contrast, reflect the state of the repair system as it changes over time. However, a 

drawback to using induction RTAT values in forecasting is the fact that an item inducted 

for repair in a given quarter may not be completed by the time forecasts are made. This 

is the phenomenon known as censoring, which requires specialized handling in statistical 

estimation. 

2. 

The second violation of the time reversibility assumption in the UICP RTAT 

forecast model is due to nonrandom system arrivals. Arrivals to the repair systems 

monitored by NAVICP are often scheduled and arrive at overhaul points in batches. 

The Effect of Scheduling on Repair Turn-Around Time Distributions 

When items are inducted into the repair system in a nonrandom manner, the 

distribution of completion RTATs may appear nonstationary even when the distribution 

of repair time is stationary. For example, if all items are inducted into the repair system 

on 1 January of a given year, completion RTATs occurring in later quarters will certainly 

have longer RTATs than those occurring earlier, and will give the appearance of an 
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increasing trend in repair times. Although this is an extreme example, it serves to 

illustrate the point that scheduling affects the distribution of observed completion 

RTATs. This problem may be minimized by scheduling repairs evenly across time, to 

the extent that doing so is practical. 

Figure 3.1 shows the differences between completion RTATs and induction 
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Figure 3.1 : Differences in Distributions of Completion RTAT and Induction RTAT 
for Navigational Unit 1, NIIN 01-054-3776 

It is apparent from this discussion, that assuming time reversibility and 

consequently, using completion RTATs in RTAT forecasting has obvious shortcomings. 
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Despite these shortcomings, the approach is attractive because of its simplicity. 

Considering only completed repairs enables forecasters to make predictions using fairly 

simple techniques, and requires data collection for a small set of variables - namely, 

repair completion quarter and RTAT of completed repairs. Incorporating a completion 

RTAT approach also eliminates the requirement to address censoring problems that are 

likely to occur when using induction RTATs. In this thesis, the UICP convention of 

using completion RTATs will be adopted for assessing model performance and in 

comparing the UICP RTAT forecast model to alternative time series forecast techniques. 
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IV. UICP RTAT FORECAST MODEL ANALYSIS 

In this chapter, the UICP RTAT forecast model accuracy is evaluated, and the 

The predictive power of model is compared to alternative forecasting techniques. 

variables not considered by the model is also assessed. 

A. OUTLIER EXCLUSION 

The UICP RTAT forecast model, described in Chapter 11, provides for the 

exclusion of extremely high and low RTAT observations when calculating quarterly, 

quantity-weighted RTAT averages. Extreme observations have undue influence on these 

averages and consequently on forecasts that depend upon them. A dramatic change to an 

RTAT forecast may result in unnecessary, costly adjustments to inventory quantities and 

repair schedules. But, excluding a large share of observations as outliers may impart bias 

to RTAT forecasts if the exclusions are disproportionate on one end of a distribution. 

RTAT variance computations are also affected by outlier exclusion. Removing 

outlying observations will necessarily reduce measured variance because, by definition, 

outlying observations are greater distances from the mean and therefore contribute 

greater squared differences than non-outlying observations. RTAT variance is one of the 

variables used to determine safe9 stock levels of items held in inventory to prevent 

shortages. When repair time, procurement time, or demand is greater than their estimated 

expected values, requisitions are filled by issuing items from safety stock. Since RTAT 

variance partially determines safety stock quantities, artificially reducing it by removing 

large numbers of outlying observations could result in more out-of-stock situations and 

poor service to requisitioning customers. 
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In exploratory data analysis, boxplots are often used to provide a visual 

description of the location, spread, skewness, tail length, and outlying values in a 

distribution of data. Quantities that determine the boundaries of the box, the Lower 

Fourth (25'h percentile) and the Upper Fourth (75'h percentile), cover fifty percent of the 

data range. Together with the Fourth Spread, which is the difference of the Lower Fourth 

from the Upper Fourth, these quantities can be used to develop simple and robust rules 

for identifying outliers. The following lower and upper outlier cutoffs are often 

suggested: 

Lower Outlier Cutoff = Lower Fourth - I .5 * Fourth Spread 
Upper Outlier Cutoff = Upper Fourth + 1.5 * Fourth Spread 

Data values that fall above the Upper Outlier Cutoff or below the Lower Outlier Cutoff 

are regarded as outliers (Hoaglin, Mosteller, and Tukey, 1983). In the UICP RTAT 

forecast model the same outlier identification rule is used with the exception that the 

fourth spread is multiplied by 1 .O instead of 1.5. 

In concept, an outlier signifies a magnitude of observation that is expected to 

occur infrequently under usual conditions. For instance, under the standard normal 

distribution, the population fourths are -0.6745 and 0.6745, the Fourth Spread is 1.349, 

and the outlier cutoffs using a multiplier of 1.5 are f2.698. The probability that a 

standard normal random variable falls in the outlier region is only 0.7%, or about 7 out of 

every 1000 independent observations. Similarly for any symmetric distribution with light 

tails, outliers are expected to occur infrequently under this rule, and the frequencies of 

high and low outliers should be about the same. In the case of the uniform distribution no 

outliers would be observed in a sufficiently large sample because the outlier boundaries 
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would exceed the limits of the distribution. However, distributions having heavier tails 

Distribution 

Exponential 

can be expected to produce more outliers, and distributions that are skewed may result in 

Upper Cutoff Lower Cutoff Probability of a Probability of a 
High Outlier Low Outlier 

15.17 -6.80 .048 0 

outlier production that is higher on either the high or the low side. To illustrate this point, 

Gamma 
(mean = .2) 

Table 4.1 shows the results of applying the boxplot outlier identification method to an 

0.45 -0.27 .135 0 

exponential distribution having mean = 5 and a Gamma distribution having mean = 0.2 

(shape parameter = 0.2, rate = 1). Histograms of these distributions are shown in Figure 

4.1 and provide visual indications of skewness and tail thickness (Hoaglin, Mosteller, and 

Tukey, 1983). 

Table 4.1: Outlier Identification in Exponential and Gamma Distributions 

I (mean = 5) I I I I I 

Table 4.1 shows that the probability of falling in the lower outlier region under 

either distribution is zero. Similarly, under either distribution the probability of falling in 

the upper outlier region is high compared to a normal distribution. 

For several of the fifteen repairable items identified for analysis, the distributions 

of RTAT appear to be similar to the exponential and gamma distributions, depicted in 

Figure 4.1. Many are highly skewed and have thick right tails. Figure 4.2 shows the 

histogram of RTAT for the Inertial Navigation Unit. The histogram for this item is 

similar to those for most of the 15 repairable items. 
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Figure 4.1: Histograms of Exponential and Gamma Distributions 
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Figure 4.2: Histogram of RTAT for Inertial Navigation Unit, NIIN 01-387-0348. 
RTAT is measured in days. 

High positive skewness results in identification of more high outliers than low, 

while heavy tails can result in large numbers of observations identified as outliers on 

either or both sides of the distribution. Table 4.2 provides numbers and percentages of 

high and low outliers identified for all 15 repairable items. For most items, large 

percentages of observations are identified as high outliers, and in all instances, more high 
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observations are identified as outliers than low ones. In 10 of the 15 items, the lower 

outlier cutoff is less than zero. 

Table 4.2: Numbers and Percentages of Observations Excluded as Outliers by the 
UICP RTAT Forecast Model 

Outlier parameter = 1 
I Upper I Lower I High IPercentagel Low IPercentagel Total 

Table 4.2 shows the numbers and percentages of observations excluded by the UICP RTAT forecast 
model outlier exclusion criteria. An outlier parameter of 1 is used to multiply fourth spread in upper 
and lower cutoff calculations. 

It is apparent from this discussion that the frequency and placement of outliers 

excluded by the UICP RTAT forecast model are highly influenced by the shape of the 

distribution. Repair time distributions are highly positively skewed for most repairable 

items. The distributions of many items also have heavy right tails. In distributions 

exhibiting these characteristics, two undesirable results with respect to RTAT forecasting 

can occur: 

1. More high observations than low will be excluded, which imparts negative 
bias to forecasts. 

2. Measured variance will be much lower than actual variance. 
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Boxplot and the UICP RTAT forecast model outlier criteria may be useful for 

identifying observations that require special attention in exploratory data analysis. 

However, automatically excluding items identified by the criteria may lead to problems 

in RTAT forecasting. Since forecasts are based on quarterly RTAT averages, the model 

will tend to under-forecast average RTAT. This under-forecasting will occur both for 

items that have fairly stationary repair time distributions and those that do not. Items that 

have non-stationary repair time distributions may experience dampening of forecasts due 

to the exclusion of large proportions of high observations. Even without outlier exclusion 

dampening occurs due to the reverse-time orientation of completion RTATs. This 

characteristic lag effect was discussed in Chapter III. 

B. RTAT UICP FORECAST MODEL PERFORMANCE 

In this section, the calculations used in measuring forecast accuracy are defined, 

the accuracy of the UICP model is measured, and the performance of the UICP RTAT 

forecast model is compared to the performance of three simple alternative time series 

forecasting techniques. 

1. Measuring Forecast Accuracy 

“Forecasting is probably going to be incorrect, so it is useful to predict the 
degree of inaccuracy.” (Tersine, 1994) 

By comparing the accuracy of different forecasting techniques with actual 

observations from the same periods, the performance of those techniques can be 

contrasted. Forecast accuracy is often measured using deviation and bias. Deviation 

measures the differences between forecasts and actual observations, while bias measures 

the tendency to consistently over- or under-forecast. Two measures of deviation are 

considered here. They are mean absolute deviation (MAD) and mean absolute 
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percentage deviation (MAPD). MAD is obtained by dividing the number of observations 

into the sum of absolute deviations: 

A 

where: Yi = RTAT forecast for quarter i 

y. = actual quantity-weighted average RTAT in quarter. i 

n = number of quarters of RTAT forecasts 

YJ - Y i = absolute deviation or absolute forecast error I _ I  
The formula for MAPD is similar, but based on percentage differences: 

100% x 
i=l 

MAPD = 
n 

A 

yi -Yi 
Y. 

