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ABSTRACT 

This thesis extends previous research on validating Lanchester’s equations with 

real data. The quality of the available historical data for validation of attrition models is 

poor. Most accessible battle data contain only starting sizes and casualties, sometimes 

only for one side. A detailed database of the Battle of Kursk of World War 11, the largest 

tank battle in history, has recently been developed. The data were collected from military 

archives in Germany and Russia by the Dupuy Institute (TDI) and were reformatted into 

a computerized data base, designated as the Kursk Data Base (KDB), and recently made 

available and documented in the KOSAVE (Kursk Operation Simulation and Validation 

Exercise of the US Army) study. The data are two-sided, time phased (daily), and highly 

detailed. They cover 15 days of the campaign. This thesis examines how the various 

derivatives of Lanchester’s equations fit the newly compiled database on the Battle of 

Kursk. In addition, other functional forms are fit. These results are contrasted with 

earlier studies on the Ardennes campaign. It turns out that a wide variety of models fit 

the data about as well. Unfortunately, none of the basic Lanchester models fit the data, 

bringing into question their use in combat modeling. 
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EXECUTIVE SUMMARY 

War is a conflict between nations or states carried on by force of considerable 

duration and magnitude, by land, sea, or air for obtaining and establishing the superiority 

and dominion of one over the other for some cause. Throughout history, war has been a 

topic of analysis for scientists and researchers, especially following World War II. 

Soviets argue that Osipov [Ref.2] was the first to study and discover the equations 

most often used when modeling attrition in combat. The equations are widely known as 

“Lanchester’s equations.” Regardless of claims of prior or parallel discovery, 

Lanchester’s equations for attrition provided the origin for modeling attrition in the 

United States and around the world. Today, with the advent of computers, Lanchester- 

based models of warfare are widely used in the decisionmaking process for research, 

development, acquisition of weapons systems, force mix decisions, and for aiding in the 

development of operational plans. 

The basic generalized Lanchester Equations are of the form [Ref.6]: 

B(t )  = aR(t)PB(t)4 (1) 

& ( I )  = bB(t)P R(t)9 (2) 

where B(t) and R(t) are the strengths of blue and red forces at time t ,  B ( t )  and &(t) are 

the rates at which blue and red force levels are changing at time t ,  a and b are attrition 

parameters, p is the exponent parameter of the attacking force, and q is the exponent 

. parameter of the defending force. 

Two versions of the Lanchester equations are of particular interest. When p = q = 

1, force ratios remain equal if aR(0) = bB(O), and hence this condition is called, 

Lanchester’s linear law. The interpretation of Lanchester’s linear law is that a battle 
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governed by this model is characterized as a collection of small engagements, and was 

proposed by Lanchester as a model for ancient warfare. The equation is also considered a 

good model for area fire weapons, such as artillery. Lanchester contrasted the Linear 

Law with the condition p = 1, 4 = 0, which is called Lanchester’s square law, where the 

force ratios remain equal when aR(0)2 = bB(0)2. He theorized that the square law 

applies to modem warfare, in which both sides are able to aim their fire. His model 

suggests that in modem warfare combatants should concentrate their forces. A third 

version with p = 0, q = 1 is called Lanchester ’s logarithmic law. 

Past empirical validation studies of Lanchester Equations include the work of 

Bracken on the Ardennes campaign of World War II, Fricker, also on the Ardennes 

campaign, Clemens on the Battle of Kursk of World War 11, and Hartley and Helmbold 

on the Inchon-Seoul campaign of the Korean War. These works are among the few 

quantitative studies that use daily force size data for real battles. 

Bracken formulated four different models for the Ardennes campaign, which are 

variations of the basic Lanchester equations, and estimated their parameters for the first 

ten days of the of the Ardennes campaign (December 15, 1944 through January 16, 

1945). He concluded that: (1) the Lanchester linear model best fits the Ardennes 

campaign data, (2 )  when combat forces are considered, allied individual effectiveness is 

greater than German individual effectiveness, (3) when total forces are considered, 

individual effectiveness is the same for both sides, and (4) there is an attacker advantage 

throughout the campaign. 

Fricker’s paper revisited Bracken’s modeling of the Ardennes campaign, using 

linear regression to fit the total body of data from the entire campaign, including air sortie 
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data. Fricker concludes by saying that one side’s losses are more a function of his own 

forces than a function of the opponent’s forces, like the logarithmic law, and gives the 

Gulf War as an example to support this theory. 

Clemens’ analysis examined the validity of the Lanchester Models as they are 

applied to modem warfare using data from the Battle of Kursk. His analysis is an 

extension of Bracken’s and Fricker’s analyses of the Ardennes Campaign. He concludes 

that the Lanchester logarithmic model in both scalar and matrix form fits better than the 

Lanchester linear and square models. 

Hartley and Helmbold tested Lanchester’s square law using the data from the 

Inchon-Seoul campaign. They conclude that: (1) the data do not fit a constant coefficient 

Lanchester square law, (2)  the data better fit a set of three separate battles (one distinct 

battle every six or seven days), (3) Lanchester’s square law is not a proven attrition 

algorithm for warfare (but neither can it be completely discounted), and (4) more real 

combat data are needed to validate any proposed attrition law. 

This thesis takes a closer look at Lanchester’s equations using recently available 

data on the battle of Kursk. In July 1943, the Battle of Kursk, the largest tank battle in 

history, took place around the city of Kursk, Russia, and ended in the defeat of the 

Germans. A detailed database of this battle was recently developed. The data were 

collected from military archives in Germany and Russia by the Dupuy Institiute (TDI), 

and are reformatted into a computerized data base, designated as the Kursk Data Base 

(KDB). KDB is recently documented in the KOSAVE (Kursk Operation Simulation and 

Validation Exercise) study. The data are two-sided, time phased (daily), and highly 

detailed. They cover 15 days of the Battle of Kursk. 
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A total of 39 diverse models are fit to the Battle of Kursk data using different 

approaches. These approaches include applying the methodologies of previous studies, 

using robust LTS (least trimmed squares) regression for estimation purposes, including 

air sortie data of the battle, considering the battle in separate’phases, using different 

weights to aggregate the data, fitting basic Lanchester equations, fitting Morse-Kimball 

equations, and applying parameters found in previous studies. 

The findings from this research include: 

0 It is observed that the original Lanchester equations do not fit to the Battle of 

Kursk data, and therefore may not be appropriate for modeling the combat. Of 

the three ill-fitting Lanchester equations, the best fit is obtained by applying the 

linear law, which is used for modeling ancient warfare or area fire. 

The parameters derived from Bracken and Fricker’s Ardennes studies do not 

apply to the Battle of Kursk data. This implies that there are no unique 

parameters that apply to all battles. 

Throughout the study, the a parameter is generally greater than the b parameter. 

This implies that individually German soldiers were more lethal than Soviet 

soldiers. 

The best fit to the data is observed when a robust LTS regression model is 

applied. The best fit occurred with no attackeddefender advantage. 

In the battle of Kursk, except for the first and eighth days, it was advantageous to 

0 

a 

\ \  

0 

be the attacker. 

a The different approaches give very different estimates on the best fitting I 



parameters found. A closer investigation reveals that the surface of the sum 

squared residuals (SSR), from the differences between the daily estimated and 

real losses over the battle, is very flat. This explains why such diverse answers 

are in the literature. Figure 1 shows a contour filled plot of SSR values for Battle 

of Kursk data with p values varied between -0.5 and 10.0 and q values varied 

between -1.0 and 4.0, and a and b values determined to minimize SSR given p 

and q. Different researchers, using different methods, all came up with 

completely different answers because the surface around the models’ fits is very 

flat. Therefore, small changes in handling the data and the application of different 

estimation methodologies results in dramatically different parameter estimates. . 

Thus, there is not enough data from the battle of Kursk, and Ardennes too, to 

differentiate between a wide range of Lanchester models. Unfortunately, none of 

Name 
of the 
model 

Bracken 
Ardennes 
Model 1 
Bracken 

Ardennes 
Model 3 
Fricker 

Ardennes 
Com.Manpwr.w/o sortie 

Clemens 
Kursk 

Linear Regression 
Clemens 

Kursk 
Newt.-Raphson iteration 

Kursk 
Robust LTS 
Regression 

the basic Lanchester models, liner, square, and logarithmic, provide a good fit. 

a b P 4 

8.OE-9 1 .OE-8 1 .o 1 .o 

8.OE-9 1 .OE-8 1.3 0.7 

4.7E-27 3.1 E-26 0.0 5.0 

6.92E-49 6.94E-48 5.3157 3.6339 

3.73E-6 5.9 1E-6 0.0 1.6178 

2.27E-40 1.84E-4 1 6.0843 1.7312 

of parameter estimates. 

I 
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0 Combat models cannot provide clear-cut results to a military analyst. One cannot 

determine the outcome of a battle precisely by using combat models. Together 

with their use to gain insight about the battles and campaigns that happened in the 

past, combat models help to make better decisions by enabling the decision-maker 

to compare different alternatives using various combat modeling techniques. 

0 2 4 6 
p parameter 

8 

Figure 1. Contour filled plot of SSR values for Battle of Kursk data with no 
attackeddefender advantage considered. A wide range of diverse generalized Lanchester 
models give about the same fit. 
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I. INTRODUCTION 

War is a conflict between nations or states carried on by force of considerable 

duration and magnitude, by land, sea, or air for obtaining and establishing the superiority 

and dominion of one over the other for some cause. It is defined more concisely as the 

state of usually open and declared armed hostile conflict between states or nations 

CRef.11. When these conflicts reach global proportions, they are known as world wars. 

Among the causes of war are ideological, political, racial, economic, and religious 

conflicts. According to Karl von Clausewitz, war is a “continuation of political 

intercourse by other means” and often occurs after means of compromise and mediation 

have failed. 

Throughout history, war has been a topic of analysis for scientists and researchers, 

especially following World War II. In the shadow of a possible outbreak of nuclear war 

between the United States and Russia, more research has been done on the subject of war 

than ever before. 

A. COMBAT MODELING 

This study, instead of analyzing the concept of war at large, will analyze and 

focus on a smaller part of war, which we usually name combat, battle or campaign. Even 

though these terms are generally used as if they had the same meaning, the word combat 

is used for defining active, armed fighting between two enemy forces, while the word 

battle is used for defining a hostile encounter or engagement between opposing military 

forces. The word campaign is used for defining military operations ior a specific 

objective, and defines a connected series of military operations aimed at accomplishing a 
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specific operational and strategic objective. A campaign forms a separate and distinct 

phase of war, and it is this “small” part of war that is the concentration of this study. 

Throughout history, combat has been an important topic of analysis, just like war 

itself. Scientists, researchers, and the military have tried to understand and estimate 

beforehand the nature of combat in order to formulate some theory about its dynamics 

and most importantly, its outcome. Researchers who studied combat modeling and 

attrition were aware of the influence their studies could have on the outcome of a battle. 

A natural consequence of these studies was the emergence of combat models in the 

beginning of the early 20th century. 

Attrition is a reduction or decrease in number, size, or strength of a force and is at 

the core of every general discussion of warfare. The term attrition defines a wearing 

down or weakening of resistance, especially as a result of constant harassment, abuse, or 

attack. 

Soviets argue that Osipov [Ref.2] was the first to study and discover the equations 

most often used when modeling attrition in combat. The equations are widely known as, 

“Lanchester’s equations.” Regardless of claims of prior or parallel discovery, 

Lanchester’s equations for attrition provided the origin for modeling attrition in the 

United States and around the world. 

Frederick William Lanchester (b. 1868, London, England; d. 1946, Birmingham, 

Warwickshire) was an English automobile and aeronautics pioneer who built the first 

British automobile in 1896. Lanchester’s interest in aeronautics was first expressed in a 

paper he wrote in 1897, a work ahead of its time discussing the principles of heavier- 

than-air flight. Between 1907- 1908, he published a two-volume work embodying 
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distinctly advanced aerodynamic ideas. As a member of the Advisory Committee on 

Aeronautics in 1909 and, later, as a consultant to the Daimler Motor Company, Ltd., 

Lanchester also contributed to the development of the field of operations research. 

[Ref.3]. 