Two measures of bias are also calculated: mean error (ME), and mean percentage error 

(MPE). Their formulas are similar to the formulas for deviation, but are based on 

differences and percentage differences instead of absolute differences and absolute 

percentage differences respectively: 

h 

1 
yi -Yi 

100% x %(-- V 

n 
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Because MAPD and MPE are based on percentage differences instead of raw values they 

are not affected by scale. Therefore, MAPD and MPE will be used to measure forecast 

deviation and bias in this analysis. (Tersine, 1994) 

2. 

Accuracy is determined by comparing RTAT forecasts produced by the UICP 

RTAT forecast model to actual quarterly quantity-weighted average RTAT values from 

1996 through 1998. Twelve quarters of repair observation data are available for each of 

the 15 items evaluated. Forecasts are produced for quarters six through twelve and 

compared to actual quarterly quantity-weighted averages of RTAT to determine 

accuracy. Because individual RTAT observation values less than four or greater than 998 

are considered recording errors, they are not used in calculating quarterly quantity- 

weighted average RTAT values. 

Accuracy of the UICP RTAT Forecast Model , 

Measurements of deviation and bias of UICP model forecasts for each of the 15 

repairable items studied are shown in Tables 4.3 and 4.4. Tables 4.3 and 4.4 also contain 

deviation and bias measures for alternative forcasting methodologies that will be 

discussed in later subsections. 

Mean absolute percentage deviation of UICP model forecasts ranges from 2 1 %I to 

over 64% in the 15 items analyzed, indicating significant differences between RTAT 

forecasts and observed RTAT values. In most items considerable negative bias exists. 

For four items (NIINs 01-351-3373, 01-343-7026, 00-165-5838, 01-062-5846) RTAT is 

under-forecast in all seven quarters for which predictions are computed. These results 

demonstrate that applying the outlier exclusion criteria can produce RTAT forecasts that 

are systematically low. 
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Table 4.3: Evaluation of UICP RTAT Forecast Model Accuracy Using Mean Absolute Percentage Deviation (MAPD) 

NIIN 

I 

I 

I 0 1-300-0940 

1 

I 0 1 - 154-2794 
$ 00-928-0072 

00-887- 1944 
I 01-141-2735 

I 0 1-062-5846 

UICP Model 
Repair UICP Model Previous Four Quarter Exponential (log transform) 

Quantity (Outlier Quarter RTAT Moving Smooth (a=.3) Outlier criteria 
parameter = 1) Average off 

1095 29.56 37.58 62.73 46.90 30.84 
720 21.13 18.21 40.5 1 44.28 21.81 
356 30.54 32.79 24.87 24.83 36.07 
1153 3 1.67 25.84 26.28 23.87 39.96 
932 36.54 22.94 26.43 28.97 57.98 
1185 64.62 27.77 22.77 24.5 1 54.99 
507 34.16 43.26 30.33 33.15 3 1.67 
633 I 52.93 I 104.87 I 88.40 I 83.50 I 47.93 
1779 30.4 1 94.03 46.24 45.52 44.34 
493 38.89 47.14 56.91 55.08 43.52 
2905 I 39.84 I 65.23 I 45.41 I 43.60 I 36.15 
2364 54.00 25.24 17.69 22.40 36.89 
1427 38.03 32.53 40.56 35.40 57.15 
1390 62.72 49.88 34.20 36.02 62.54 

UICP Model 
(log transform) 

Outlier 
parameter = 1 

3 1.06 
21.14 
33.60 
39.96 
59.5 1 
65.05 
33.47 
53.3 
38.01 
40.1 1 
34.28 
52.67 
55.45 
62.54 
49.04 

45.59 

Outlier parameter is the multiplier applied to the Fourth Spread to determine upper and lower outlier limits. 



Table 4.4: Evaluation of UICP RTAT Forecast Bias Using Mean Percentage Error (MPE) 

UICP Model 
Repair UICP Model Previous Four Quarter Exponential (log transform) 

Quantity (Outlier Quarter RTAT Moving Smooth (a=.3) Outlier criteria 
NIIN 

parameter = 1) Average off 
01-054-3776 1095 8.44 24.87 47.00 46.36 -25.48 
0 1-387-0348 720 5.30 2.35 26.34 39.15 -18.99 

-20.86 0 1-300-0940 356 -23.17 6.0 1 -1.19 -0.08 

Outlier parameter is the multiplier applied to the Fourth Spread to determine upper and lower outlier limits. 

(log transform) 
Outlier 

Darameter = 1 
-22.04 

-38.82 -1 
-65.05 I 

-2.84 I 

3 -2.34 
-52.67 
33.84 
-62.54 
20.41 I I -23.20 



I 

Graphical representations of forecasts and repair time distributions for two 

different items (NIINs 01-343-7026 and 00-41 1-6264) are shown in Figure 4.3. For the 

first item depicted in Figure 4.3, the Servocylinder, F/A-18, RTAT forecasts relative to 

observations of quarterly quantity-weighted average RTAT are consistently low. 

Quarterly RTAT distributions for the Servocylinder, F/A- 18 are representative of the 

distributions for most items in which RTAT is consistently under forecast. High positive 

skewness and heavy right tails are apparent in all quarterly RTAT distributions for this 

item. RTAT does not appear to exhibit any significant trend until the last two quarters. 

For the second item depicted in Figure 4.3, the Nozzle, Turbine Engine, it is apparent that 

the UICP RTAT forecast model does not consistently under-forecast RTAT. The 

location of the median relative to mean in each quarterly boxplot indicates that in many 

quarters significant skewness does not exist. Results of applying the outlier criteria to 

data for this item, shown in Table 4.2, confirm that skewness and heavy-tailedness are 

minimal. Only 6% of high observations were excluded as outliers, while 2% of low 

observations were excluded. The considerable upward trend in RTAT experienced in 

1997 followed immediately by an even steeper downward trend in 1998 is also of 

interest. It is apparent from Figure 4.3 that UICP RTAT forecasts lag both of these 

trends. 

These analyses demonstrate that the outlier criterion employed by the model 

imparts significant bias to RTAT forecasts. In partikular, negative bias is most apparent 

in items that have highly positive skewed RTAT distributions and regular occurrence of 

relatively high RTAT observation values. 
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Servocylinder, F/A-18, NllN 01 -343-7026 

" 1  
961 962 963 964 971 972 973 974 981 982 983 984 

Year/QTR 

Nozzle, Turbine Engine, NllN 00-41 1-6264 

0 0 N 

. .  
,' ' . 
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961 962 963 964 971 972 973 974 981 982 983 984 

YearIQTR 

Figure 4.3: Boxplots, Quantity-Weighted Means, and RTAT Forecasts by Quarter 
for Two Repairable Items. Quarterly RTAT distributions depicted as boxplots are 
labeled on the x-axis in YYQ format. For example 961 represents 1996, quarter 1. 
Diamonds represent quantity-weighted average RTAT and are connected by dashed 
lines. Squares represent forecasts produced by the UICP RTAT forecast model and 
are connected by solid lines. Some very large observations of RTAT for the 
Servocylinder, F/A-18 lie beyond the upper boundary of this figure. 

3. Comparison of the UICP RTAT Forecast Model to Simple Forecast 
Methodologies 

In this subsection, the UICP RTAT forecast model is compared to three simple 

forecast methodologies: 

Previous quarter observed value 

Four-quarter moving average 

Exponential smoothing 
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Forecast accuracy is measured by comparing forecasts produced by these 

methodologies to actual quarterly quantity-weighted RTAT averages. Mean absolute 

percentage deviation (MAPD) and mean percentage error (MPE) are used to measure 

forecast deviation and bias. Because forecasts are produced only for quarters six through 

twelve in UICP RTAT forecast model analysis, only forecasts produced in those seven 

quarters by alternative methodologies are used in MAPD and MPE calculations. RTAT 

values less than four or greater than 998 are excluded as recording errors, in keeping with 

NAVICP policy. 

a. 

Assigning the last-period average value (i.e., the previous-quarter RTAT 

UICP Model Versus Previous-Quarter RTAT Average 

average) as the forecast for the next period is perhaps the simplest time series analysis 

forecasting technique. It may be represented mathematically as: 

A 

where: Y ,  =forecasted quantity-weighted average RTAT for quarter t 

Y,-l = actual quantity-weighted average RTAT in quarter t- 1. 

This forecasting methodology works well if there is little variation lli observed values 

from quarter to quarter. It responds fairly well to trends, but does not compensate for 

cyclic behavior, and it overreacts to random influences (Tersine, 1994). Tables 4.3 and 

4.4 give a comparison of UICP model accuracy with previous quarter observed RTAT 

model accuracy for the 15 items analyzed in this thesis. 

The UICP RTAT forecasts have lower MAPD values in eight of 15 items 

Furthermore. the previous-quarter average produces much larger MAPD examined. 
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values in three items than even the largest MAPD calculated in the UICP model. MPE 

values are usually negative under the UICP model, and usually positive under the 

alternative. It appears that greater bias may exist in the UICP model since RTAT is 

under-forecast in all seven quarters for four items and a similar degree of consistency is 

not apparent using the previous-quarter average. Neither technique consistently produces 

more accurate forecasts than the other. 

b. UICP Model Versus Four-Quarter Moving Average RTAT 
Forecast 

The moving average forecast technique generates the next period forecast 

by averaging a fixed number of previous observations. In this analysis, four is chosen as 

the number of quarters to be used in the moving average. The formula for the moving 

average forecast is: 

y - i=l 
I --, 

n 

A 

where: Y = forecasted quantity-weighted average RTAT for quarter t 

q-i = actual quantity-weighted average RTAT for quarter t-i 

n = number of time periods included in moving average. 

The moving average responds to trends, but lags behind them. If the distribution of 

quarterly quantity-weighted average RTAT is relatively stationary, the moving average 

produces forecasts that are fairly constant. The moving average produces less varied 

forecasts than the "previous-quarter RTAT average" which responds to random variation 

in the data, but like the latter it does not compensate for cyclic behavior (Tersine, 1994). 
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Tables 4.3 and 4.4 give a comparison of the forecast accuracy of the UICP model to that 

of the four-quarter moving average. 

Mean absolute percentage deviation and mean percentage error measures 

shown in Tables 4.3 and 4.4 indicate that the UICP model forecasts appear to have 

greater bias than the four-quarter moving average forecasts, but neither model produces 

consistently more accurate RTAT forecasts. 

C. 

Exponential smoothing, also known as exponentially weighted moving 

averaging, is applied by assigning the most recent quarter observation a weight of a, and 

previous quarter observations progressively decreasing weights, so that all weights sum 

to 1. Past observations and their weights may be represented by the previous quarter 

forecast. Exponential smoothing forecasts are calculated using the formula: 

UICP Model Versus Exponential Smoothing Forecast 

A h 

Y, =aY,-I +(l-a)Yr-1 , 

A 

where: Y ,  = forecast for period t 

x-, = actual observation in period t-1 

a = exponential smoothing weight between 0 and 1. 

The exponential smoothing forecast methodology responds to trends, but 

as with the previously discussed methodologies, it will lag them. It is similar to the 

moving average in that it smoothes random fluctuations. The responsiveness of 

exponential smoothing to more recent observations is increased if the smoothing weight a 

is increased. More sophisticated exponential smoothing methodologies use trend or 

seasonal components, or both, to account for trends and regular cyclic behavior in data. 
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The forecast accuracy of simple exponential smoothing with a = 0.3 is compared to the 

accuracy of the UICP model in Tables 4.3 and 4.4. 

Results shown in Tables 4.3 and 4.4 indicate that the UICP model 

forecasts appear to have greater bias than those obtained with exponential smoothing, but 

neither model produced RTAT forecasts that were significantly more accurate than the 

other. 

d. Summary of Comparison of UICP Model to Simple Alternative 
Methodologies 

In this section, UICP RTAT forecast model accuracy is compared to the 

accuracy of three alternative methodologies, i.e., previous quarter observed RTAT, four 

quarter moving average, and exponential smoothing. Although the alternative 

methodologies appear to have produced less-biased forecasts than the UICP model, none 

of the alternatives is consistently more accurate than the UICP model. Conversely, the 

UICP model did not forecast more accurately than any of the three simple alternative 

methodologies. 

C. FORECASTING THE NATURAL LOGARITHM OF RTAT 

It is apparent from the analyses conducted in previous sections that significant 

variability exists in quarterly RTAT averages. This variability is partially due to the high 

influence that observations with large values exert on the quantity-weighted average. It is 

also apparent from the analyses conducted in Section A of this chapter that the RTAT 

distributions for many repairable items are positively skewed and exhibit heavy right 

tails. 

One way to avoid large values is to exclude them from calculations. However, 

excluding only large observations will impart negative bias. As demonstrated in Section 
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A of this chapter, the UICP RTAT forecast model excluded as outliers only large values 

of RTAT for most of the items examined. An alternative to excluding outliers is to 

transform the data so that distributions become more symmetric and exhibit lighter tails. 

Transforming distributions in this manner will result in the largest and smallest 

observations having less of an impact on the mean. Although the sample distributions of 

RTAT for several of the 15 repairable items are even more positively skewed than the 

lognormal distribution, taking natural logarithms is found to make the distributions more 

symmetric, while reducing the influence of the largest values on the mean. 

Tables 4.3 and 4.4 show the results of applying the deviation and bias measures 

introduced in this chapter to forecasts of RTAT using the natural logarithm 

transformation. RTAT forecasts are obtained by using the UICP model to forecast 

natural logarithm of RTAT from observations of natural logarithm of RTAT and then 

transforming those forecasts back from logarithmic scale to regular scale. To test the 

usefulness of the natural logarithm transformation in reducing the effects of outliers, the 

UICP outlier exclusion criteria are disabled. Mean absolute percentage deviation of 

forecasts obtained using this method range from 22% to 63% and are listed in Table 4.3. 

The results are very similar to the results of using the UICP model on the raw data. 

Accuracy of forecasts produced by the model on raw RTAT data range from 21% to 

65%. Mean percentage error (bias) measurements shown in Table 4.4 are also similar for 

the two models. However, both models produce considerably negatively biased forecasts 

for most items. 

Tables 4.3 and 4.4 also show the results of applying MAPD and MPE measures to 

UICP model forecasts produced using the natural logarithm transformation, but with the 
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outlier criteria enabled and the outlier parameter set equal to 1. For many items it is 

apparent that the outlier exclusion criteria had little impact on forecast accuracy because 

MAPD and MAD for this model are virtually the same as those for the model that used 

natural logarithm transformations, but with the outlier criteria disabled. 

These results suggest that use of the natural logarithm to transform RTAT data 

may be beneficial in RTAT forecasting in general, but does not solve the under 

forecasting problem. Transformation allows the UICP RTAT forecast model to predict 

RTAT with approximately the same accuracy, but without the use of an exclusion 

criterion. Appendix D provides graphical justification for transforming RTAT using the 

natural logarithm function. 

D. ASSESSING ADDITIONAL PREDICTABILITY BY ACCOUNTING FOR 
THE DESIGNATED OVERHAUL POINT 

Many of the repairable items managed by NAVICP are repaired by more than one 

Designated Overhaul Point (DOP). However, the UICP RTAT forecast model does not 

recognize that the distributions of repair times of an item repaired at different DOPs may 

be different. An implicit assumption of the UICP RTAT forecast model is that RTAT 

distributions are the same for a particular repairable item regardless of which of the 

eligible DOPs performs the overhaul. An analysis of variance (ANOVA) is conducted to 

examine whether including DOP as a predictor variable for items with multiple DOPs 

improved the prediction of RTAT. For this exercise two ANOVA models are considered. 

Model 1 is a one-factor ANOVA that explains the natural logarithm of RTAT using only 

the repair completion quarter. Model 2 is an additive two-factor ANOVA based on repair 

completion quarter and DOP. Natural logarithms are used to transform RTAT to make 

its distributions less skewed. An F-test is conducted to determine whether Model 2 
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significantly improves the predictive accuracy of Model 1. The proportion of additional 

variance explained (PVE) by DOP is measured using the formula: 

N1lN 

00-165-5838 

I where: SSE, =sum of squared errors for Model 2 (Model 2 contains DOP as a predictor) 
t 

DF F ~ M   value PVE Number SSE DF SSE 
ofDOPs Model 1 Model 1 Model2 Model2 

2 405.37 1015 280.8 1014 449.82 0.00 0.3 1 

SSE, = sum of squared errors for Model 1 

df, = error degrees of freedom in Model 2 

I df, = error degrees of freedom in Model 1. 

Table 4.5 shows the ANOVA results for nine of the 15 repairable items selected 

for analysis. Each of the nine repairable items is repaired by more than one DOP in at 

least 4 distinct quarters. 

Table 4.5: Analysis of Variance Results Showing Additional Predictability of DOP 

Table 4.5 reports ANOVA results for 2 models. In Model 1 RTAT is predicted using only completion 
quarter, while in Model 2 RTAT is predicted using completion quarter and DOP. 

For eight of the nine repairable items analyzed a significant proportion of 

additional variance is explained by including DOP as a predictor of RTAT, using a 5% 

test level. A closer look at the data for the only item in which a significant proportion of 

variance is not explained by including DOP as a predictor of RTAT (NIIN = 01-139- 

7177, Navigational Unit 1) reveals that only two DOPs are used to repair it. At DOP 
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N68836, 246 repair observations for this item were completed over all 12 quarters, while 

at DOP YOK, 21 repair observations were completed over only 5 quarters. The low 

number of quarters in which both DOPs completed repairs and the low proportion of 

repairs completed at DOP YOK during those quarters contribute to the lack of statistical 

significance of DOP in this model. 

Of the nine repairable items listed in Table 4.5, the first (NIIN = 00-165-5838, 

Indicator, Altitude) has the largest proportion of additional variance explained by DOP. 

Two DOPs repaired this item. At DOP N00244, 918 repair observations were completed 

over 12 quarters, while at the DOP YOK, 109 repair observations were completed over 

11 of the 12 quarters. Figure 4.4 shows the repair times at the two DOPs for this item 

plotted by quarter. 
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A Average RTAT for DOP NO0244 /",, 0 Average RTAT for DOP YOK 
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Figure 4.4: Quarterly Average RTAT for Two Different DOPs that Repair 
Indicator, Altitude, NIIN 00-165-5838. RTAT is measured in days. Quarter is 
labeled on the horizontal axis. Numbers 1 through 12 refer to the quarter of repair 
completion. For instance, 1 refers to 1996 quarter 1, while 12 refers to 1998 quarter 
4. 
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Boxplots of both natural logarithm of RTAT and RTAT at each level of 

completion quarter and DOP for this repairable item are provided in Appendix D. The 

boxplots support use of the natural logarithm transformation and show that the variances 

of the various groups of observations appear to be broadly similar (Everitt, 1994). 

The analysis of variance conducted in this section indicates that DOP may be a 

useful predictor of RTAT for multiple-DOP repairable items. 

E. AN EVALUATION OF ADDITIONAL PREDICTOR VARIABLES USING 
REGRESSION ANALYSIS 

This section describes regression analyses that are performed to determine the 

predictive power of regression models containing three additional predictor variables not 

incorporated by the UICP RTAT forecast model. Table 4.6 describes the additional 

variables derived for this purpose. 

Table 4.1 1: Additional RTAT Predictor Variables 

Data Field Definition 

Pending 
Quantity of the item awaiting completion of repair on the last 
day of the previous quarter 

PRatio 
Pending divided by the sum of Pending and quantity of repairs 
completed in the previous quarter 

Median time in repair for transactions that were inducted before, 
but not completed by, the last day of the previous quarter MedPend 

Each of the additional predictor variables is based on pending repair transactions 

and is derived from the original database provided by NAVICP-Phil. Repair induction 

dates are calculated by subtracting RTAT from corresponding completion dates. 
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Data for repair completions that occur after the fourth quarter of calendar year 

1998 are truncated, i.e., not recorded in the NAVICP-Phil database. Consequently, it is 

not possible to identify with certainty all repairs that are outstanding, especially those that 

were inducted in later quarters. The analyses described in this subsection deals with 

truncation by excluding data from 1998, for which truncation is arguably most 

pronounced. The distributions of repair times for items inducted in calendar year 1996 

indicate that few repairs required more than one year to be completed. It therefore 

appears reasonable to assume that truncation should be a minimal factor in the 1997 data 

as well. 

The variables described in Table 4.6 require information on repairs from the 

previous quarter. For example, calculation of PRatio requires the number of repairs 

completed in the previous quarter. Because 1995 data were unavailable, this and other 

calculations that require lagged information could not be made for the first quarter of 

1996. The analysis that follows is therefore based on RTAT completions occurring from 

the second quarter of 1996 through the fourth quarter.of 1997 inclusive. 