Lanchester proposed that attrition could be mathematically modeled, and 

introduced his equations as a means of investigating the future impact that the recently 

invented airplane might have on the nature of warfare [Ref.4]. Thus, at the beginning of 

World War II, Lanchester equations and other differential equations of a similar nature 

were known to some of the scientists who later became active in operations research 

[RefS]. 

Today, with the advent of computers, Lanchester-based models of warfare are 

widely used in the decision making process for research, development, acquisition of 

weapons systems, force mix decisions, and for aiding in the development of operational 

plans. 

B. LANCHESTER EQUATIONS 

As described in Fricker [Ref.6], the basic generalized Lanchester Equations are of 

the form: 

B(t )  = uR(t)PB(t)q (1) 

k(t) = bB(t)P R(t)q (2) 

where B(t) and R(t) are the strengths of blue and red forces at lime t ,  B(t) and k(t) are 

the rates at which blue and red force levels are changing at time t ,  a and b are attrition 

parameters, p is the exponent parameter of the attacking force, and q is the exponent 

parameter of the defending force. The model begins with initial force sizes, B(0) and 
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R(O), that, when solved numerically, are incrementally decreased according to the 

relationship B(t+dt) = B(t) - AtB(t) and R(t+At) = R(t) - d t k ( t ) .  In an equally matched 

battle, where the ratio of the forces stays constant over time, B(t)LR(t) = B(t ) /d( t )  , for 

all t. This is equivalent to the condition that bB(t)P-qf’ = aR(t)P-q+’ for some p and q, 

and all t. 

Two versions of the Lanchester equations are of particular interest. When p = q = 

1 (or, more generally, when p-q = 0) force ratios remain equal if aR(0) = bB(0) , and 

hence this condition is called, Lanchester ’s linear law. The interpretation of Lanchester’s 

linear law is that a battle governed by this model is characterized as a collection of small 

engagements, and was proposed by Lanchester [Ref.4] as a model for ancient warfare. 

The equation is also considered a good model for area fire weapons, such as artillery 

[Ref.7]. 

Lanchester contrasted the Linear Law with the condition p = 1, q = 0 (or, more 

generally, p-q  = l), which is called Lanchester’s square law, where the force ratios 

remain equal when LZR(O)~ = bB(0)2. He theorized that the square law applies to modem 

warfare, in which both sides are able to aim their fire. His model suggests that in modem 

warfare, combatants should concentrate their forces. 

A third version with p = 0, q = 1 (or, more generally, q-p = 1) is called 

Lanchester’s logarithmic law. 

C. THESIS OUTLINE 

This thesis consists of five chapters. This first chapter introduces the general 

concept of combat modeling and the widely used Lanchester Equations. The second 

chapter reviews previous studies on combat modeling. The Battle of Kursk data is also 
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introduced in this chapter, and the study methodology for the thesis is explained. The 

third chapter briefly covers the history of Battle of Kursk, and explores and analyzes the 

battle’s data in depth to gain insights before attempting to fit models to it. Additional 

details about the personnel and weapon systems data is given in Appendix A; 

The primary objective of Chapter Four is to find the best model that fits the 

Battle of Kursk data. To accomplish this objective, the methods of previous studies are 

applied, and then all new exploratory models are implemented. The results derived from 

the regression analysis methods are briefly evaluated in this chapter. The fifth chapter 

interprets the results that are derived from the regression analysis methods in Chapter 

Four. Chapter Five contains the final conclusions and recommendations implicated by 

results, and also mentions future areas of study on combat modeling. 
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11. PREVIOUS STUDIES ON COMBAT MODELING 

A. PREVIOUS STUDIES WITH LANCHESTER EQUATIONS 

Past empirical validation studies of Lanchester Equations include the work of 

Bracken [Ref.8] on the Ardennes campaign of World War 11, Fricker [Ref.6], also on the 

Ardennes campaign, Clemens CRef.91 on the Battle of Kursk of World War 11, and 

Hartley and Helmbold [Ref. 101 on the Inchon-Seoul campaign of the Korean War. These 

works are among the few quantitative studies that use daily force size data for real battles. 

1. Bracken’s study 

Bracken formulates four different models [Ref31 for the Ardennes campaign, 

which are variations of basic Lanchester equations, and estimates their parameters for the 

first ten days of the of the Ardennes campaign of World War I1 (December 15, 1944 

through January 16,1945). 

Bracken’s models are homogeneous. Tanks, armored personnel carriers, artillery, 

and manpower are aggregated with weights representing the relative effectiveness of the 

weapon systems. This type of aggregation yields a single measure of strength for each of 

the Allied and German forces. This method is used to measure combat power and to 

calculate losses. His models treat combat forces and the total forces (i.e., both support 

forces and the combat forces) in the campaign separately. 

Equations II.A. 1 .(3), 1I.A. 1 .(4) show the Lanchester equations used by Bracken, 

which are modified to include the tactical parameter d for Bracken’s Model 1 and Model 

2. The parameter d is a multiplier of attrition due to being either in a defensive or 

offensive posture in the battle. If d < 1, then the defender has fewer casualties (i.e., there 

is a defender advantage). If d > 1 then the defender has more casualties (i.e., there is an 
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attacker advantage). If d=l then there is no attacker or defender advantage. Using the 

tactical parameter d requires knowing which side is the defender and which side is the 

attacker. 

B = (d orI/d) a RPBq (3) 

R = (Ud or d)  b BPRq (4) 

In Model 1, forces are composed of tanks, APCs, artillery, and combat manpower; 

where combat manpower is made up of infantry, armor, and artillery personnel. 

Manpower casualties are killed and wounded. Forces are tanks, APCs, artillery, and 

combat manpower, which are weighted by 20, 5, 40, and 1, respectively. That is, Blue 

Forces (combat power) = (20 x number of tanks) + (5 x number of APCs) + (40 x 

number of artillery) + ( I  x number of combat manpower). Bracken CRef.83 states in his 

study that, “The weights given above are consistent with those of studies and models of 

the U.S. Army Concepts Analysis Agency. Virtually all theater-level dynamic combat 

simulation models incorporate similar weights, either as inputs or as decision parameters 

computed as the simulations progress.” 

In Model 2, forces include all personnel in the campaign, including all types of 

logistics and support personnel. Casualties are personnel who are killed, wounded, 

captured or missing in action, and who have disease and nonbattle injuries. It is 

noteworthy here to mention that in the Ardennes campaign, the Allies had a smaller 

portion of their forces in combat units and a larger portion of their forces in logistics and 

support units than the Germans. 

In estimating the parameters of Model 1, Bracken found that individual German 

effectiveness, as measured by the attrition parameter a, is less than Allied effectiveness b; 
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these parameters are for combat forces only. This distinction is a natural result of the 

COMBAT 
MANPOWER 

MODEL1 X 
MODEL2 X 
MODEL3 X 
MODEL4 X 

German combat forces having less support, and therefore not being as effective as Allied 

combat forces individually. In Model 2 where all personnel are included, individual 

effectiveness is determined to be similar for both the Allied forces and the Germans. 

In Model 3, the components used are the same as in Model 1, but the parameter d 

is not estimated. Just like Model 3, Model 4 does not have a tactical parameter. Model 4, 

like Model 2, addresses total forces rather than combat forces. For a summary of 

Bracken’s models, see Table 2. 

SUPPORT PARAMETER 
MANPOWER d 

X 
X X 

X 

Bracken’s main conclusions are: 

0 Lanchester linear model best fits the Ardennes campaign data in all four 

cases. 

0 When combat forces are considered, Allied individual effectiveness is 

greater than German individual effectiveness. When total forces are 

considered, individual effectiveness is the same for both sides. 

0 There is an attacker advantage. 

The second result indicates that the two sides have essentially the same individual 

capabilities but are organized differently. The Allies preferred to have more manpower 
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in the support forces, which in turn yielded greater individual capabilities in the combat 

forces. The overall superiority of the Allied forces in the campaign led to the Allied 

attrition being a smaller percentage of their forces. Table 3 shows% Bracken’s best fitting 

Name 
of the 
model 

Bracken 
Model 

1 
Bracken 
Model 

2 
Bracken 
Model 

3 
Bracken 
Model 
4 

parameters for the Ardennes campaign. 

a b P 4 d 

8.OE-9 1 .OE-8 1 .o * 1.0 1.25 

8.OE-9 8.OE-9 0.8 1.2 1.25 

8.OE-9 1 .OE-8 1.3 0.7 

8.OE-9 8 .OE-9 1.2 0.8 

I Fricker’s paper [Ref.6] revisits Bracken’s modeling of the Ardennes campaign of 

I World War II [Ref31 and uses the Lanchester equations. This is different than Bracken’s 

study in several ways. Fricker’s study: 

0 Uses linear regression to fit the model parameters. 

0 Uses the total body of data from the entire campaign, while Bracken used 

only the first 10 days of the data from the Ardennes Campaign. 

0 Also includes zir sortie data. 

In contrast to Bracken, Fricker shows that the Lanchester linear and square laws 

do not fit the data. He concludes by showing that a new form of the Lanchester 

equations-with a physical interpretation-fits best. Fricker states that the attrition 

10 



parameter used in the Lanchester logarithmic model represents the opponent’s probability 

of killing a soldier, and that this probability of kill is constant for a certain range of the 

opponent’s force sizes. It follows that one side’s losses are more a function of own 

forces rather than a result of the opponent’s forces, and Fricker gives the Gulf War as 

support for this theory. That is, Iraqi casualties were more a function of the number of 

Iraqi forces than of the number of Allied forces. Table 4 shows the best fitting parameters 

for the Ardennes campaign according to Fricker’s study. 

Name 
of the 
model 

Combat 
manpower 
wlo sortie 

Total 
manpower 
wfo sortie 
Combat 

manpower 
With sortie 

Total 
manpower 
with sortie 

a b P 4 d 

4.7E-27 3.1 E-26 0.0 5.0 0.8093 

1.7E-16 8.OE-16 0.0 3.2 0.824 

2.7E-24 1.6E-23 0.0 4.6 0.7971 

1.3E-15 5.6E-15 0.0 3.0 0.8197 

3. Clemens’ study 

Clemens’ analysis [Ref.9] examines the validity of the Lanchester Models as they 

are applied to modem warfare. The models in his study are based upon basic Lanchester 

Equations. The analysis is an extension of Bracken’s [Ref.8] and Fricker’s CRef.61 

analyses of the Ardennes Campaign, and applies the Lanchester models to the Battle of 

Kursk data. 

1 1  



Clemens uses two estimation techniques, linear regression and Newton-Raphson 

iteration. The analysis also explores the presented model in matrix form, and compares 

the matrix solution to the scalar solution. In his study he concludes that: 

0 Neither the Lanchester linear nor the Lanchester square model fits the 

data. 

The Lanchester logarithmic model in both scalar and matrix form fits 

better than the Lanchester linear and square models. 

Lanchester Equations do not give the best fit for the data. 

The analysis can be extended by: 

0 

0 

- Taking into account the change in offensive/defensive roles. 

Adding data from air sorties. 

Applying the Lanchester Equations in a homogeneous weapon 

- 

- 

scenario. 

- Building a whole new model without regard to the Lanchester 

formulations. 

Table 5 shows the best fitting parameters Clemens found for the Battle of Kursk 

Name 
of the 
model 

Clemens 
Linear 

Regression 
Clemens 
Newton- 
Raphson 

data in his study. 

a b P 4 d 

6.92E-49 6.94E-48 5.3157 3.6339 - 

3.73E-6 5.9 1E-6 0.0 1.6178 
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4. Hartley and Helmbold’s study 

Hartley and Helmbold’s study [Ref. 101 focuses on validating the homogenous 

Lanchester square law by using historical combat data. Since validating a model means 

testing it in a real life context, Hartley and Helmbold test Lanchester’s square law using 

the data from the Inchon-Seoul campaign of the Korean War. 

Hartley and Helmbold use three analysis techniques to exannine the data; linear 

regression, the Akaike Information Criterion (AIC), and Bozdogan’s consistent AIC 

(CAIC). The results of the study are: 

0 

0 

The data do not fit a constant coefficient Lanchester square law. 

The data better fit a set of three separate battles (one distinct battle every 

six or seven days). However, the data fit a set of three constant casualty- 

model battles just as well. 

Lanchester square law is not a proven attrition algorithm for warfare, but 

neither can it be completely diicounted. 

More real combat data are needed to validate any proposed attrition law 

such as the Lanchester square law. 

A summary of previous findings 

a 

0 

5. 

Fricker’s and Bracken’s studies are significant in that they reach different 

conclusions using the same data. When both studies are compared, Fricker’s approach 

and methodology makes more sense because he did not constrain himself to certain 

ranges of parameters, as Bracken did. 

Bracken’s approach is strong in the sense that his approach optimizes the 

nonlinear regression equation in the defined area. Fricker finds the parameters that give 

’ I  
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the minimum sum of squared residuals (SSR), using the logarithmically transformed 

Lanchester equations. Using logarithmic transformation does not necessarily guarantee 

the best fit when the parameters found by this approach are directly applied to the 

Lanchester equations. However, minimizing the SSR value was Bracken’s criteria and 

the parameters found via logarithmic transformation in Fricker always resulted in smaller 

sums of square errors for the untransformed Lanchester equations than those found by 

Bracken. 

In general, the results of all four studies show no overwhelming evidence of 

Lanchester fit. Among the three Lanchester equations, the logarithmic law gives the best 

fit. 

B. THE DATA AND STUDY METHODOLOGY 

1. The data 

Complete combat data on both sides fighting against each other is very sparse. 

Consequently, validation of Lanchester h d  other combat models has been very difficult, 

and the most accessible battle data contains only starting sizes and casualties, sometimes 

only for one side. Furthermore, the definition of casualties varies (e.g., killed, killed plus 

wounded, killed plus wounded plus missing, killed plus wounded plus missing plus 

diseasehonbattle injuries), making data analysis difficult. Obtaining order-of-battle data 

and equipment damage reports requires extensive historical research. Recently, more 

data has become available and improved database management and computing power has 

helped in such data gathering efforts. 

A detailed database of the Battle of Kursk of World War 11, the largest tank battle 

in history, was recently developed. The data were collected from military archives in 
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Germany and Russia by the Dupuy Institiute (TDI), and are reformatted into a 

computerized data base, designated as the Kursk Data Base (KDB). The KDB was 

recently documented in the KOSAVE (Kursk Operation Simulation and Validation 

Exercise) study. [Ref.12]. The data are two-sided, time phased (daily), and highly 

detailed. They cover 15 days of the Battle of Kursk. 

2. Study methodology 

This thesis fits Lanchester equations and other functional forms to the newly 

released Battle of Kursk data. The two main areas of interest are the quality of the fits 

and the insights provided by the equations. Different fits are compared and contrasted to 

the previous research results mentioned above. 

The methodology used in this thesis research consists of the following steps and 

research questions: 

a Arranging and setting up of the data at hand so that it is useful for 

regression and statistical purposes. 

a 

a 

a 

Conducting a thorough analysis and interpretation of the data. 

Identifying components needed for the model. 

Applying Bracken’s and Fricker’s methodology to the Kursk data. 

Applying various forms of Lanchester Equations to the data. How well do 

Lanchester Equations fit the Battle of Kursk Data? 

- Does the Linear Law fit the Battle of Kursk data? 

Does the Square Law fit the Battle of Kursk data? 

Does the Logarithmic Law fit the Battle of Kursk data? 

- 

- 
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- Do possible combinations of these three laws fit the Battle of 

Kursk data? 

Applying other general curve fittings and functional forms to the data. 

Do any of the other possible general curve fits or functional forms fit the 

Battle of Kursk data? 

- Do any of the functional forms need the defendedattacker 

coefficient? 

- What effect does changing weapon weights have on fitting the 

models to the data? 

Using a least squares grid search to get a better understanding of the 

relationship between various Lanchester formulation and the empirical 

data. 

This thesis extends the previous studies of Bracken, Fricker, Clemens, and 

Comparing and contrasting different methodologies and the two battles. , 

Analyzing the results and conclusions of all the models. 

Hartley and Helmbold in the following ways: 

Methodologies of previous studies are applied to Battle of Kursk data. 

A different regression technique, i.e., robust LTS regression, is used. 

Air sortie data is included. 

The change in offensive/defensive roles is taken into account. 

The battle is considered in different phases and different change points are 

used for fitting the model. 

Different weights are used for aggregating the data. 
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0 Lanchester Equations, Morse-Kimball equations and force ratio models 

are fit to Battle of Kursk data 

0 Parameters found for different battles are used to fit Battle of Kursk data 

and the resulting parameters are compared and contrasted. By this 

comparison, the issue of whether or not the parameters of one battle can be 

used for another battle is discussed. 
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111. 

SHORT HISTORY OF THE BATTLE OF KURSK 

1. City of Kursk 

The city of Kursk is the administrative center of Kursk Province in western 

Russia. It lies along the upper Seym River, about 280 miles south of Moscow. First 

mentioned in documents from 1032, Kursk is one of the oldest cities in Russia (Figure 2). 

Completely destroyed by the Tatars in 1240, Kursk was not rebuilt until 1586, when it 

became a military outpost protecting the advancing Russian colonization from Tatar 

HISTORY AND THE DATA OF THE BATTLE OF KURSK 

A. 

attack. The town, however, lost much of its importance at the beginning of the 18th 

century when the Russian border was moved farther south. In World War 11, fierce 

fighting took place around Kursk and the city was severely damaged (Figure 3). In July, 

1943, the Battle of Kursk, the largest tank battle in World War II, took place around the 

city of Kursk and ended in the defeat of the Germans. [Ref.13]. 

Figure 2. Location of city of Kursk shown in two different scaled maps. Arrows point to 
the plus signs showing the city’s exact location. [Ref. 14][Ref.15]. 

2. The history of the Battle of Kursk 

During World War 11, following the German defeat in Stalingrad, the military 

situation in the Eastern Front was much different than it was the year before. After 
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Figure 3. Monument to World War 11 dead in the city of Kursk, Russia [Ref.l3] 

Stalingrad, the Russians knew they were going to win the war, and the Germans strongly 

suspected they might lose the war. The war was in mid-course-the outcome might be 

predictable, but the Germans were far from beaten. The Germans were still mighty, 

powerful and dangerous. In the spring of 1943, the Eastern Front was dominated by a 

salient located to the north of city of Kharkov, to the south of city of Orel, and centered 

on the city of Kursk. The Kursk salient was 250 miles wide and 70 miles deep. The 

German plan was a two-front attack on the Kursk salient in a classic pincer operation. 

Operation Citadel was launched on July 5, 1943. On July 2, 1943, Adollf Hitler 

said, “This attack is of decisive importance. It must succeed, and it must do so rapidly 

and convincingly. It must secure for us the initiative for this spring and summer. The 

victory of Kursk must be a blazing torch to the world.” CRef.16: p. 1031. 

With the objectives of destroying Soviet forces and eliminating the salient by 

linking up the area around the city of Kursk, General Model’s 9a Army attacked from the 

north, while General Hoth’s 4* Panzer Army attacked from south of the salient. The 
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Soviets had enough time to prepare heavily fortified defense lines because of frequent 

German planning delays, and this advantage was a major setback for the Germans that 

contributed to their defeat in this battle. (See the map in Figure 4). 

General Model’s gfh Army’s attack from the north gained approximately 6 miles 

of ground into the enemy lines before being stopped on Day 4. Following Day 4, the 

German attack on the northern front was stalled. General Hoth’s 4th Panzer Army’s 

attack from the south was more successful. Following an initial gain of a few miles in the 

first two days of the battle, the 4‘h Panzer Army caused great damage and alarm among 

the Soviets. Despite their heavy losses, the Soviets were able to restrict German progress 

to a mere 25 miles by July 12. A German breakthrough attempt on July 12 resulted in the 

greatest single armored engagement in history near the town of Prokhorovka, when 

Germans ran into the advancing 5fh Guards Tank Army, which was the Soviet theater 

reserve (i.e., the biggest Soviet reserve force in the battlefield at the time). 

As night closed over ‘Prokhorovka, the. greatest armored battle in history had 

fought itself out. The field was strewn with more than 300 German tanks, including 70 of 

the huge Tigers, 88 SP guns and 300 trucks. Rotmisrov’s 5th Guards Tank Army had 

suffered a 50 percent loss of his 850 tanks and SP guns. The dazed Germans described 

the day as the Bluthmahle volt Belgorod (the bloodbath at Belgorod). Unable to gain a 

decisive victory, and stopped by Soviet reinforcements and counterattacks, the Germans 

drew back into defensive postures after this battle. [Ref. 16][Ref. 171. 

While the number af German tank losses cited in historical sources is arouad 300, 

this is different than the number of German tank losses given in the KDB, which is 98. 
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Hitler’s ordersto cancel Citadel on July 13, 1943 came as a shock to the German 

field commanders, and consequently, further attacks were limited in scope. The Soviets 

began their counterattack on the southern front on July 12, and regained all ground lost in 

the theater by July 23, 1943. 

Soviet military historians named the Battle of Kursk as “the Nazi Waterloo”. 

Following this Battle, the military situation in the Eastern Front got worse for the 

Germans. Detailed information about the military aspects of the Battle of Kursk can be 

found in [Ref. 161 and [Ref. 171. 

B. BATTLE OF KURSK DATA 

The data presented in KOSAVE (Kursk Operation Simulation and Validation 

Exercise) [Ref. 121 consists of mainly 6 parts: 

Personnel status and casualties. 

Ammunition status. 

Aircraft sortie status. 

1. 

The KDB in the KOSAVE report includes quantified data only on the southern 

front of the Kursk Battle. Results are not expressed in terms of specific weapon types, 

and weapons are aggregated into categories or classes for tractability. Human factors like 

fatigue, morale, caution, aggressiveness, regulating the pace and intensity of battle are not 

Units and combat posture status. 

Army weapons status and losses. 

Geographic unit positions and progress. 

Limitations and timeframe of the Kursk database 

23 
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quantified. The data given is for 15 days of battle, from 4 July 1943 through 18 July 

1943. [Ref.12]. 

2. 

The KDB accurately represents the status and structure of forces in the southern 

front of the actual World War 11 Battle of Kursk. The personnel casualty and system kill 

criteria used to categorize KDB casualty and weapon losses are sufficiently consistent 

with each other to allow meaningful reporting and comparisons between combatants. 

The use of interpolation techniques for gathering data between inconsistent reports in 

historical records create a complete set of daily report records in the KDB is reasonable. 

[Ref. 121. 

Assumptions made for Kursk database 

3. Phases of the battle 

With the start of the battle on July 4, 1943, German forces encountered heavy 

losses as they fell upon the fortified Soviet positions. The Germans were able to advance 

only 10 miles south and 30 miles north into the salient before the offensive stalled. The 

Soviets mounted their counterattack on July 12, and by July 18, had decisively won the 

battle. Soviets retained the initiative and used it to dominate the Eastern Front until the 

end of the war. In summary, the days of attack and defense are: 

Throughout the thesis, the Soviet forces are known as Blue forces German forces 

July 4 - July 11 = day 1- day 8 of the battle = Germans attack 

July 12 -July 18 = day 9- day15 of the battle = Soviets attack 

as Red forces. 
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C. METHODOLOGY USED FOR GATHERING DATA 

The critical data is extracted from the KOSAVE [Ref.l3] report, and aggregated 

depending on the model used in the study. This process was the most difficult and time- 

consuming process of the study. Extracting only that information needed from an 

immense database demands great attention to detail and methodology. The methodology 

of how the data is gathered for modeling purposes is explained in detail in the section 

concerning that specific model. The general outlines, which do not change for every 

model, are explained in III.C.1 and III.C.2. All data used in this study are for combat 

units represented in the KDB. Support units, such as bridging and logistics units, are 

excluded [Ref. 121. 

1. Manpower data 

Throughout the study, combat manpower is used for modeling the combat. The 

manpower presented as “On Hand” (OH) in the KOSAVE [Ref.12] report is summed up, 

including the headquarters units, and is assumed to be the number of combat forces. 

Thus the number of combat forces is assumed to represent all the combat forces available 

on hand. Combat manpower losses are killed, wounded, capturedhissing in action, and 

disease and nonbattle injuries. 

Table 6 shows the combat manpower data for the Soviet forces and Table 7 shows 

the combat manpower data for the German forces. 