1. Regression Analysis 

In section D of this chapter it was found that including DOP in a model used to 

predict the natural logarithm of RTAT increases the proportion of variance explained by 

the model, sometimes substantially. Both to simplify the analysis and to consider 

repairable items that are not considered in section D, only data for repairable items that 

are repaired by a single DOP are used in the present analysis. 

The analysis proceeds by fitting two linear regression models to the seven 

quarters of RTAT data. In Model 1 ordinary least squares is used to fit a linear regression 
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I 

of the natural logarithm of RTAT (dependent variable) on the previous-quarter quantity- 

weighted average of the natural logarithm of RTAT, 

log(y,,, = po + p, log(~c,r-1) 

where: q,; = ith observation in quarter t 

- 
Y G , ~ - I  = Geometric mean of RTAT for quarter t - 1. 

This model attempts to capture essentially the same predictive information used by the 

UICP RTAT forecast model. In Model 2 the natural logarithm of RTAT (dependent 

variable) is regressed on Lagged Mean (or previous quarter quantity-weighted average of 

the natural logarithm of RTAT), Pending, PRatio, Medpend (predictor variables), 

log(Y,,, ) = Po + P, log(FG,t-l ) + P, Pending + P, PRatio + p, log(MedPend) 

Model 2 includes the same predictor variable as Model 1 plus three additional 

predictor variables, which represent information in the NAVICP-Phil data base that is 

currently not used in making UICP RTAT forecasts. For each item in which the two 

models are estimated, an F-test is conducted to determine if the additional predictor 

variables make a statistically significant improvement to the prediction of the natural 

logarithm of RTAT. The proportion of additional variance explained (PVE) by including 

the three additional predictor variables is calculated for all for which the F statistic is 

significant. The calculation of PVE is the same as that used in section D, 

where: SSE, =sum of squared errors for Model 2 (Model 2 contains three additional 
predictors) 

SSE, =sum of squared errors for Model 1 
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df, = degrees of freedom in model 2 

df, = degrees of freedom in model 1. 

Ordinary least squares (OLS) is chosen over quantity weighted least squares 

(WLS) in order to simplify interpretation of the results. For a reference on regression 

analysis, see Draper and Smith (1981). Justification for the natural logarithm 

transformation is provided in Appendix D. 

Table 4.7 shows the results of regression analyses conducted on six items that 

were repaired at only one DOP. 

NIIN Sample ~2 R2 F 

0 1-054-3776 252 0.10 0.14 3.85 

01-387-0348 180 0.14 0.17 2.01 

Size Model 1 Model 2 

I 

Table 4.7: Regression Analysis of OLS Model with Additional Predictor Variables 

P-value PVE 

0.01 0.03 

0.11 0.02 

01- 14 1-2735 

00-4 1 1-6264 

0 1-062-5846 

0 1-0 1 1-0855 I 550 I 0.05 I 0.09 I 8.25 I 0.00 I 0.04 

378 0.02 0.19 25.56 0.00 0.16 

120 0.00 0.27 13.98 0.00 0.25 

66 1 0.00 0.03 6.31 0.00 0.02 

For five of the six items Model 2 improved significantly (5% test level) on Model 1. The 

proportion of variance explained by the three additional predictors is considerable for two 

repairable items (Power Supply LAU-7/A-5, NIIN 01-141-2735 and Nozzle, turbine 

engine, NIIN 00-41 1-6264), but fairly low for the others. 
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Table 4.7 indicates that the additional predictor variables may contribute to the 

NIIN Sample DOP Intercept Lagged Pending 
Size Mean 

0.3 1 0.43 0.0078 
(0.56) (2.32) (1.25) 01-054-3776 252 LIM 

predictability of natural logarithm of RTAT. However, the specific relationships of these 

Pratio MedPend 

1.07 0.31 
(1.08) (2.27) 

variables to repair time are also of interest. An inspection of the r-ratios for predictors for 

01-01 1-0855 

01-141-2735 

00-4 1 1-6264 

01-062-5846 

each repairable item may indicate which variables are most important. A r-ratio is 

0.22 1.56 0.0051 -4.80 -0.08 
(0.12) (3.80) (1.06) (-3.01) (-0.53) 550 L W  

378 N68836 

120 NO0146 

661 NO0146 

5.92 -0.80 0.0082 -3.33 0.06 

2.98 -0.08 -0.0004 1.67 0.28 
(2.31) (-1.33) (1.77) (-1.12) (0.41) 

(3.57) (-0.47) (-1.66) (5.81) (5.10) 
3.77 0.28 0.0137 -2.19 -0.42 

(3.35) ( 1  S O )  (2.62) (-1.63) (-2.26) 

calculated by dividing the estimated regression coefficient by an estimate of its standard 

error. A t-ratio that is large in absolute value suggests that the “true” regression 

coefficient is different from zero. Table 4.8 provides t-ratios and coefficients for the five 

items in which the models containing additional predictors are found to be significant 

using the F-test. 

Table 4.8: Regression Coefficients and t-ratios for Items with a Single DOP 

Table 4.8 shows both regression coefficients (p) and t-ratios for Model 2. Bold is used for regression 
coefficients that are statistically significant at level cx=O.lO 

The t-ratios in Table 4.8 indicate that none of the three additional predictor 

variables is significant in all of the five models at the a = 0.05 level (absolute value of 

1.96 or greater), but at least one of them is significant at the a = 0.10 level (absolute 

value of 1.645 or greater) in each model. Corresponding values for the significant 

coefficients (a  = 0.10) do not appear to demonstrate any distinct patterns. 
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It is plausible that although relationships exist between these variables and RTAT 

that the relationships differ between individual items due to differences in the ways that 

dissimilar items are repaired. It is possible that consistent relationships between these 

variables and RTAT exist in repairable items that belong to the same DOP. To examine 

this hypothesis a regression analysis is conducted with data for eight different items that 

were repaired at the same designated overhaul point N68836. Only one of these items 

(Power Supply, LAU-7/A-5, NIIN 01-141-2735) is a member of the fifteen-item subset 

chosen for analysis. As mentioned in Chapter 111, the other seven items are included only 

in the analyses conducted here. They are those items that have the highest extended 

standard prices of all items repaired exclusively at DOP N68836. Extended standard 

price is the product of the per-unit price of the item and the total quantity of the item 

repaired. Table 4.9 summarizes the results of the regression analysis. 

Table 4.9: Regression Analysis for Items Repaired by DOP N68836 

Sample 
Size 

NIIN F P-value PVE R2 R2 
Model 1 Model 2 

01-223-5107 1 184 0.00 I 0.29 1 24.29 I 0.00 0.28 

~~ ~~~~ 

01-120-4885 I 290 I 0.01 I 0.18 I 20.64 I 0 . 0 0  I 0.17 I 

01 - 142-88 15 

01- 14 1-2735 

168 0.00 0.2 1 14.29 0.00 0.19 

378 0.02 0.19 25.56 0.00 0.16 

0 1 - 13 1-4730 

99-257- 1090 

In seven of the eight items depicted in Table 4.9, Model 2 produced an 

148 0.00 0.45 39.03 0.00 0.44 

98 0.01 0.10 2.89 0.04 0.06 

improvement over Model 1 at the a = 0.05 test level. The proportion of variance 

00-020-32 1 1 

0 1-0 18-7764 

explained by the three additional predictor variables is considerable for several of the 
60 

148 0.06 0.18 ' 7.15 0.00 0.1 1 

112 0.01 0.08 2.40 0.07 0.04 



repairable items, indicating that useful predictive relationships between RTAT and some 

of the variables may exist. An examination of model coefficients may indicate patterns 

among the repairable items overhauled by DOP N68836. 

Table 4.10 provides t-ratios and coefficients for all items considered in Table 4.9. 

High significance of coefficients for the three additional predictor variables (a = 0.10) 

indicate that for many of the items repaired by DOP N68836 the additional predictor 

variables may be useful in predicting RTAT. However, examination of the coefficients 

for those variables does not suggest any obvious patterns relating RTAT and the predictor 

variables for items repaired at DOP N68836. The regression models and model 

0 1-223-5 107 

01-142-88 15 

01-14 1-2735 

01 -1 20-4885 

01-131-4730 

99-257- 1090 

00-020-32 1 1 

01-018-7764 

diagnostics for the Power Supply, LAU-7/A-5 are provided in Appendix E. 

2.16 0.04 0.01 0.83 0.24 
(2.93) (0.12) (1.01) (0.59) (1 .08) 
4.42 -0.30 -0.02 4.48 -0.17 

(6.48) (-1.48) (-2.15) (4.87) (-2.29) 
5.68 -0.74 0.01 -3.06 0.08 

(7.02) (3.10) (3.95) (-2.36) (1.22) 
1.80 0.24 0.03 -2.28 0.20 

(2.58) (1.15) (7.24) (-3.68) (4.13) 
0.91 0.41 0.02 0.99 0.06 

(1.29) (3.28) (7.62) (1.71) (1 .08) 

184 

168 

378 

290 

, 148 

98 

148 

112 

2.59 0.41 0.05 -1.54 -0.13 
(3.61) (1.83) (1.91) (-1.92) (-1.31) 
5.07 -0.76 -0.02 4.05 0.19 

(4.63) (-2.14) (-3.00) (3.79) (2.26) 
2.58 0.39 -0.01 0.67 -0.04 

(2.63) (1.54) (-1.80) (1.10) (-1.07) 

Table 4.10: Regression Coefficients and t-ratios for Items with DOP N68836 

Bold is used for regression coefficients that are statistically significant at level a=O.lO 
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2. Summary of Regression Analysis 

Regression analysis detected additional predictability of repair times in the 

NAVICP-Phil data by using measures that are not incorporated in the UICP RTAT 

forecast model. In some cases, considerable additional variance may be explained by the 

variables. However, examination of coefficients for the additional predictors suggests no 

clear relationships between them and RTAT across various repairable items. These 

findings suggest that it may be difficult to make a simple modification to the UICP 

forecasting tool to exploit the predictive improvement that would be gained by including 

the additional variables in its algorithms. Nonetheless, these results point to additional 

information contained in the queueing aspect of the repair process. 
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V. SUMMARY AND CONCLUSIONS 

To efficiently manage its stocks of repairable items, NAVICP must be able to 

forecast repair times of the items that it sends to overhaul points for repair. Because 

repair turn-around time (RTAT) for several thousand items must be forecast on a 

quarterly basis, NAVICP developed an automated forecasting tool, known as the UICP 

RTAT forecast model, that uses a common methodology for each item. The research 

described in this thesis considers the accuracy of the UICP RTAT forecast model from 

several different perspectives: 

The accuracy of prediction of the UICP RTAT forecast model across a subset 
of repairable items chosen to represent high-value, high-volume repair 
activities; 

The accuracy of alternative forecasting methodologies, including exponential 
smoothing, four-quarter moving averaging, and use of the previous quarter 
average RTAT value; 

The validity of assumptions implicit in the UICP RTAT forecast model and 
the impact that these assumptions have on forecast accuracy; 

The ability of additional predictor variables from the same data used in current 
RTAT forecasting to improve the prediction of repair times. 