2. Weapon systems data 

Throughout this study, the total number of weapon systems is used for modeling 
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purposes. The weapon systems presented as OH in the KOSAVE [Ref.l2] report are 

summed up, including the weapon systems of headquarter units, and assumed to be the 



total number weapon systems. The total number of weapon systems is assumed to 

represent all the weapon systems available on hand, including the weapon systems of 

headquarter units. 

wounded in action, CMIA denotes capturedmissing in action and DNBI denotes disease 
and nonbattle injuries. 

Table 7. German combat manpower data. KIA denotes killed in action, WIA denotes 
wounded in action, CMIA denotes capturedmissing in action and DNBI denotes disease 
and nonbattle injuries. 

26 



Weapon losses are destroyeuabandoned and damaged. In the example presented, 

considering a damaged weapon system as a loss is logical, because a damaged weapon 

system is considered to be a “temporary” loss and in a non-operational status. Therefore, 

damaged weapons are also included when calculating the losses of both sides. A damaged 

weapon system is treated as only a “temporary” loss, but the period of non-operational 

status can be long. Also, a damaged operational system will often function only with 

degraded effectiveness and efficiency. [Ref. 12: p.5- 131. 

Likewise, since a damaged weapon is damaged “in action” and is left out of the 

battle indefinitely due to its non-operational status until repaired, it will be considered as 

a loss. “Damaged” denotes number of items damaged in action. [Ref.l2: p. H-11. 

In order to prevent possible confusion for future analysts, the methodology used 

while gathering data for the classification of weapon systems will be offered. The type of 

each weapon system is listed below. Table 5-1 [Ref.12: p.5-31, Table 5-2 [Ref.l2: p.5-41, 

and the tables from the weapons lists in the Appendices of the KOSAVE 11 Study Report 

[Ref.l2] are used for purposes of classification. The results are as follows. 

a. Classification of Soviet weapon systems 

(1)  Tanks used in the study: ~ 

KV- 1 , KV-2 

M-3, MK-2/3, MK-4 

T-34, T-60, T-70 

(2) APCs used in the study: 

BA-64, BA-10 

Armtpt 
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Bren 

Artillery used in the study report: 

su-122 

122mm Gun 

122mm How 

152mm Gun 

(3) 

rn SU- 152 

203mm How 

b. Classijication of German weapon systems 

(1) Tanks used in the study: 

PzIII(al1 types), PzIV(al1 types), PzV(al1 types), 

PzVI(al1 types) 

T-34(Soviet), Pzmspt 

(2) APCs used in the study: 

AC4-6w, AC8w 

LHT, MHT, LHTspt, MHTspt 

rn Acspt, AC8w 75mm 

MHT75mmIG 

Pz I, Pz 11 

MHT Flame 

Artillery used in the study: 

75mm It IG 

105mm Gun, 150mm Gun 

(3) 
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0 

0 

87.6- How, 105mm How(towed and SP), 

150mm How, 152mm How, 155mm How, 210mm 

How 

Wespe (is a SP Artillery Gun with 105mm Light 

Field Howitzer) 

Hummel (is a 150mm SP Gun) 

0 

0 

Using the methodology explained above, the necessary data is gathered from the 

KOSAVE [Ref.12] report. The data for the tank, APC and the artillery weapon systems 

for the Soviet forces are given in Table 8, Table 9 and Table 10, consecutively. The data 

for the tank, APC and the artillery weapon systems for the German forces are given in 

Table 1 1, Table 12 and Table 13, consecutively. 

Table 8. Soviet tank data. Dst+Abnd denotes destroyed and abandoned tanks. OH 
denotes the on hand amount. 
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Table 9. Soviet APC data. Dst+Abnd denotes destroyed and abandoned APCs. OH 
denotes the on hand amount. 

Day I OHArtillery I Damaged Dst+Abnd Total Loss 
1 I 718 I 0 0 0 
2 
3 
4 

~ ~ 

705 2 11 13 
676 2 28 30 
66 1 7 8 15 

OH denotes the on hand amount. 

9 
10 
11 

30 

613 2 14 16 
606 3 7 10 
603 0 5 5 

12 
13 
14 

60 1 2 3 5 
600 0 3 3 
602 0 0 0 

15 I 591 
TOTAL 

0 4 4 
22 122 114 



Table 11. German tank data. Dst+Abnd denotes destroyed and abandoned tanks. OH 
denotes the on hand amount. 

Table 12. German APC data. Dst+Abnd denotes destroyed and abandoned APCs. OH 
denotes the on hand amount. 
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Table 13. German artillery data. Dst+Abnd denotes destroyed and abandoned artillery. 
OH denotes the on hand amount. 

D. COMPARISON OF MANPOWER AND WEAPON SYSTEMS 

1. Personnel statistics 

This section presents statistics on Soviet and German personnel strength and 

casualties during the campaign for the purpose of gaining insight about the Battle of 

Kursk. 

a. On handpersonnel 

Figure 5 shows daily OH personnel for both forces in the southern front of 

the Battle of Kursk, as represented in the KDB. The OH total includes all personnel, 

attached to all combat units (line units and headquarter units through Army), both 

committed and uncommitted. 
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b. Personnel casualties 

Figures 6 and 7 show daily and cumulative total casualties for both sides 

in the southern front of the Battle of Kursk. The total casualty includes all personnel, 

OH Personnel 

600000 1 
500000 - 

8 
400000 

$ 300000 

200000 

WJ k 
P) 

k 

2 
100000 

0 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Days 

0 Soviet OH Personnel 
German OH Personnel 

Figure 5. Daily total OH personnel for Soviet and German forces. Notice the steady 
decline in number of Soviet OH personnel until they counterattacked on July 12. 

. 

Comparison of Total Casualties 

25000 1 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Days 

ll Soviet Casulaties 
Geman Casualties 

Figure 6.  Daily total personnel casualty. Notice the great amount of casualties the 
Soviets had on July 12. Following this day, the battle lost its intensity for both sides. 
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both committed and uncommitted. When initial forces are considered, total casualties 

amounted to 23 percent of the initial Soviet force and 12 of the initial German force. 

Overall, the Soviets had three (3.24) casualties for every one German casualty. 
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cr 
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Cumulative Personnel Casulties 

3 - 0 .  * Soviet Casualties 
+German Casualties 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Days 

Figure 7. Comparison of daily cumulative number of total personnel casualties. There is 
a sharp increase in the number of Soviet casualties on July 12. 

For more detailed information about the type of casualties, see Appendix A Part 

A. 

2. Tank statistics 

This section presents statistics on Soviet and German tank weapon system 

strength and losses during the campaign for the purpose of gaining insight about the 

Battle of Kursk. 

a. On hand tanks 

Figure 8 shows daily OH tanks for both sides in the southern front of the 

Battle of Kursk, as represented in the KDB. The number of OH tanks includes all tanks, 

both committed and uncommitted. 
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Daily OH Tanks 
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Figure 8. Comparison of daily number of total OH tanks. The Battle of Kursk was a 
major tank battle. Notice the sharp decline in the number of tanks for both sides in the 
first half of the battle. 

b. Tank losses 

Figures 9 and 10 show daily and cumulative total tank losses, respectively, 

for both sides in the southern front of the Battle of Kursk. When initial forces are 

considered, total tank losses amounted to 91 (0.910) percent of the initial amount of 

Soviet tanks and 104 (1.046) percent of the initial amount of German tanks (i.e. the 

Germans lost more tanks than their initial number of tanks). Overall, the Soviets lost 

almost 2 (1.84) tanks for every German tank lost. 

3. Armored personnel carrier statistics 

This section presents statistics on Soviet and German APC weapon system 

strength and losses during the campaign for the purpose of gaining insight about the 

Battle of Kursk. 
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Figure 9. Comparison of daily number of tank losses. Notice the enormous number of 
Soviet tank loss on day 9. 
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Figure 10. Comparison of daily cumulative number of tank losses. The Soviets lost 
almost 25% of their OH tanks on day 9. 
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a. On hand armoredpersonnel carrier 

Figure 11 shows daily OH APC for both sides in the southern front of the 

Battle of Kursk, as represented in the KDB. The number of OH APCs includes all APC, 

both committed and uncommitted. 

Daily OH APC 
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Figure 11. Comparison of daily number of total OH APCs. The number of Soviet OH 
APCs showed a general decline throughout the battle. 

b. Armored personnel carrier losses- 

Figures 12 and 13 show daily and cumulative total APC losses, 

consecutively, for both sides in the southern front of the Battle of Kursk. When initial 

forces are considered, total APC losses amounted to 23 (22.89) percent of the initial 

amount of Soviet APCs and 16 (16.41) percent of the initial amount of German APCs. 

Overall, the Germans lost 1.64 APCs for every Soviet APC lost. 
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Figure 12. Comparison of daily number of APC losses. Notice the high number of 
German APC losses on day 7 and the high number of Soviet APC losses on day 9. Both 
sides did not lose any APCs on day 1. 
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Figure 13. Comparison of daily cumulative number of APC losses. Throughout the 
battle, Germans lost more APCs than the Soviets did. 
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4. Artillery statistics 

This section presents statistics on Soviet and German Artillery weapon system 

strength and losses during the campaign for the purpose of gaining insight about the 

Battle of Kursk. 

a. On hand artillery 

Figure 14 shows daily OH Artillery for both sides in the southern front of 

the Battle of Kursk, as represented in the KDB. The number of OH artillery includes all 

artillery, both committed and uncommitted. 

Daily OH Artillery 
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Figure 14. Comparison of daily number of total OH artillery. The number of German 
artillery was higher than the number of Soviet artillery throughout the battle. 

b. Artillery losses 

Figures 15 and 16 show daily and cumulative total artillery losses, 

consecutively, for both sides in the southern front of the Battle of Kursk. When initial 

forces are considered, total artillery losses amounted to 20 (0.200) percent of the initial 
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amount of Soviet artillery and 11 (0.106) percent of the initial amount of German 

artillery. Overall, the Soviets lost 1.13 artillery for every German artillery lost. 
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Figure 15. Comparison of daily number of artillery losses. German artillery loss was 
higher for the first few days of the battle. There were no Soviet losses on days 1 and 14. 

Cumulative Artillery Losses 

140 

g 120 
LI II 

3 100 

5 

4 
"0 80 

P 60 

f 40 

20 

0 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Days 

-German Artillery Loss 
2 -Ei--;Soviet Artillery Loss 

Figure 16. Comparison of daily cumulative number of artillery losses. Soviet artillery 
losses began to increase on the third day and remained higher throughout the battle. 
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For more detailed information about the type of losses for the tank, APC and 

artillery weapon systems, both for the Germans and Soviets, see Appendix A Part B, Part 

Days 

1 
2 

C and Part D, respectively. 

5. Air sorties 

The air sortie data given in the KOSAVE 

Soviet German 
air-air grnd att. recon. air-air grnd att. recon. evac. 
143 1 15 64 160 0 0 
1051 600 14 37 1 1942 74 67 

CRef.121 report consists of the number 

of air-air role sorties, ground attack role sorties, reconnaissance role sorties and 

evacuation role sorties (used solely by Germans). The information on air sorties is given 

in Table 14. 

Table 14. Number of air sorties for Soviets and Germans. Air-air denotes number of air- 
air role air sorties, grnd.att. denotes the number of ground attack role air sorties, recon. 
denotes the number of reconnaissance role air sorties and evac. denotes the number 
evacuation role air sorties. Evacuation role air sorties are used solely by Germans. 

Figure 16 shows a comparison of the number of each type of air sorties for both 

sides for the Battle of Kursk. 
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The number of air sorties 
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Figure 17. Number of each type of air sorties for Germans and Soviets. When the 
number of air-air role sorties are compared, the Soviets are superior to the Germans. 
When the number of ground attack role sorties are compared, Germans are superior to 
Soviets. 
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IV. 

1 

COMPARATIW AND EXPLORATIVE ANALYSIS OF BATTLE OF 

KURSK DATA 

510252 130 307365 800 

A. APPLICATION OF PREVIOUS STUDIES 

3 
4 
5 

1. Application of Bracken’s methodology 

498884 9423 297205 4302 
489175 1043 1 293960 34 14 
481947 9547 306659 2942 

This section analyzes the Battle of Kursk data following the same steps used by 

6 

Bracken in his study, and subsequently applies Bracken’s models to the Battle of Kursk 

470762 11836 303879 2953 

data. The Battle of Kursk data is formatted and presented in tables using the same 

7 
8 
9 
10 

methodology, explained in detail in Chapter 3 and formatting techniques as Bracken did 

460808 10770 302014 2040 
453126 7754 300050 2475 
4338 13 19422 298710 2612 
42335 1 10522 299369 205 1 

in his study. Tables 15 through 18 present data on combat manpower, APCs, tanks, and 

11 
12 
13 
14 
15 

artillery consecutively for days 1 - 15 of the Battle of Kursk, from June 4, 1943 to June 18, 

415254 8723 297395 2140 
419374 4076 296237 1322 
416666 2940 296426 1350 
415461 1217 296350 949 
413298 3260 295750 1054 

1943, for both the German and the Soviet forces. . I  

I 2 I 507698 I 8527 I 301341 I 6192 I 

I I I I I I 

Table 15. Combat manpower data for both sides. Casualties are killed, wounded, 
captured/missing in action, and disease and nonbattle injuries. Notice the low casualty 
rates for day 1, when the offensive had not really started. 
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Notice the high number of German APC losses on day 7 and the high number of Soviet 
APC losses on day 9. 

Table 17. Tank data for both sides. Killed are destroyed+abandoned and damaged. 
Notice the decrease in the number of tank losses after day 9. After day 9, the battle lost 
its intensity. 

Table 19 presents data on total forces, where the data from Tables 16-18 on 

combat manpower, APCs, tanks, and artillery are weighted by 1, 5,  40, and 20, 

respectively. Bracken [Ref.8] states in his study that, “The weights .given above are 
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9 
10 
11 
12 
13 
14 
15 

consistent with those of studies and models of the U.S. Army Concepts Analysis Agency. 

613 16 1194 12 
606 10 1187 7 
603 5 1184 5 
60 1 5 1183. 3 
600 3 1179 4 
602 0 1182 2 
591 4 1182 11 

Virtually all theater-level dynamic combat simulation models incorporate similar 

9 
10 
11 
12 
13 
14 
15 

weights, either as inputs or as decision parameters computed as the simulations progress”. 

480033 28492 36 1965 5112 
46927 1 13302 362229 349 1 
459604 1 1323 359820 3290 
463159 6201 357522 3047 
46245 1 3600 358946 1975 
461 186 2067 360245 1174 
457943 5160 360280 1639 

45 



a. Estimation of Parameters 

The parameters of the model are chosen to minimize the sum of squared 

residuals between the estimated and actual attrition. Using 15 days of the Battle of Kursk 

data, where the first 8 days the Germans attack and the last 7 days the Soviets attack, it is 

desired to minimize: 

8 8 

SSR = c(Bn -adR,PB,9)2 +x(fin -b(lld)B,PR,4)2 
n=l n=l 

n=9 n=9 

where n denotes the index for the 15 days of the battle. Using the data given in Table 17, 

the above procedure will give a different SSR value for each set of parameters, i.e. 
1 

combination of a, b, p, q and d values. It will evaluate SS(ai,bj,p,,q,,dm) for all 

combinations of i, j ,  k, Z and m where i=l, ..... 9, j=1, ..... 9, k=l,  ..... 21; Z=l, ..... 21, and 

m=1, ..... 9. 

The range of possibilities allowed for the parameters, for the model with 

the tactical parameter d will be: 

(a,, .......... a,) = (4x10-,, ........... 1.2~10-*), 

(b,, .......... b9) = (4~10-,, ........... 1.2~10-'), 

( p l  ........... pzl) = (0.0 ........... 2.0), 

(ql ........... qzl) = (0.0 ........... 2.0), 

(d, ........... d,) = (0.6 ........... 1.4) . 

These ranges were selected by Bracken himself. 
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There are a total of 9 x 9 ~ 2 1 ~ 2 1 ~ 9  = 321489 combinations of the estimated 

parameters. The algorithm searches all combinations and determines the parameters that 

minimize the sum of squared residuals for the data given in Table 17 as: 

ss ,b6 9 pz , q 2 1  7 d 4 )  = 8.65x lo8 

with the estimated parameters of: 

a, = 1.2~10-~,b,  = 9 ~ 1 0 - ~ , p ,  = O.l,qz, = 2.0,d4 = 0.9. 

Notice that the values of the a parameter and the q parameter are on the boundary. 

Now, considering the estimation of parameters for the model without the 

tactical parameter d, the ranges of possibilities allowed will be the same as those in the 

previous procedure, except for the tactical parameter d. There are now a total of 

9 x 9 ~ 2 1 ~ 2 1  = 35721 combinations of parameters. The algorithm searches all 

combinations and determines the parameters that minimize the sum of squared residuals 

for the data given in Table 17 as: 

SS(a , ,b , ,p , ,q , , )=  8.88x1O8 

with the estimated parameters of: 

a, = 1.2x1O-*,b6 = 9 ~ 1 0 - ~ , p ,  = 0.3,q2, = 1.8. 

Table 20 gives the sums of squared residuals for different values of d, and 

shows which a, b, p, q combinations gives the minimum sums of squared residuals for the 

various d values. Table 20 also shows the sensitivity of the p and q parameters to the d 

parameter and suggests that the sums of the squared residuals are similar within a wide 

range of parameter values. 
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b. R esu Its 

The best fitting results for the two models for the Battle of Kursk data are: 

Bracken’s model 1 with tactical parameter d, 

10 9 
9 10 

B = 1.2 x lo-* (- or - ) R O . * B ~ . O  

9 9 10 0.1 2.0 &=9x10- (- or -)B R 
10 9 (7) 

Table 20. SSR values for different d values. a and b values are varied between 8 x 
and 1.2 x 1 0-8 with increments of 1 x 1 0-9 , p and q values are varied between 0.0 and 2.0 
with increments of 0.1. The lowest SSR value is observed to be 8.65E+8 when d=0.9. 

Bracken’s model 3 without the tactical parameter d 

B = 1.2x10-8~0.3~1.8 (8) 

(9) R = 9x10-9~0.3~l.8 

The parameters found in equations IV.A. 1 .b.(6), IV.A. 1 .b.(7), 

IV.A.l.b.(8), IV.A.l.b.(9) suggest that one side’s losses are more a function of his own 

forces rather than a function of the opponent’s forces. This result is similar to what 

Fricker found in his study. There are boundaries set for the search of parameters that 
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give the best fit. There may be other sets of parameters that are out of the range of 

possibilities allowed by this method, and they may give a better fit for the data. The fact 

that some of the best fitting parameters are on the boundary supports this hypothesis. 

Figures 18 and 19 show the real and fitted values found using the model 

with the d parameter (i.e., using equations IV.A.l.b.(6) and IV.A.l.b.(7), for the Soviet 

and the German forces respectively). Figures 20 and 21 show the real and fitted values 

found using the model without the d parameter (i.e. using the formulas IV.A.l.b.(8) and 

IV.A.l.b.(9), for the Soviet and German forces, respectively). 

When the plots given in Figures 18 and 20 are examined, there appears to be three 

phases in the battle. It is also apparent that the battle lost its intensity after July 12. The 

model underestimates the casualties for the beginning part and the last part of the battle 

while overestimating the 8 days in a row between these two periods. This pattern 

suggests that fitting a model with change points may improve the fit to the data. 

For the model with the tactical parameter, p-q=-1.9, and for the model without the 

tactical parameter p-q=-1.5. These two results imply that the Battle of Kursk data does 

not fit any one of the basic Lanchester linear, square or logarithmic laws. 

For both cases, parameters a and b are significantly small and a > b. This 

suggests that individual German effectiveness was greater than individual Russian 

effectiveness. 

For the purpose of comparing a variety of models throughout this thesis, R2 

values are also computed together with the SSR for each model, where R2 is given as: 
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Figure 18. Fitted Soviet losses found by using Bracken’s model with parameter d, plotted 
versus real Soviet losses. Notice the three-phase pattern in the model’s fit to the battle 
data where the model overestimates the first two days and the last four days of the battle 
while underestimating the part between these two phases. 

Figure 19. Fitted German losses found by using Bracken’s model with parameter d, 
plotted versus real German losses. After the Soviets went into offense, the battle was not 
as intense. 
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Figure 20. Fitted Soviet losses found by using Bracken's model without parameter d, 
plotted versus real Soviet losses. Like the plot given in Figure 18, notice the three-phase 
pattern in the model's fit to the battle where the model overestimates the first two days 
and the last four days of the battle while underestimating the part between these two 
phases. 
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Figure 21. Fitted German losses found by using Bracken's model without parameter d, 
plotted versus real German losses. After the Soviets went into offense, the battle was not 
as intense. 
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where f , Y and y denote the estimated value, the real value and the mean value of the Y 

parameter (daily casualties) which are indexed by days. A greater R2 value indicates a 

better fit. It is possible to get a negative R2 value, implying that the fitted model yields 

Name 
of the a 
model 

Bracken 
Model 1 8.OE-9 1.OE-8 1 .o 1 .o 
Ardennes 
Bracken 
Model 3 8.OE-9 1.OE-8 1.3 0.7 
Ardennes 
Bracken 
Model 1 1.2E-8 9.OE-9 0.1 2.0 

Kursk 
Bracken 

Kursk 

b P 4 

Model 3 1.2E-8 9.OE-9 0.3 1.8 

worse results than using the average daily losses as an estimate. 

Table 21 shows the results for Bracken’s models as a whole. 

d SSR R2 

1.25 1.63E+7 0.2552 

1 .o 2.08E+8 0.0493 

0.9 8.65E+8 O.OOO6 

1 .o 8.88E+8 -0.0266 

Upon examination of the fits of Bracken’s models found in this section, it is clear 

that the battle did not start until the second day. Thus, the first day of data was dropped 

in fitting the data to the models in the rest of the thesis. More detailed explanation on this 

. approach is given in Section N.B. 1. 

Bracken’s Model 1 was refit using only the last 14 days of the data. The new 

parameter estimates are: a=1.2~10-* , b=l.OxlO-* , p=O.1, q=2.0, d=l.O. The SSR value 

dropped to 6 . 5 0 ~ 1 0 ~  and the R2 value increased to 0.0919. 
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2. Application of Fricker’s methodology 

In his study, Fricker presents an alternate way to structure the data that reflects the 

effects of both previous casualties and incremental reinforcements. His idea is based on 

the fact that the casualties occur according to the Lanchester equations that use the 

previous day’s force size, and for any given day, the previous day’s force size also 

depends on the transfer of troops in or out of the fighting force. 

Because of this phenomenon, Fricker uses the following algorithm in his study to 

estimate the original total for each resource. The algorithm works sequentially stepping 

through the whole battle from day 1 to the last day of the battle. By using this algorithm, 

local reserves ( X , )  or the addition of reinforcements ( X , )  are accounted for. The . 

algorithm first uses local reserves for any force increase before using reinforcements. As 

described in Fricker’s study [Ref.6], the algorithm is: 

For resource X :  

1 .  

2. Let t=l:  

Set X ,  ( t )  = X,,  ( t )  = 0 

If X ( t + l ) > X ( t ) - X ( t )  and X ,  =O,then 

x ,  (t)  = x ,  ( t )  + I: x ( t  + 1) - x ( t )  + x (t)] 

Else,if X ( t + l ) > X ( t ) - X ( t )  and X , ,  > X ( t + l ) - X ( t ) + X ( t ) ,  

then X , ( t )  = X l , ( t ) - [ X ( t + l ) - X ( t ) + X ( t ) l  

Else, if X ( t  + 1 )  > X ( t )  - X ( t )  and 

O <  X, , ( t )  < X ( t + l ) - X ( t ) + X ( t ) ,  then 
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- Else, if X (t  + 1) < X ( t )  - X ( t )  , then 

x, ( t )  = x, ( t )  + [ x ( t )  - x ( t )  - x ( t  + l)] 

3. If t < 31, increment t and go to step #2; else x ( 0 )  = X ( 0 )  + X , ( t )  

Then the new daily resources 2 ( t  + 1) are calculated as: 

2 ( t  + 1) = 2 ( t )  - X ( t )  t =o, ........., 31 (1 1) 

After the data is reformatted using the algorithm given above, Fricker applies 

linear regression to logarithmically transformed Lanchester equations for estimating the 

model parameters. After the logarithmic transformation, the basic Lanchester equations, 

given in I.B.( 1) and I.B.(2), will look like: 

In(B)=ln(a)+pIn(R)+qln(B)  (12) 

In (@ = In (b) + p  In (B)  + q In (R)  (13) 

Below is the Battle of Kursk data reformatted using Fricker’s approach. For 

reformatting the data, the algorithm, which is explained in detail above, is applied to the 

given Battle of Kursk data. 