None of the simple alternative methodologies that are considered in this thesis are 

found to perform significantly better than the UICP RTAT forecast model. Conversely, 

forecasts produced by the UICP model are not consistently more accurate than forecasts 

produced by any of the alternative methodologies. 

UICP RTAT model forecasts are found to exhibit substantial negative bias. One 

source of this bias is the outlier screening used in the UICP RTAT model, which tends to 

exclude many more large RTAT values than small ones, due to the highly positively 

skewed distributions of repair times encountered. It is found that a simple, 
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but effective remedy for the problem of excluding disproportionate numbers of large 

RTAT observations is to apply a logarithm transformation to the RTAT values before 

UICP processing. Although many of the distributions of RTAT for the items examined 

are more highly skewed than the lognormal distribution, natural logarithm 

transformations produce nearly symmetric RTAT distributions for most items, and reduce 

the impact of outliers in all cases. Accuracy of the UICP RTAT forecast model on data 

transformed using the natural logarithm is about the same as model accuracy on raw 

RTAT data, but the transformation does not solve the problem of underforecasting. The 

benefit of using the logarithmic transformation is that it may reduce or eliminate the need 

for outlier exclusion. Consequently the amount of information discarded may be 

reduced. 

For items that are sent to more than one designated overhaul point (DOP) for 

repair, it is found that accounting for the DOP may significantly improve the prediction 

of repair turn-around times. Some DOPs are found to take longer to repair a given item 

than others. 

Because the UICP model forecasts RTAT based solely on repair transactions that 

have been completed, it ignores the present state of the repair process and the queueing 

aspect of this process. In conducting the thesis research, additional variables are derived 

from the NAVICP-Phil database to capture these aspects. It is found that significant 

improvement in the prediction of RTAT may be realized by considering the additional 

variables in a forecasting model. However, no clear or simple means are found by which 

the existing model could be modified in order to realize these gains. Adopting a 

regression approach in the forecasting model may be more difficult than incorporating the 
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DOP factor, but in both cases results point to the use of queueing information to obtain 

more accurate RTAT forecasts. 

This thesis makes two recommendations to improve the forecast accuracy of 

Navy repair turn-around times: 

1. Incorporate DOP as a predictor of RTAT for items repaired by more than one 
DOP in future model development. 

2. Identify and collect data on variables that capture the queueing aspect of the 
repair process. Incorporate the queueing aspect of the repair process in future 
forecast model development. 
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APPENDIX A: S-PLUS FUNCTIONS USED TO CODE UICP RTAT FORECAST 
MODEL 

The S-Plus functions that follow were used to produce a single forecast of RTAT 

from any number of quarters of RTAT observation data. The first function listed, 

forecast.tat, is the “main” forecast function. Arguments to forecast.tat consist of: 

dfr: an S-plus data frame of observations of the form described in Chapter I11 

0 file: the RTAT forecast from the previous quarter 

f tm: a numeric vector of quantity weighted averages of RTAT; will be NULL 
unless RTAT is determined to be stable the previous quarter 

fence: the numeric year and quarter (YYQ) of the oldest quarter in last trend 
window if a trend was detected by the model in a previous forecast quarter, or the 
year and quarter of the oldest quarter in the most recent half of the data if a 
process change was detected by the model in a previous forecast quarter 

The remaining functions are called either by forecast.tat or by other functions 

called by forecast.tat. Several function names correspond to flowchart blocks shown in 

the UICP RTAT Forecast Model Flowchart (Figure 3.1). 

#Function name : forecast.tat 
function(dfr, file, ftm, fence) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# This function forecasts RTAT by selecting a methodolgy based on trend 
# detection, process change detection, and the results of 4 Statistical 
# Process Tests. The function returns a five element List. The first 
# element contains the numeric forecast, the second element contains a 
# string indicating which of the forecast methodologies was used. The 
# third contains the new forecast tracking mean (FTM) if none of the 
# SPC tests failed, or NULL vector if a new forecast was generated 
# because of process change or trend detection. The fourth contains a 
# logical vector indicating which of the four SPC tests failed or NULL 
# if none did. The fifth contains the fence ( Y Y Q ) .  
# dfr: a data frame of RTAT observations containing thirteen 
# columns 
# file: file RTAT 
# ftm: the forecast tracking mean vector (may be a zero length 
# numeric vector) 
# fence: the fence in YYQ - no data occurring before the fence is 
# considered 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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dfr <- cla(dfr) #consolidate batches, identify recording errors 
dfr <- clb(dfr, 1) #outlier criteria on 
#identify outliers, fourth spread multiplier parameter set to 1 
qtr.avg <- c2(dfr) #calculate quarterly quantity weighted 

qtr.avg <- qtr.avg[(qtr.avg[, 11 >= fence), J 
# if there are less than five quarters of data as recent or more 
# recent than the fence calculate and return the quantity 
# weighted average. 
if(length(qtr.avg[, 13) < 5 )  C 

averages 

qty.wt.avg <- c8(dfr, fence) 
return(qty.wt.avg, "A Quantity weighted average of all of 

data", vector(mode = "numeric", length = 0) , NULL, fence) 
1 
process.change <- d5(qtr.avg, 0.5) #process change detection 
# if a process change is detected, then return the quantity 
# weighted average of the most recent half of the data 
if(process.change[ll) { 

qty.wt.avg <- c9(dfr, process.change[2]) 
return(qty.wt.avg, 

"H Quantity weighted average of most recent half of 
data", vector (ode = "numeric", length = 0) , NULL, process .change [23 ) 

1 
else { 

trend <- c3(qtr.avg) 
# if a trend is detected and the Sen median regression 
# forecast is greater than or less than all of the 
# quarterly averages, return the iterative expontial 
# smoothing forecast 
# else return the Sen median regression forecast. 
if (trend[l]) { 

#compute a vector of qtrly avges at least as recent 
# as the fence 
wtv <- qtr.avg[, 11 >= trend[2] 

if(SEN.forecast[2]) { 
SEN-forecast <- clO(qtr.avg[wtv, 21) 

iter-exp <- cll(qtr.avg[wtv, 21, 0.4) 
return(iter.exp, "E iterative exponential 

smoothing", vector(mode = "numeric", length = 01,  NULL, trend[21) 
1 
else { 

return(SEN.forecast[l], "M SEN median 
regression", vector (mode = "numeric", length = 
0) , NULL, trendl21) 

1 
I 
else { 

qty.wt.al1 <- c4(dfr, fence) 
ftm <- c(ftm, qty.wt.al1) 
SPC <- c12 (ftrn, file, fence) 
# if none of the SPC tests fail, return the file 
# RTAT, and the new ftm vector, else return the 
# quantity weighted average of all observations. 
if (SPC[ [l] ] == "stable") { 

return(file, " S  stable item", ftm, NULL, fence) 

68 



else { 

1 
return(SPC1 

1 

#Function name: cla 
function(X) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# cla 
# This is the consolidate batch function. It also enters " Z "  in the 
# exclusion indicator field (column 12) of every TAT observation less 
# than 4 or greater than 998. All observations with the same TAT, comp 
# date, and DOP are consolidated into a single observation with the 
# quantity field adjusted accordingly. A data frame of consolidated 
# observations is returned. 
# X: a data frame of repair observations for a single NIIN 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 

n <- dim(X) [ll 
xp <- paste(X[, 71, X[, 81, X[, 91, sep = " " )  
ix <- order(xp) # Puts columns 7-9 in sorted order. 
ixj <- ix[ll 
xkeep <- rep(T, n) # Note deletions while looping 
for(j in 2:n) { 

if(xp[ix[jll == xp[ixjl) 
xkeep[ix[jll <- F 
X[ixj, 61 <- X[ixj, 61 + X[ix[jl, 61 

1 
else { 

1 
ixj <- ix[j] 

1 
X <- X[xkeep, ] 
X <- outl(X, 4, 998) # Enter " Z "  in the exclusion field of 

return ( X )  
recording errors 

1 
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#Function name: outl 
function(dframe, lower, upper) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# outl 
# This function identifies those values of RTAT considered errors by 
# changing the exclusion indicator (column 12) to " Z " .  Returns the 
# data frame with the modified exclusion indicator column. 
# 
# dframe: a data frame with col 7 containing values of RTAT 
# lower: the lowest acceptable value of RTAT (usually 4) 
# upper: the highest acceptable value of RTAT (usually 998) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
# first make the factor data in col 12 (excl indicator) character data 

dframe [ , 121 <- I (as .character (dframe [ ,  12 ] ) ) 
temp <- as.numeric(dframe[, 7 1 )  
for(k in l:length(temp)) { 

if((tempLk1 < lower) I (temp[kl > upper) I 
(is.na(tem~[kl)) 1 { 

dframe[k, 121 <- "Z" 
1 

1 
return (df rame) 

1 

#Function name: clb 
function(dfr, p) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# clb 
# This function excludes EDA outliers. The data frame of RTAT 
# observations is returned with the exclusion indicator fields of 
# excluded observations appropriately modified. 
# 
# dfr: a data frame of RTAT observations which should already have 
# been consolidated (cla) 
# p: the outlier parameter which multiplies fourth spread 
# 
# If any observations lie outside of the boundaries determined by 
# adding fourth spread to the upper fourth and subtracting fourth 
# spread from the lower fourth, they are considered outliers. 
# Observations identified as outliers will have their exclusion 
# indicator (col 12) set to Q or P. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
# create a vector of RTAT. Remove all observations that have " Z "  in 
# exclusion indicator field,then sort the vector by RTAT in ascending 
# order. 

rtat <- dfr[, 71 
for(k in l:length(rtat)) { 

if(dfr[k, 123 == " Z " )  { 

1 
rtat[k] <- NA 

1 
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rtat <- sort(rtat, partial = NULL, na.last = NA) 
# determine fourth spread and the outlier boundaries (IFL, IFU). 
long <- length(rtat) 
fl <- long * 0.25 
FL <- ((rtat[ceiling(fl)l - rtat[floor(fl)l) * (fl - floor(f1))) 

fu <- long * 0.75 
FU <- ((rtat[ceiling(fu)l - rtat[floor(fu)l) * (fu - floor(fu))) 

+ rtat[floor(fl)] 

+ rtat[floor(fu)] 
FS <- FU - FL 
IFL <- FL - (p  * FS) 
IFU <- FU + (p * FS) 
# if any TAT observation lies outside of the boundaries, set the 
# exclusion indicator to Q or P. First, convert the factor 
# variable dfr[,l2] to character. 
dfr[, 121 <- I(as.character(dfr[, 121)) 
for(] in l:length(dfr[, 121)) { 

if(((dfr[j, 71 < IFL) 1 1  (dfr[j, 71 > IFU)) && (dfr[j, 123 
! =  "L") && 

(dfr[j, 121 !=  " Z " ) )  { 
dfr[j, 121 <- " P "  

I 
else if(((dfr[j, 71 < IFL) 1 1  (dfr[j, 71 > IFU)) && (dfr[j, 

123 == "L") && 
(dfr[j, 121 !=  " Z " ) )  { 
dfr[j, 121 <- " Q "  

1 
I 
return(dfr) 

I 

#Function name: c2 
function ( df r ) 
c 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# c2 
# This function calculates weighted quarterly average RTAT and returns 
# a matrix with YYQ in the first column and quarterly average RTAT in 
# the second. 
# 
# dfr: a data frame of RTAT observations which should already have 
# been consolidated (cla), and sent through the exclusion 
# function (clb) 
# 
# If any observations are exclusions, they will be removed. Exclusions 
# are identified as those observations containing " Q " ,  "P", o ' Z " ,  or "L" 
# in the exclusion field. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
# Calculate quantity weighted mean by quarter. 
# Do not consider excluded observations. 

(dfr[, 121 !=  
tnm <- !is.na(dfr[, 71) & !is.na(dfr[, 61) & (dfr[, 121 !=  " Q " )  & 

" P " )  & (dfr[, 121 !=  " Z " )  & (dfr[, 121 !=  "L") 
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yrqtr <- makeyrqtr(dfr[, 81) 
X <- statby(dfr[, 71 [tnml * dfr[, 61 [tnml, yrqtr[tnml, "sum") 
Y <- statby(dfr[, 61 [tnml, yrqtr[tnml, "sum") 
wtmean <- X[, 3]/Y[, 31 

return(cbind(YYQ, wtmean)) 
YYQ <- X[, 11 

1 

#Function name: makeyrqtr 
function (x) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# This function turns julian date into yrqtr (YYQ): 96021 ==> 961, 
# 98100 ==> 982, 00300 ==> 004, etc. A numeric element or vector with 
# numeric elements YYQ is returned. 
# X: A data frame or RTAT observations 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

yr <- floor(O.OO1 * x) 
n <- length(x) 
qtr <- numeric(n) 
nodays <- x - 1000 * yr # Returns number of days into year 
qtr[yr == 96 & nodays < 921 <- 1 
qtr[yr == 96 & nodays >= 92 & nodays < 1831 <- 2 
qtr[yr == 96 & nodays >= 183 & nodays < 2751 <- 3 
qtr[yr == 96 & nodays >= 2751 <- 4 
qtr[yr !=  96 & nodays < 911 <- 1 
qtr[yr ! =  96 & nodays >= 91 & nodays < 1821 <- 2 
qtr[yr ! =  96 & nodays >= 182 & nodays < 2741 <- 3 
qtr[yr ! =  96 & nodays >= 2741 <- 4 
return(yr * 10 + qtr) 

1 

#Function name: c3 
function(m) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# c3 
# This function performs Kendall Trend Detection. A three-element 
# vector is returned. 
#The first element is boolean, True if trend detected, False if not. 
# The second is the new fence (YYQ) if a trend was detected, if not the 
# second is the oldest quarter contained in the data frame (m) as YYQ. 
# The third is W, the trend window, if a trend was detected; the length 
# of the columns in the matrix m if not. 
# 
# m: a 2 column matrix. The first column is year and quarter 
# YYQ) sorted from oldest to most recent. The second column 
# contains the corresponding quarterly quantity weighted average 
# RTAT . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#re-sort m to go from newest to oldest quarterly qty-weighted 
#average RTAT. 
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m <- m[rev(order(m[, 11 1 1 ,  1 
w <- 4 
QTR <- length(m[ , 11 ) 
done <- F 
while((!done) & (W < 10) & (W < QTR)) { 

W < - W + l  
if(W == 5) { 

3 
else if(W == 6) { 

3 
else if(W == 7 )  { 

3 
else if(W == 8) { 

3 
else if(w == 9) { 

3 
else if(w == 10) { 

3 
s <- 0 
for(i in 1: (W - 1)) { 

TP <- 6 

TP <- 9 

TP <- 10 

TP <- 13 

TP <- 15 

TP <- 18 

for(j in (i + 1):w) { 

if(m[i, 21 > m[j, 2 1 )  C 

3 
else if(m[i, 21 < m[j, 2 1 )  

3 

S < - S + l  

s < - s - 1  

1 
if((S >= TP) I I ( S  <= (-1 * TP))) { 

done <- T 
return(as.vector(c(done, m[W, 13, W))) 

I 
3 
return(as.vector(c(done, m[QTR, 11, QTR))) 

3 

#Function name: c4 
function(d, f) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# c4 
# This function calculates and returns quantity weighted mean of 
# observations occurring on or after the fence (f). Used when neither 
# a trend nor a process change is detected. Note: functions c4, c8, 
# and c9 are identical. 
# 
# d: a data frame of RTAT observations. 
# f: the fence in YYQ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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yrqtr <- makeyrqtr (a[, 81 
tnm <- (!is.na(d[, 71)) & (!is.na(d[, 61)) & (yrqtr >= f) & (d[, 

, 121 != "Q") & (a[, 121 ! =  "P") & (d[, 121 ! =  " L " )  
123 ! =  " 2 " )  & (d[ 

X <- sm(d[, 71 [tnml * d[, 61 [tnml) 
Y <- sum(d[, 61 [tnml) 
wtmean <- X/Y 
return(wtmean) 

1 

#Function name: c8 
function(d, f) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# c8 
# This function calculates and returns quantity weighted mean of 
# observations occurring on or after the fence (f). Function is used 
# when there are fewer than five quarters of observations occurring 
# during or after the fence. 
# 
# d: a data frame of RTAT observations. 
# f: the fence in YYQ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

yrqtr <- makeyrqtr(d[, 81) 
tnm <- (!is.na(d[, 71)) & (!is.na(d[, 61)) & (yrqtr >= f) & (d[, 

, 121 ! =  "Q") & (a[, 121 ! =  "P") & (d[, 123 != "L") 
121 !=  " 2 " )  & (d[ 

X <- sm(d[, 71 [tm] * d[, 61 [tnml) 
Y <- sm(d[, 61 [trim]) 
wtmean <- X/Y 
return(wtmean) 

1 

#Function name: c9 
function(d, f) 
I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# c9 
# This function calculates and returns quantity weighted mean of the 
# data occurring during and after the fence (f) detected by process 
# change detection (d5). 
# 
# d: data frame of RTAT observations for one NIIN 
# f : fence in YYQ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# calculate quantity weighted mean of all non excluded observations 
# occurring on or after the YYQ indicated by the fence (f) 

yrqtr <- makeyrqtr (d[, 81 ) 
tnm <- (!is.na(d[, 71)) & (!is.na(d[, 61)) & (yrqtr >= f) & (a[, 

X <- sum(d[, 71 [tnml * d[, 63 [tnml) 

wtmean <- X/Y 
return(wtmean) 

121 !=  " 2 " )  & (a[, 121 ! =  "Q") & (d[, 121 != "P") & (d[, 121 !=  "L") 

Y <- sm(d[, 61 [tm]) 

1 
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#Function name: c10 
function(v) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# This function performs Sen median regression as defined by the RTAT 
# forecast model. 
# A vector is returned. The first element contains the SEN median 
# regression forecast of RTAT. The second element contains a boolean 
# set to T if the forecast is either greater than the largest average 
# RTAT value contained in vector v or less than the smallest. 
# (D10 and D11 decisions are therefore contained in this function) 
# 
# v: a sorted vector of the W most recent quarterly quantity weighted 
# avg RTATs, where the oldest observation is in vector index 1, 
# and the most recent is in vector index W. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# Compute the slopes (M) of the lines connecting all quarterly averages 
# to all other quarterly averages. 

M <- vector(mode = "numeric", length = 0) 
W <- length(v) 
for(i in l:(W - 1)) { 

for(j in (i + 1) :W) { 

? 
M <- c(M, ((v[jl - v[il)/(j - i))) 

1 
# Find the median slope (B), the median RTAT (R), and the median RTAT 
# observation number ( X ) .  Then compute and return the RTAT forecast 
# and the boolean indicating a lower or upper bounds violation. 

B <- median(M) 
R <- rnedian(v) 
if(W/2 == floor(W/2)) { 

1 
else { 

1 

X <- W/2 + 0.5 

X <- ceiling(W/2) 

a <- R - (B * X )  
RTAT <- a + (B * W) 
if ((RTAT > max(v) ) I I (RTAT < min(v))) { 

return(as.vector(c(RTAT, T))) 
1 
else { 

1 
return (as .vector (c (RTAT, F) ) ) 

I 
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#Function name: cll 
function (v, a) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

ell 
This function performs iterative exponential smoothing of the last W 
RTAT quarterly averages. The iterative exponentially smoothed RTAT 
forecast is returned. Note: the forecast is .5  rounded ( . 5  is 
rounded to the even digit). 

v: a vector of the W most recent quarterly quantity weighted 
average RTATs, where the oldest observation is in vector index 
1, and the most recent is in vector index W. 

a: the exponential smoothing weight parameter 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# Compute the interim forecasts and the final forecast. Store those 
# values in a vector 
# (Fore). 