Tables 22 and 23 present the raw manpower and weapon systems data, 

respectively. Tables 24 and 25 present the resulting reformatted Kursk data for 

manpower and weapon systems, respectively. Table 26 presents the aggregated force 

(except the first day) found by aggregating the data given in Tables 24 and 25. 

The air sortie data given in the KOSAVE study [Ref. 121 consists of the number of 

air-air role sorties, ground attack role sorties, reconnaissance role sorties and evacuation 

role sorties (solely used by Germans). Table 27 presents data on number of ground attack 

role sorties. Table 28 presents the aggregated force, after the air sortie data is added 
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(except the first day) by using the weight coefficient of 30, as used by Fricker, (i.e., the 

number of air sorties presented in Table 27 is multiplied by 30 aid added to the 

aggregated force levels given in Table 26 to get the data presented in Table 28). 

Day 
1 
2 
3 
4 
5 

Blue Available Blue Killed Red Available Red Killed 
5 10252 130 307365 800 
507698 8527 301341 6192 
498884 9423 297205 4302 
489 175 10431 293960 3414 
481947 9547 306659 2942 

6 
I 7 I 460808 I 10770 I 302014 I 2040 I 

470762 11836 I 303879 2953 

8 453126 7754 300050 2475 
L 

9 433813 19422 298710 2612 
10 42335 1 10522 299369 205 1 
11 415254 8723 297395 2140 

55 

12 
13 
14 
15 

419374 4076 296237 1322 
4 16666 2940 296426 1350 
415461 1217 296350 949 
4 13298 3260 295750 1054 



12 422477 4076 29937 1 
13 418401 2940 298049 
14 415461 1217 296699 
15 4 14244 3260 295750 

forces. 

1322 
1350 
949 
1054 
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Table 26. Data on aggregated forces that are reformatted without air sorties. Forces are 
combat manpower, APCs, Tanks and artillery weighted by 1 , 5,20 and 40, respectively. 

I 10 I 45 1 I 623 I 
11 1147 704 
12 54 1 369 
13 278 68 1 
14 122 336 
15 . 18 377 

Table 27. Data on number of ground attack role air sorties for German and Soviet forces. 
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Table 28. Data on aggregated forces reformatted with air sorties. Forces are combat 
manpower, APCs, tanks, artillery and number of ground attack role air sorties which are 
weighted by 1,5,20,40 and 30, respectively. 

a. Estimation of Parameters 

After reformatting the data, linear regression is applied to logarithmically 

transformed Lanchester equations to estimate the model parameters which are given in 

equations IV.A.2.( 12) and IV.A.2.(13). 

To estimate the parameters of the model, which minimize the sum of 

squared residuals, 14 days of data given in Table 24, Table 26 and S-PLUS Software are 

used. 

b. Results 

Results for the models are: 

Fricker’s model for the Kursk data without the air sorties, with tactical 

parameter d, with an SSR value of 5 . 9 4 ~  10’ and an R2 value of 0.1703 is: 

2 =3.77~10-’~(100 or -)R 79 0.WA B 63066 . 

79 100 

32 79 loo 0.0604 63066 fi =1.09~10-  (- or -)B R . 
100 79 
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Fricker's model for the Kursk data without the air sorties, and without the 

tactical parameter d, with an SSR value of 6.69~10' and an R2 value of 0.0657 is: 

&=1 .19~10-  R B ' (16) 

(17) 

32 3.6736 26934 

fi = 3 . ~ x 1 0 - 3 3 g 3 . 6 7 3 6 ~ 2 2 . 6 9 3 4  

It is significant that the resulting parameters are sensitive to the d 

parameter; after adding the d parameter, the p and q parameters change dramatically. 

The above parameters are the ones that give the smallest SSR value. It is 

possible to have smaller SSR values for the model with the tactical parameter d if the 

parameter p or q is allowed to have negative values. In staying consistent with Fricker's 

approach, negative exponent parameters are not considered in this section. Negative 

values are looked at in the conclusion section. 

Fricker's model for the Kursk data with the air soflies, with tactical 

parameter d, with an SSR value of 6 . 2 4 ~  10' and an R2 value of 0.1285 is: 

93 loo 0.0955 5 2207 R = 5 . 7 6 ~  (- or -)B R . 
100 93 

Fricker's model for the Kursk data with the air sorties, and without the 

tactical parameter d, with an SSR value of 7.18 x lo8 and an R2 value of -0.020 is: 

Like the models without the air sorties added, the above parameters are the 

ones that give the smallest SSR value. It is possible to have smaller SSR values for the 

model with the tactical parameter d if the parameter p or q is allowed to have negative 
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values. That is the algorithm of a force’s casualties decreases as one of the force 

strengths increases, and since this interpretation does not make sense, the negative values 

are not considered. 

Figures 22 and 23 show the fitted losses plotted versus real losses for the 

Soviet and the German forces, respectively, for Fricker’s model without the air sortie data 

added and using the d parameter. 

Figures 24 and 25 show fitted losses plotted versus real losses for the 

Soviet and the German forces, respectively, for Fricker’s model without the air sortie data 

added and without using the d parameter. 

Figures 26 and 27 show the fitted losses plotted versus real losses for the 

Soviet and the German forces, respectively, for Fricker’s model with the air sortie data 

added and using the d parameter. 

Figures 28 and 29 show the fitted losses plotted versus real losses for the 

Soviet and the German forces, respectively, for Fricker’s model with the air sortie data 

added and without using the d parameter. 

When theR2 values above, which are found by using Fricker’s methodology, are 

compared, it is seen that adding the air sortie data improves the fit for the Battle of Kursk 

data. Using the tactical parameter does not improve the fit to the Battle of Kursk data for 

the model without the air sorties. On the contrary, using the tactical parameter improves 

the fit to the Battle of Kursk data for the model with the air sorties. 

The d parameter is found to be 0.79 and 0.93 for the models without the air sorties 

and with the air sorties, consecutively. This result implies a defender advantage/attacker 
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Fitted vs. Real Soviet Losses for Fricker’s model without sortie 
with d 

30000 

25000 
II) 

8 
g 20000 

s 
E 10000 

il 
cr 

15000 

5000 

0 

z 

? 

--8- Real Soviet Losses 
+Fitted Soviet Losses 

I I I I I I I I I I I I I ,  

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Days 

Figure 22. Fitted losses plotted versus real losses for the Soviet forces for Fricker’s model 
without the air sortie data added and using the d parameter. Notice the pattern where the 
model overestimates the initial and the last part of the battle, while underestimating the 
part in between. 

12000 

10000 

g 8000 
4 

6000 

4000 

2000 

0 

II) 

8 

h 

L 
2 
z 

Fitted vs. Real German Losses for Fricker’s model without air 
sorties with d 

0 
L 

-0.- Real German Losses 
+Fitted German Losses 

1 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Days 

Figure 23. Fitted losses plotted versus real forces for the German forces for Fricker’s 
model without the air sortie data added and using the d parameter. 
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Figure 24. Fitted losses plotted versus real Soviet losses for the Soviet forces for 
Fricker’s model without the air sortie data added andwithout using the d parameter. The 
same pattern in which the model overhnderestimates the battle in three distinctive phases 
is also observable in this plot. 
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Figure 25. Fitted losses plotted versus real Geman losses for the German forces for 
Fricker’s model without the air sortie data added and without using the d parameter. 
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Figure 26. Fitted losses plotted versus real losses for Soviet forces for Fricker’s model 
with the air sortie data added and using the d parameter. 
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Figure 27. Fitted losses plotted versus real losses for German forces for Fricker’s model 
with the air sortie data added and using the d parameter. 
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Figure 28. Fitted losses plotted versus real losses for the Soviet forces for Fricker’s model 
with the air sortie data added and without using the d parameter. 
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Figure 29. Fitted losses plotted versus real losses for the German forces for Fricker’s 
model with the air sortie data added and without using the d parameter. 
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disadvantage. In both cases, when the tactical parameter is used, w b ,  and when tactical 

parameter is not used, a>b. Again, in both cases, the a and b parameters are very small. 

When the plots given in Figures 22, 24,26 and 28 are examined, there appears to 

be three phases in the battle. It is also apparent that the battle lost its intensity after July 

12. Notice the pattern where the model overestimates the beginning part and the last part 

of the battle while underestimating the 8 days in a row between these two parts. This 

pattern suggests that fitting a model with change points may improve the model’s fit to 

the data. Also, the model provides a much better fit for the German side. 

In equations IV.A.2.b.(14), IV.A.2.b.(15), IV.A.2.b.(18), N.A.2.b.(19) and 

N.A.2.b.(20), IV.A.2.b.(21) the q parameter is greater than the p parameter suggesting 

that one side’s loss is more a function of his own forces rather than his opponent’s forces. 

This finding is similar to what Fricker observed in his study. 

In equations IV.A.2.b.(16), IV.A.2.b.(17) the p parameter is greater than the q 

parameter, which suggest that one side’s loss is more a function of his opponent’s forces 

rather than his own forces. This finding is different from Fricker’s findings. 

It is significant that using the tactical parameter d does not improve the fit for the 

This may be model without the air sortie data when SSR values are compared. 

interpreted as using the logarithmically transformed equations does not necessarily gives 

the best fit in the original form. Table 29 shows the results for Fricker’s models as a 

whole for both the Ardennes and the Kursk data. The negative R2 values found here 

imply that the fitted model yields worse results than using the average daily losses as an 

estimate. This finding was communicated with Fricker and it was concluded that the 

reason for the negative R2 values are the combination of extreme sensitivity of the 

I 

~ 
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results to the precision of parameters and using the rounded off values given in Fricker’s 

study [Ref.6]. For example, for the first model given in Table 29, changing the q 

parameter from 5.0 to 5.02 increases the R2 value from -0.7938 to 0.1904, and changing 

the q parameter from 5.0 to 5.03 increases the R2 value to 0.4581. 

Name 
of the 
model 

Ardennes 

with d 
Ardennes 
w sorties 

with d 
Kursk 

wlo sorties 
with d 
Kursk 

wlo sorties 
wlo d 
Kursk 

with sorties 
with d 
Kursk 

wlo d 

wlo sorties 

with sorties 

b P 4 d SSR R2 a 

4.7E-27 3.1E-26 0 5 0.8093 1.57E+8 -0.7938 

2.7E-24 1.6E-23 0 4.6 0.7971 2.64E+7 0.5256 

3.76E-33 1.09E-32 0.0604 6.3066 0.79 5.94E+8 0.1703 

1.61E-33 3.44E-33 3.6736 2.6934 2.16E+9 0.0657 

3.35E-27 5.76E-27 0.0955 5.2207 0.93 6.23E+8 0.1294 

5.01E-27 3.85E-27 1.4983 3.8179 7.1 6E+8 -0.0222 

B. EXPLORATORY ANALYSIS OF BATTLE OF KURSK DATA 

The fighting on the first day of the battle was sporadic. The extremely low 

casualty levels represent large outliers; this, including the data of the first day could 

drastically effect the outcome of the analysis. Thus, the first day of data was dropped in 

fitting the data to the models. This kind of ,approach is also supported by the historical 

account of the Battle of Kursk, because the main offensive did not really begin until July 

5, the second day of the battle. Even if there are otherdays on which large outliers are 

observed-like July 12-these outliers will not be left out of the analysis as they are a 
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result of the fighting during the Kursk offensive. Therefore, this study will fit only the 

last 14 days of the aggregated data given in Table 14, excluding the first day. All the 

results found from the models are summarized as a whole in Table 42 in Section N.B. 10. 

1. The scalar aggregation models 

Two numerical methods are used to fit parameters to the scalar model of 

Lanchester equations. One is linear regression and the other is robust LTS regression. 

Robust LTS regression method performs least-trimmed squares regression [Ref. 171. 