Fore <- vector(mode = "numeric", length = 0) 
Fore <- c(Fore, a * v[21 + (1 - a) * v[11) 
W <- length(v) 
for(i in 3:W) { 

? 
return(round(Fore[length(Fore)], 0 ) )  

Fore <- c(Fore, a * v[i] + (1 - a) * Fore[i - 23) 

? 

#Function name: c12 
function(ftm, file, fence) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# c12 
# This function calls the 4 SPC test functions. 
# If any of the SPC tests returns T, a list is returned. The first 
# element contains the new forecast (qty weighted average of all 
# observations). The second element is a string describing which of 
# the four tests failed first. The third element contains an empty 
# vector (the new ftm). The fourth is a logical four element vector 
# indicating. which of the SPC tests failed (T), and which did not (F). 
# The fifth is the fence passed to the function. 
# If all SPC tests return F, "stable" is returned. 
# 
# ftm: a vector of length SPCQTR of qty weighted mean RTAT of all 
# observations corresponding to the SPC qtr. 
# file: the file RTAT 
# fence: the fence(YYQ) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# all of the explicit values contained in the test-failures assignment 
# are parameters described in the respective SPC functions (bias, runs, 
# cumbias, conf) 
# # # #  

f tm <- as. numeric ( f tm) 
test-failures <- c(bias(ftm[length(ftm)] , file, -0.15, 0.15), 

runs(ftm, file, 0.05, 0.05, -3, 3), cumbias(ftm, file, -0.1, 0-l), 
conf (ftm, file, 0 . 9 ) )  
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if (test.failures[ll == T) { 
return(ftm[length(ftm)l, "B Failed Bias Test", vector(mode 

= "numeric", length = 0) , test. failures, fence) 
I 
else if (test.failures[2] == T) { 

return(ftm[length(ftm)l, "R Failed Runs Test", vector(mode 
= "numeric", length = 0) , test. failures, fence) 

I 
else if(test.failures[3] == T) { 

return(ftm[length(ftm)l, "B Failed Cumulative Bias Test", 
vector (mode = "numeric", length = 0) , test. failures, fence) 

I 
else if(test.failures[4] == T) { 

return(ftm[length(ftm)], "I Failed Confidence Interval 
Test", vector(mode = "numeric", length = 0), test-failures, fence) 

I 
else if(sum(test.failures) == 0) { 

I 
return ( "stable" ) 

I 

Function name: bias 
function(ftm, file, lower, upper) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# bias 
# This is SPC test 1, the Bias Test 
# ftm: the current quarter Quantity Weighted Average of RTAT 
# file: the File RTAT 
# lower: the lower bias parameter 
# upper: the upper bias parameter 
# If bias is outside of the bias parameters, true is returned. This 
# indicates a test failure, and is reason to consider updating the File 
# RTAT. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

b <- (ftm - file)/file 
if((b <= lower) I (b >= upper)) { 

I 
else { 

I 

return (T) 

return (F) 
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#Function name: cumbias 
function(ftm, file, lower, upper) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# cumbias 
# This is SPC test 3, the Cumulative Bias Test 
# ftm: a vector of qty weighted mean RTAT of all observations 
# calculated at the corresponding SPC quarter 
# file: the current file RTAT 
# lower: the lower cum average bias parameter 
# upper: the upper cum average bias parameter 
# A test failure occurs when the cumulative bias is outside of the 
# lower and upper bias parameters. True is then returned, indicating 
# that file RTAT should be considered for update with current FTM. 
# Note: Must have at least 3 SPC quarters to run this test. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if(length(ftm1 < 3) { 
return (F) 

I 
cum <- 0 
bias <- (ftm - file) /file 
for(k in l:length(ftm)) { 

cum <- cum + bias [k] 
if((cum >= upper) I (cum <= lower)) { 

return(T) 
I 

1 
return (F) 

1 

#Function name: runs 
function(ftm, file, lowerRuns, upperRuns, lowerMC, upperMC) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# runs 
# This is SPC test 2, the Runs Test 
# ftm: a vector of qty weighted mean RTAT of all observations 
# calculated at the corresponding SPC quarter 
# file: the current file RTAT 
# 1owerRuns: the lower Runs Parameter 
# upperRuns: the upper Runs Parameter 
# lowerMC: the lower mean counter parameter 
# upperMC: the upper mean counter parameter 
# This test fails when the mean counter is less than the lower or 
# greater than the upper mean counter parameters. True is returned 
# upon test failure, indicating that File RTAT should be considered for 
# update with FTM. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# 

nftm <- length(ftm) 
filemc <- 0 
bias <- (ftm - file)/file 
for(k in 1:nftm) { 

if ( (bias[k] > 1owerRuns) & (bias[k] < upperRuns) & (filemc 
> 0) & 
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(bias[kl < 0 ) )  { 
filemc <- 0 

I 
else if ( (bias[kl > 1owerRuns) & (bias[kl < upperRuns) & 

(filemc < 0) & 
(bias[kl > 0)) { 
filemc <- 0 

1 
else if((bias[kl >= upperRuns) & (filemc <= 0)) { 

1 
else if((bias[kl < lowerRuns) & (filemc >= 0 ) )  { 

1 
else if((bias[kl >= upperRuns) & (filemc >= 0)) { 

1 
else if((bias[kl <= 1owerRuns) & (filemc <= 0)) { 

1 
if((fi1emc >= upperMC) I (filemc <= 1owerMC)) { 

1 

filemc <- 1 

filemc <- -1 

filemc <- filemc + 1 

filemc <- filemc - 1 

return (T) 

1 
return (F) 

Function name: conf 
function(ftm, file, int) 
c 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# conf 
# This is SPC test 4, the Confidence Interval Test 
# ftm: a vector of qty weighted mean RTAT of all observations 
# calculated at the corresponding SPC quarter 
# file: the current file RTAT 
# int: the confidence interval width (either . 9  or . 9 5 )  
# This test fails when the File RTAT is outside of the confidence 
# interval computed for the data. True is returned, indicating that 
# file RTAT should be considered for update. 
# Note: Must have at least 3 SPC quarters to run this test. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

if(length(ftm) < 3) { 
return (F) 

1 
z <- t.test(ftm, y = NULL, alternative = "two.sided", mu = file, 

paired = F, 
var-equal = T, conf.leve1 = int) 

if((fi1e > z [  [411 [2l) I (file < z [  [411 [I])) 
return (T) 

I 
else { 

I 
return (F) 

1 
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#Function name: d5 
function(dfr, p) 
{ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# d5 
# This function detects a process change (d5). A three element vector 
# is returned if a process change is detected. The first element is a 
# booelan set to True. The second element is numeric YYQ that is set 
# to YYQ of the most recent half of the data. The third element is the 
# number of quarters in the most recent half of the data. If 
# a process change is not detected F, NULL, NULL is returned. 
# 
# dfr: a matrix of RTAT containing YYQ in the first column, and 
# quantity weighted average RTAT in the second. It contains 
# only those qtrly average RTAT values as recent or more recent 
# than the fence. 
# p:  a parameter limiting the allowed absolute value of the 
# difference between the values obtained from the two halves of 
# the data (eg 0.5). 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
#Divide the data into the most recent half of the quarters and the 
#oldest half of the quarters. Use only the last 10 quarters of data. 

long <- length(dfr[, 11) 
if(1ong > 10) { 

dfr <- remove.row(dfr, 1, long - 10) 
dfr 
long i- length(dfr[, 13) 

I 
recent <- ceiling(long/2) 
old <- long - recent 
#find the average RTAT of the most recent and oldest half of data 
sum <- 0 
for(j in 1:old) { 

I 
A1 <- sU/old 
sum <- 0 
for(k in (old + 1):long) { 

I 
A2 <- sum/recent 
# calculate the difference between the averages of the quarterly 
# averages 
diff <- (A2 - Al) /max(A2, Al) 
# if the difference falls outside of the par,ameters, return T, 
# otherwise return F 
if((diff > p) 1 1  (diff < (-1 * p))) { 

I 
else { 

I 

sum <- sum + dfr[j, 21 

sum <- sum + dfr[k, 21 

return(as.vector(c(T, dfr[old + 1, 11, recent))) 

return(as.vector(c(F, NULL, NULL))) 

I 

/ 
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Data Field 

National Item 
Identification Number 

(NIIN) 
Family Group Code (FGC) 

Family Relationship Code 
(FRC) 

Document Number 

Serial Number 

Quantity (QTY) 

~~~~ 

Turn Around Time (TAT) 

Completion Date 

Designated Overhaul Point 
(DOPI 

G Time 

APPENDIX B: NAVICP-PHIL DATA SET (1996-1998) 

Table B.l: Data Description 

Data Type 

Character(9) 

Character(4) 

Character( l),  either “H” or 
“M” 

Character( 14) 

Character(5) 

Numeric(5) 

numeric(5) 

date in YYDDD format 

Character(6) 

numeric(5) 

Definition 

Unique, nine-digit code that identifies each repairable item managed by the NAVICP 
sites. 

Code used to identify similar items belonging to the same family. 
non-family items. 

FGC is blank for 

Code used to identify the head of a family. The value “H” is used for family head, and 
“M” is used for members. FRC is blank for items with no family designation. 

Code that uniquely identifies each repair transaction. 

Code used to uniquely identify different units with the same NUN. 

Quantity repaired per transaction. 

Total reported repair time, in days, for each repair transaction. TAT starts when an item 
is received by the designated overhaul point (DOP) and ends when the DOP transfers 
the repaired item to a stock point. 
Completion date of repair. 

Code that identifies the site that performed the repair. Six digit codes represent 
Department of Defense DOPs, known as organic DOPs, while three digit codes 
represent commercial (contractor) DOPs. 
Number of days that the DOP was awaiting parts necessary to complete the repair. If 
there was no waiting time, G Time is set equal to zero. 



Data Field 

Commercial Indicator 

Exclude Indicator 

Revised Days I---- 

Data Type Definition 

Character( I ) ,  either “C” or 
blank 

Code that identifies repair transactions that originated from a commercial repair 
database. Commercial Indicator is set to “C” when this is the case; otherwise it is left 

character( I ) ,  either “Z”, “P’, 
or blank 

numeric(3) 

blank. 
Code that identifies data recognized by the forecasting tool as either recording errors 
(Z) or outliers (P), and thereby excluded from the UICP process. Excluded data are 
distinguished from “excluded repairable items” for which automated forecasts are not 
calculated. 
Set equal to TAT when the record was entered manually; otherwise it is set to zero. 



APPENDIX C: REPAIRABLE ITEMS SELECTED FOR ANALYSIS 

Fifteen repairable items are selected for analysis in this thesis. Table C.l lists the 

item names, national identification numbers (NIIN), unit repair prices, and unit standard 

prices. Unit repair price is the price NAVICP paid to have an item repaired, while unit 

standard price is the price paid by a customer for a new or newly-overhauled item. The 

relative value or importance of the fifteen items with respect to all items managed by 

NAVICP-Phil is quantified in Tables C.2 to C.5. Table (2.2 quantifies relative value or 

importance over the entire three-year database, while Tables C.3 to C.5 quantify relative 

value or importance in each of the three separate years that comprise the database. All 

prices are expressed in dollars for the year in which repair completions occur. Prices are 

not adjusted for inflation. 

Table C.l: Fifteen Repairable Items Selected for Analysis 

Unit Repair Unit Standard 
Item name NIIN Price (1998 US Price (1998 US 

dollars) dollars) 
Navigational Unit 1 0 1-054-3776 $10,658 $3 12,390 
Inertial Navigation Unit 01-387-0348 10,658 3 12,390 
Stabilizer, optics 0 1-300-0940 15,220 545,100 
Gimbal assembly 01-01 1-0855 22,498 143,590 
Servocylinder 01-351-3373 4,4 15 123,020 
Servocylinder F/A- 18 0 1-343-7026 8,226 92,840 
Helo rotor blade CH-53E 0 1-3 16-3474 16,788 195,250 
Module, film traction F/A-l8 0 1 - 154-2794 11,894 9 1,000 
Gyroscope, displacement 00-928-0072 5 3  17 4 1,330 
Propeller 00-887-1944 60,277 155,720 
Power Supply LAU-7/A-5 0 1 - 14 1-2735 ' 932 4,310 
Indicator. altitude 00- 165-5838 1,853 9,060 
Nozzle, turbine engine 00-4 1 1-6264 332 1,100 
Starter. engine CH-46E 0 1-062-5846 1.007 10.690 

I Actuator assembly F404 I 01-139-7177 1 830 2,400 
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Table C.2: Characteristics of Items Selected For Analysis, 1996-1998 

Total Cost of Total Cost of 
Quantity Total Days Repairs Repaired Items 

NIIN Repaired In Repair (millions of US (millions of US 
dollars) dollars) 

0 1-054-3776 1,627 37,704 16.2 400.6 
01-387-0348 1,040 26,283 10.4 259.4 
0 1-300-0940 369 23,078 6.8 166.1 
0 1-0 1 1-0855 1,283 15 1,916 28.9 157.9 
01-351-3373 940 103,014 9.5 101.6 

Total Days in Repair is the sum of repair turn-around time (RTAT) across all units 
repaired for the item. Total Cost of Repairs = Quantity times Unit Repair Price. Total Cost 
of Repaired Items = Quantity times Unit Standard Price. 
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Table C.3: Characteristics of Items Selected For Analysis - 1996 

Total Cost of Total Cost of 
Quantity Total Days Repairs Repaired Items 

NIIN Repaired In Repair (millions of US (millions of US 
dollars) dollars) 

0 1-054-3776 490 13,115 4.5 104.4 
01 -387-0348 30 1 13,197 2.8 64.1 
0 1-300-0940 136 7,741 2.6 49.8 
0 1-0 1 1-0855 559 40,110 12.6 63.8 
01-351-3373 392 47,517 4.9 39.5 
01-343-7026 26 1 16,753 1.4 19.3 
0 1-3 16-3474 161 16,232 3.0 24.0 
0 1 - 154-2794 283 15.659 2.7 28.8 
00-928-0072 627 30,884 2.6 20.6 
00-887-1944 137 13,745 6.2 13.9 
0 1 - 14 1-2735 850 3439 1 1.1 2.9 
00-165-5838 979 4 1,068 1.9 7.0 
00-4 1 1-6264 25 2 26,808 0.1 0.2 

See caption on Table C.2 for definitions of the tabulated quantities. 

85 



Table (2.4: Characteristics of Items Selected For Analysis - 1997 

See caption on Table C.2 for definitions of the tabulated quantities. 
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Table C.5: Characteristics of Item Selected For Analysis - 1998 

NIIN 

Total Cost of Total Cost of 
Quantity Total Days Repairs Repaired Items 
Repaired In Repair (millions of US (millions of US 

See caption on Table C.2 for definitions of the tabulated quantities. 
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APPENDIX D: TRANSFORMING RTAT USING NATURAL LOGARITHMS 

Figure D.l provides normal QQ-plots of RTAT residuals for all 15 repairable 

items identified for analysis. Residuals for items repaired by a single DOP are obtained 

from a one factor analysis of variance (ANOVA) that explained RTAT using only the 

repair completion quarter. Residuals for items with multiple DOPs are obtained from an 

additive two-factor ANOVA based on repair completion quarter and DOP. Departures 

from linearity in these plots indicate a lack of normality of residuals. Fourteen of the 15 

QQ-plots suggest pronounced nonnormality. The “U” shapes of many of these plots are 

characteristic of positively skewed distributions. Only for the Nozzle, turbine engine, 

(NIIN 00-41 1-6264) does the distribution of RTAT approach normality. 

Figure D.2 shows the QQ-plots of residuals obtained after RTAT is transformed 

by the natural logarithm for the 15 items identified for analysis. In several cases the 

distributions remain skewed even after the logarithm transformation is applied. Evidence 

of heavy tails is also indicated by the “S” shapes of a number of the plots. Nonetheless, 

the logarithm transformation generally results in more symmetric distributions. 

Figures D.3 and D.4 provide further evidence in favor of the logarithm 

transformation. These figures show boxplots for the untransformed and transformed 

RTAT values, respectively, broken down by quarter and DOP. Figure D.3 boxplots 

indicate that the RTAT distributions are positively skewed with nonconstant variance 

across the 12 quarters and two DOPs. In Figure D.4 the boxplots appear to be more 

symmetric with variances that are more stable across groups. 
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gure D.l: QQ-Plots Indicate Non-Normality of RTAT Data 
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gure D.2: QQ-Plots of RTAT Transformed Using Natural Logarithm 
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Figure D.3: Boxplots for Repair Turn-Around Times for NIIN 00-165-5838 Broken 
Down by Quarter and DOP. On the horizontal axis of the plot on the left (repair 
completion quarter) quarters are represented in YYQ format. On the horizontal 
axis of the plot on the right (designated overhaul point) NO0244 and YOK are codes 
representing two different DOPs. 
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Figure D.4: Boxplots for Repair Turn-Around Times, Logarithm Transformed, for 
NIIN 00-165-5838 Broken Down by Quarter and DOP See caption on Table D.3 for 
definitions of horizontal axis labeling. 
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APPENDIX E: REGRESSION MODELS AND MODEL DIAGNOSTICS FOR 
THE POWER SUPPLY LAU-7/A-5, NIIN 01-141-2735 

Two linear regression models are formulated for each of the repairable items 

considered in this thesis that are repaired by one designated overhaul point. Ordinary 

Least Squares are used to obtain estimates of the model parameters. The models and 

model diagnostics for one item, the Power Supply, LAU-7/A-5 (NIIN 01-141-2735), are 

presented below. Model 1 is a regression of the natural logarithm of RTAT (dependent 

variable) on the previous-quarter quantity-weighted average of the natural logarithm of 

RTAT or Lagged Mean (predictor variable). Model 2 includes the same predictor 

variable as the first model plus three additional predictor variables: Pendiitg, PRutio, and 

MedPeizd. The formulas for the corresponding models are shown in Chapter IV. 

Statistics, coefficient and intercept values for Model 1 are provided in Table E. 1. 

Table E.l: Ordinary Least Squares Regression Results for Model 1 

N 
378 

(df=376) 

R2 F P-value (F)  0 PO f i  
5.19 0.54 

(8.14) (2.7 1) 0.02 7.373 0.0 1 0.54 

The t statistics for both the intercept and coefficient in the first model are significant at 

the a = 0.05 level which indicate that intercept and coefficient values are not zero. The F 

statistic formed in the model utility test is also highly significant and indicates that the 

model is useful. However, the model explains little of the total variance of natural 

logarithm of RTAT since R2.= 0.02. 

Statistics, coefficient and intercept values for Model 2 are provided in Table E.2. 
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Table E.2: Ordinary Least Squares Regression Results for Model 2 

N R2 F P- <r P O  L!l PZ P3 P4 
value 

5.67 -0.74 .008 -3.07 0.08 378 21.37 O.O0 0'493 (7.02) (-3.10) (3.95) (-2.36) (1.22) 
(df=373) 
See Table E.l for a description of column entries 

The estimated regression intercept (Po) and three of the four coefficients (A, pz, P3) are 

significant at the a = 0.05 level. Model 2 explains 19% of total variance of natural 

logarithm of RTAT. 

Two diagnostic plots are formed for each model. First, residuals are plotted 

against fitted values. Figures E.1 and E.2 show that residuals do not appear to exhibit 

any distinct patterns in either model, and in each model they are seemingly distributed 

about zero according to a normal distribution. The QQ-plots shown in Figures E.3 and 

E.4 indicate that the residuals are nearly normally distributed under either model. 
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Figure E.l: Residuals Versus Fitted Values - Model 1, Power Supply, LAU-7/A-5 
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Figure E.2: Residuals Versus Fitted Values - Model 2, Power Supply, LAU-7/A-5 
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Figure E.3: QQ-Plot of Residuals - Model 1, Power Supply, LAU-7/A-5 
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Figure E.4: QQ-Plot of Residuals - Model 2, Power Supply, LAU-7/A-5 
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