When the given data in hand contains significant outliers as in our case, robust regression 

models are useful for fitting linear relationships by discounting outlying data. Both 

methods minimize the sum of squared residual (SSR) error resulting from the model to. 

the actual data. 

a. Linear regression 

Linear regression is used for fitting parameters to the logarithmically 

transformed Lanchester equations. The original form of Lanchester equations are given 

in equations I.A.( 1) and I.A.(2). By taking the logarithm of each side of the equations, 

we get: 

log ( B )  = log(a) + p log(R) + q lo@) 

log (h) = log(@ + p lo@) + q log@) 

(22) 

(23) 

Only the last 14 days of the data given in Table 19 are used for performing 

the linear regression analysis. 

b. 

Results of the linear regression model which gives an SSR value of 

Results of the linear regression model 

6.36x108and an R2value of 0.1126 are: 
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B = 1 -06 1 0 - 4 7  ~ 5 . 7 4 7 5 ~ 3 . 3 3 5 6  

-48 5 7 4 7 5 ~ 3 . 3 3 5 6  k = 1 . 9 0 ~ 1 0  B 

c. Robust LTS regression 

We will use Robust LTS regression for fitting parameters to the 

Lanchester equations. The original form of Lanchester equations are given in equations 

I.A.(l) and I.A.(2). By taking the log of each side of the equations, we obtain the 

equations given in IV.A.2.(22) and IV.A.2(23). Only the last 14 days of the data given in 

Table 19 are used for doing the robust LTS regression analysis. 

' 

d. 

Results for the robust LTS regression model which gives an SSR value of 

Results of the robust LTS regression 

5 . 5 4 ~  lo8 and an R2 value of 0.2262 are: 

(26) 

(27) 

-40 6.0843 17312 B = 2 . 2 7 ~ 1 0  R B .  

fi = ] . 8 4 x 1 0 - 4 1 ~ 6 . 0 8 4 3 ~ I . 7 3 1 2  

Figures 30 and 31 show fitted losses plotted versus real losses for the Soviet and 

the German forces, respectively, for the linear regression model. Figures 31 and 32 show 

fitted losses plotted versus real losses for the Soviet and the German forces, respectively, 

for the robust LTS regression model. 

When the SSR values found by using linear regression and robust LTS regression 

techniques are compared, it is observed that using the robust LTS regression technique 

improves the fit for the Battle of Kursk data. The SSR value, which is found by using the 

robust LTS regression method, is the smallest for the Kursk data so far. 

It should be noted that even if the robust LTS regression technique accounts for 

the outliers when finding the parameters that minimize the SSR for a given model, the 
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SSR values computed here include the SSR of the outliers. In other words, when the 

parameters computed by the robust LTS regression technique are used in the analysis, the 
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Figure 30. Fitted losses plotted versus real losses for Soviet forces for the linear 
regression model. The significant outlier on day 8 influences the fit dramatically. 
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Figure 3 1. Fitted losses plotted versus real losses for German forces for the robust LTS 
regression model. The data for the German side, with no significant outliers, gives a 
better fit for the model. 
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Figure 32. Fitted losses plotted versus real losses for Soviet forces for the robust LTS I , 
regression model. The significant outlier on day 8 influences the fit dramatically. 
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Figure 33. Fitted losses plotted versus real losses for the German forces for the robust 
LTS regression model. The data for the German side, with no significant outliers, gives a 
better fit for the model. 

70 



outliers are not discounted. They are included for the purpose of computing the SSR 

value. 

When the p and q parameters are compared it is noticed that the p parameter is 

greater than the q parameter, suggesting that one side’s loss is more a function of his 

opponent’s forces rather than his own forces. This interpretation is different from what 

Fricker found in his study. In both cases, a and b parameters are significantly small, and 

a > b .  

When the plots given in Figures 30 and 32 are examined, there appears to be three 

distinct phases in the battle. It is also apparent that the battle lost its intensity after July 

12. After the Soviets went into offense, the battle was not as intense. There is a clear 

pattern in Figure 30 where the model overestimates the beginning part and the last part of 

the battle, while underestimating the attrition for eight days in a row between these two 

periods. 

The pattern seen in Figures 30 and 32 suggests that fitting a model with change 

points may improve the model’s fit to the data. Likewise, leaving out the data given for 

July 12 when the most intense fighting of the battle took place, it may also be possible to 

increase the fit to the data, an approach which will be covered in upcoming sections. 

Also, the model provides a much better fit for the German side. 

2. Including air sortie data 

As mentioned in IV.A.2, the air sortie data given in the KOSAVE study [Ref.l2] 

consists of the numbel of air-air role sorties, ground attack role sorties, reconnaissance 

role sorties and evacuation role sorties (which are solely used by Germans). For 

aggregating the air sortie data into total aggregated number of forces, we will use the data 
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given in Table 27 that presents data on the number of ground attack role sorties. 

However, the aggregated data will be different than that given in Table 28, because the 

data in Table 28 is calculated using the reformatted data by applying Fricker's algorithm. 

The data, which we will be using in this section, is given in Table 30 which 

presents the total number of aggregated forces, including the air data by weighing each 
.. 

sortie by 30. In other words, the number of air sorties presented in Table 27 is multiplied 

by 30 and added onto the aggregated force levels given in Table 19 in order to compute 

the data presented in Table 30. 

Two regression methods, presented in N.B. 1 are used for fitting the data given in 

Table 30, namely, linear regression and robust LTS regression. 

8 498 123 28492 375765 5112 
9 487961 13302 375759 349 1 
10 480724 11323 394230 3290 
1 1  474229 620 1 373752 3047 
12 48288 1 3600 367286 1975 
13 47 1266 2067 363905 1174 
14 469253 5160 360820 1639 

Table 30. Data on aggregated forces. Forces are combat manpower, APCs, tanks, artillery 
and number of ground-attack role sorties which are weighted by 1, 5 ,  20, 40 and 30, 
respectively. 

a. 

Results for the linear regression model, which gives an SSR value of 

Results of linear regression model 

6.85 x 10' and an R2 value of 0.0433, are: 
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B = 1 . 4 0 x 1 0 - 3 5 ~ 5 . 1 3 2 3 ~ 1 . 7 7 9 3  

fi = 2 . 0 9 ~  10-36~5.1323~1.7793 

b. 

Results for the robust LTS regression model, which gives an SSR value of 

Results of robust LTS regression model 

7.58 x lo8 and an R2 value of -0.0579, are: 

(30) 

(31) 

B = 1 -2 1 10-38 ~ 5 . 3 6 9 1 ~ 2 . 0 8 8 3  

fi = 1-75 10-39 B5 3691~2.0883 

Figures 34 and 35 show the fitted losses plotted versus real losses for the Soviet 

and the German forces respectively, for the linear regression model with the air sortie 

data added. 

Figures 36 and 37 show the fitted losses plotted versus real losses for the Soviet 

and the German forces respectively, for the robust LTS regression model with the air 

sortie data added. 

Following the aggregation of the data using the number of air sorties, it is not 

appropriate to compare the models using the SSR values because, the increase in the SSR 

value may be a natural result of adding the air sortie data. For this reason, R2 values will 

be used to compare the fit of the model. 

Upon the examination of the R2 values above, which are found by applying linear 

regression and robust LTS regression techniques to the logarithmically transformed data 

that includes air sorties, one can determine that considering the air sorties data does not 

improve the model’s fit to the data. The R2values, which are found by using the linear 

regression and the robust LTS regression technique, are both lower than the R2 values 
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Figure 34. Fitted losses plotted versus real losses for Soviet forces for the linear 
regression model with the air sortie data added. The significant outlier on day 8 
influences the fit dramatically. The same pattern where the model overhnderestimates 
the battle in three distinctive phases is observable in this plot too. 
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Figure 35. Fitted losses plotted versus real losses for German forces for the linear 
regression model with the air sortie data added. The data for the German side, with no 
significant outliers, gives a better fit for the model. 
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Fitted vs. Real Soviet Losses for the Robust LTS 
Regression Model with air sortie 
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Figure 36:Fitted losses plotted versus real losses for the Soviet forces for the robust LTS 
regression model with the air sortie data added. The significant outlier on day 8 
influences the fit dramatically. The same pattern where the model over/underestimates 
the battle in three distinctive phases is observable in this plot too. 
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Figure 37. Fitted losses plotted versus real losses for the German forces for the robust 
LTS regression model with the air sortie data added The data for the German side, with 
no significant outliers, gives a better fit for the model. 
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found in Section 1V.B. 1 which did not include the air sortie data. While the previous best 

fit found was 0.2262 in section IV.B.l.d, after the air sortie data is added, R2 is found to 

be 0.0433 and -0.0579. Adding air sortie data did not improve model’s fit to the data. 

For both cases, the a and b parameters are significantly small and a > b. This 

suggests that individual German effectiveness was greater than individual Russian 

effectiveness. 

When the p and q parameters are compared it is observed that the p parameter is 

greater than the q parameter, indicating that one side’s losses are more a function of his 

opponent’s forces rather than being a function of his own forces. This result is different 

from what Fricker found in his study. 

When the plots given in Figures 34 and 36 are examined, the resulting pattern is 

similar to the one seen in the previous section. This pattern again suggests that fitting a 

model with change points may improve the model’s fit to the data. Again, similar to the 

previous results, it may be possible to increase the fit to the data by leaving out the data 

given for July 12. 

3. 

By historical account, the German forces generally maintained an offensive 

posture (this is not valid for all units on the battlefield) through July 12, when the Soviets 

were able to gain the initiative and launch their counter-offensive. Bracken CRef.131 

introduced an additional parameter d to the standard Lanchester equations (I.B.(l) and 

I.B.(2)), called a tactical parameter, to account for a battle in which defense and offense 

switch during the course of the campaign. 

Taking into account the change in offensive/defensive roles 
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With d for the defender and (I/d) for the attacker, the Lanchester equations are 

modified to accept the tactical parameter d and are given as: 

B = (d or I/d) aR Bq 

R = (Ud or d)bBPRq 

(32) 

(33) 

The logarithmically transformed Lanchester equations which are modified to 

accept the tactical parameter (for the days that red is the attacker), are given as: 

log(B/d) = log(a) + plog(R) + qlog(B) 

log(Z?/(l/d)) = log(b) + plog(B) + qlog(R) 

(34) 

(35) 

Linear regression and robust LTS regression models are used to estimate the 

model parameters represented above in IV.B.3.(34) and N.B.3435). 

a. Linear regression 

The last 14 days of the aggregated data given in Table 14 in section 

N.A.1 and the S-PLUS software are used to estimate the model's parameters, which 

minimize the sum of squared residuals of the actual and estimated attrition. 

In order to iterate for different d values, linear regression is fit for multiple 

d values, and then the d value that gives the minimum SSR is selected. The value of 

tactical parameter d is varied between 0.0 and 9.0 in increments of 0.01. 

b. 

Results for the linear regression model which gives an SSR value of 

Results of the linear regression model 

6.24 x lo8 and a tactical parameter value of 1.17 and an R2 value of 0.1295 are: 

or 1.17) 1.88 x R7.5038B'.5793 (36) 
B = ( -  1 

1.17 

1 -48 7.5038 15793 d =(1.17 or -)1.07xlO B R . 
1.17 
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c. Robust LTS regression 

For estimating the parameters, which minimize the sum of squared 

residuals of the actual and estimated attirition, the last 14 days of the aggregated data 

given in Table 5, in Section IV.A.l and the S-PLUS software are used. 

d. 

Results for the robust LTS regression model which gives an SSR value of 

Results of the robust LTS regression 

554x10' and a tactical parameter value of 1.00 and an R2 value of 0.2262 are: 

- 1  -40 6.0843 1 7312 B = (- or 1.0)2.27xlO R B .  
1 .o 

Figures 38 and 39 shows the fitted losses plotted versus real losses of the Soviet 

and the German forces, respectively, for the linear regression model. 

Figures 40 and 41 shows the fitted losses plotted versus real losses of the Soviet 

and the German forces, respectively, for the robust LTS regression model. 

When the SSR values above are examined, it is apparent that taking into 

consideration the change in offensive/defensive roles improves the fit. The SSR values, 

which are found by using the linear regression and robust LTS regression technique, are 

both less than or equal to the SSR values found in section IV.B.l, which did not consider 

the change in offensive/defensive roles. The best fit found in section N.B.l was 

6 . 3 6 ~  lo8 for the linear regression modd, after the d parameter is included in the model, 

SSR value is found to be 6.24x108, suggesting only a 2% improvement in fit. But, this 

is not the case for robust LTS regression model. While the previous result for robust LTS 

regression model was found to be 5 . 5 4 ~ 1 0 ~  in Section N.B.l.d, after the change in 
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Figure 38. Fitted losses plotted versus real losses for the Soviet forces for the linear. 
regression model with the tactical parameter d. The significant outlier on day 8 influences 
the fit dramatically. 
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Figure 39. Fitted losses plotted versus real losses for the German forces for the linear 
regression model with the tactical parameter d. The data for the German side, with no 
significant outliers gives a better fit for the model. 
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Fitted vs. Real Soviet Losses for the Robust LTS model with d 
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Figure 40. Fitted losses plotted versus Real losses for the Soviet forces for the robust LTS 
model with the tactical parameter d. 

12000 

10000 

8 8000 

VJ 
8 

. .  
cr 
L 6000 

5 4000 

z 
2000 

Fitted vs. Real German Losses for the Robust LTS Regression 
with d 

0 1  I I 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Days 

Figure 41. Fitted losses plotted versus Real losses for the German forces for the robust 
LTS model with the tactical parameter d. 
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offensive/defensive roles is taken into account, it is again found to b e 5 . 5 4 ~  10’. In other 

words, taking into account the change in offensive/defensive roles does not change the fit 

for the robust LTS regression model. 

Following a search of the tactical parameter d value, performed in increments of 

0.01, 1.0 is found to be the optimal d value that gives the smallest SSR value for the 

robust LTS regression model. This result indicates that in the context of the Battle of 

Kursk, one side’s status as the defender or attacker does not affect the number of losses 

which either of the sides is going to suffer. This reasoning may not intuitively make 

sense, but further analysis made in the following sections will provide additional 

rationale. 

For both cases, the a and b parameters are significantly small, and a>b. This 

suggests that individual German effectiveness is greater than individual Russian 

effectiveness . 

The d parameter with a value of 1.17 signifies that the attacker has an advantage. 

This result is somewhat unexpected and implies that it is the attacker who will suffer 

fewer casualties. (The d parameter is investigated more closely in upcoming sections). 

When p and q parameters are compared, it is observed that the p parameter is 

greater than the q parameter, suggesting that one side’s losses are more a function of the 

opponent’s forces rather than a function of its own forces. This finding is different from 

what Fricker found in his study. 

When the plots given in Figures 38 through 41 are examined, the pattern seen in 

these plots are similar to the results observed in the previous section. This pattern, again, 
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suggests that fitting a model with change points may improve the fit and again the models 

fit better for the Germans. 

4. 

The findings in the previous sections suggest that fitting models with different d 

values for separate phases of the battle might improve the fit to the data and this section 

focuses on that aspect of our findings and will analyze the battle in separate time periods. 

The tactical parameter found in the previous section, d=1.17, is similar to 

Bracken’s [Ref31 findings which also implied an attacker advantage. Since d>l, 

implying that if Blue is defending, then blue has a defender disadvantage, and if red is 

attacking when d>l, then red has an attacker advantage. This intuitively does not make 

much sense because the defender is usually dug in, and the attacker is out in the open and 

easily detected by the enemy. It should be the defender who has the advantage rather 

than the attacker when attrition rates are considered. In this situation, it may not make 

sense to have only one d for the whole campaign. 

Considering the tactical parameter d of the campaign 

A closer look at the battle data may find a better fit for the model. The very first 

day of the battle, the Germans run into the heavily fortified Soviet positions and 

minefields and have a very rough day. This first day, the Germans obviously have an 

attacker disadvantage, while the Russians have a defender advantage. July 6, 1943 is the 

day when things begin to run smoothly for the Germans, as they are not up against a 

fortified defense, dense barriers and minefields. This scenario continues until July 12, 

when the Soviets launch their counter-attack. Even on that day, the Germans were not 

aware of the Soviets’ intention to make such a move [Ref.16]. July 12, 1943 can be 

viewed as the day, when neither side was a defender. Both sides attacked each other 
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resulting in the bloodiest day of the campaign. The Soviets especially suffered heavy 

casualties. From July 13 on, the Soviets continued their counter-attacks until they 

recaptured the ground they had lost. During this time Germans use a hasty defense. 

This type of approach is also justified by the historical account of the battle, 

which is explained in detail in [Ref.l5] and CRef.161. As a result of the clearly defined 

phases of the battle, the data will be handled in four different time periods. A different d 

value will be used for each part of the campaign (i.e. there will be four different d 

parameters for the campaign). A weakness of this approach is the fact that it requires 

fitting 8 parameters with 14 days of data. 

First period July 5: Germans attack heavily fortified Soviet positions. 

Second period July 6-July 1 1: Germans continue a more organized attack. 

Third period July 12: Soviets counterattack when Germans were 

continuing their attack. 

Fourth period July 13-July 18: Soviets attack and Germans make a hasty 

defense). 

A different d parameter is fit to each of the four parts of the campaign using the 

same a, b, p ,  q parameters shown in equations IV.B.3.b.(34) and N.B.3.b.(35) for the 

data in Table 19. This will be referred to as Model 1 for this section. The results are as 

follows. 

The first period had the smallest SSR value when d=O.9 1. The second period had 

tht: smallest SSR value when d=1.24. The third period is considered to have the tactical 

parameter d=l because there was no defender during the third period. The fourth period 

had the smallest SSR value when d=l. 17. 
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The interpretation of the d values found is that the d value of 0.91 for the first 

period (i.e. the defender having the advantage), definitely makes sense because the 

Germans were attacking against the heavily fortified Soviet positions, and as a result, the 

Soviets inflicted heavier casualties on the Germans than the Germans did on the Soviets. 

By intuition, it is likely that Soviets will continue to have the defender advantage 

through the second period as well. But this is not the case, since d=1.24, meaning that 

even if it were the Germans attacking they were more advantageous than the Soviets who 

were in their defensive postures. That is, it was the Soviets who were losing more. 

The third period is considered to be the day that neither side is defending, so no 

interpretation is needed. 

The fourth period has a d value of 1.17, which again indicates an attacker 

advantage. The value 1.17 indicates a slightly smaller attacker advantage than the 

Germans had during the second period. The Soviets had an attacker advantage during the 

fourth period, but not one so great as the Germans had during the second period. 

The SSR values of the first, second, third and fourth periods mentioned above are 

1.93xlO7, 3.70~10’ , 3.83x108, 9 . 5 3 ~ 1 0 ~  , respectively. The overall sum of the SSR 

values is 5 . 3 4 ~ 1 0 ~  for the whole campaign, which gives a 4% better fit than the previous 

results. Figures 42 and 43 show the fitted versus real losses for the Soviet and German 

forces, respectively, for Model 1. 

Overall, these results interpreted above indicate that for the Battle of Kursk, other 

than on the first day, it was always advantageous to be the attacker. 
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Figure 42. Fitted losses plotted versus real losses for the Soviet forces for model 1, which 
has four periods, and d=l for the 8th day of the battle. 
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Figure 43. Fitted losses plotted versus real losses for the German forces for model 1, 
which has four periods, and d=l for the 8‘h day of the battle. 
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One could argue that the third period, having no tactical parameter, does not make 

sense. If the third period is considered to have a tactical parameter of its own that is 

independent from the others, assuming that it was the day on which Soviets attacked, it is 

found to be d=0.32. This result obviously indicates an absolute defender advantage for 

the Germans and attacker disadvantage for the Russians. This will be referred as Model 2 

for this section. In such an approach, the SSR value for the third period will be 1.78 x lo7 

giving an overall SSR value of 1.69~10'- almost a 70% better fit than the result found 

for Model 1 above. This is a much better fit because the biggest outlier now has its own 

unique d parameter, and is essentialy removed. This is also a clear indication of the 

tremendous effect of one outlier on the fit of the models. Figures 44 and 45 show the- 

fitted versus real losses for the Soviet and German forces, respectively for Model 2. 

Based on the results above, it can be concluded that considering the campaign in 

four different parts definitely helps to find a better fit. So, for combat modeling purposes, 

the tactical parameter values should depend on the situation of the battle. 

Another approach is to leave out only the data for July 12, and not to divide the 

campaign into four periods, (i.e. considering it as a whole, using the same a, b, p ,  q 

parameters and fitting a new d parameter under these given circumstances). This model 

is referred as Model 3 for this section. By following this methodology, d is found to be 

1.14 with an SSR value of 1.89~10'  which is a 12% worse fit than Model 2, but still a 

65% better fit than Model 1. In Model 2, a different d parameter for period 3 essentially 

removed the outlier. 

Figures 46 and 47 show the fitted versus real losses for the Soviet and German 

forces, respectively, for Model 3. 
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Figure 44. Fitted losses plotted versus real losses for the Soviet forces for model 2, which 
has four periods, and the Soviets as the attacker for the gfh day of the battle. 
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Figure 45. Fitted losses plotted versus real losses for the German forces for model 2, 
which has four periods, and the Soviets as the attacker for the 8th day of the battle. 
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Figure 46. Fitted losses plotted versus real losses for the Soviet forces for Model 3 which 
leaves out the 8'h day of the battle, does not divide the campaign into 4 periods, uses the 
same parameters as Model 1 and Model 2 and fits a new d parameter. 
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Figure 47. Fitted losses plotted versus real losses for the German forces for Model 3 
which leaves out the gth day of the battle, does not divide the campaign into 4 periods, 
uses the same parameters as Model 1 and Model 2 and fits a new d parameter. 
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This results in the question; What if a whole new regression analysis is done to 

the data, leaving out the eighth day? This model is referred to as Model 4 and by doing 

so, the resulting model with an SSR value of 1.90 x lo8 is found to be: 

(40) 

(41) 

= 1.85 10-5' ~ 9 . 6 8 5 3 ~ 0 . 1 4 5 8  

53 9.6853 01458 k = 3 . 5 6 ~ 1 0 -  B R '  

These results are far better than those found in previous sections that contained 

the outlier. But, they do not however, provide a better fit than the ones found in this 

section which are adjusted for the outlier. Also, it is significant that there is a big 

difference in the size of the p and q parameters. Figures 48 and 49 show the fitted versus 

real losses for the Soviet and German forces, respectively, for model 4. 

Handling the data in parts and fitting different tactical parameters definitely 

improves the fits of all models given in this section. This result is consistent with what 

Hartley and Helmbold found in their studies [Ref. lo]. 

Model 2 with an SSR value of 1.69~10' has the smallest SSR value thus far. 

This result largely depends on considering July 12, which is the largest outlier apart from 

the rest of the data, causing a considerable decrease from the previous lowest SSR value 

of 5 . 5 4 ~ 1 0 ~  to a much lower SSR value of 1 . 6 9 ~ 1 0 ~ .  

Model 3 finds d to be 1.14, which means an attacker advantage/defender 

disadvantage. But, this circumstance again largely depends on still using the same 

parameters that we had when the tactical parameter d is 1.17. Once more, this d value 

indicates an attacker advantage/defender disadvantage situation. 

In Model 4, leaving even only one day out (the largest outlier), improves the 

model's fit tremendously when compared to the previous SSR values. 
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Fitted vs. Real Soviet losses for Model 4 
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Figure 48. Fitted losses plotted versus real losses for the Soviet forces for model 4, which 
leaves out the 8'h day of the battle, does not divide the campaign into 4 periods, fits a 
whole new regression model. 
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Figure 49. Fitted losses plotted versus real losses for the German forces for model 4, 
which leaves out the 8'h day of the battle, does not divide the campaign into 4 periods, fits 
a whole new regression model. 
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For all models, a and b parameters are significantly small and a>b. This result 

suggests that individual German effectiveness was greater than individual Russian 

effectiveness . 

When the p and 4 parameters are compared, it is observed that the p parameter is 

greater than the q parameter suggesting that one side's losses are more a function of his 

own forces rather than being a function of the opponent's forces. This observation is 

Name 
of the 
model 

Campaign 

Parts 
Campaign 

Parts 
Campaign 

in four 
Parts 

Campaign 
in four 
Parts 

in four 

in four 

different from what Fricker found in his study. 

The results for the four different models are given in Table 30. 

P r  4 d SSR R2 a b 

4 periods 

1.0,l. 17 
4 periods 

0.32,1.17 

1 BE-47 1.07E-48 .7.5038 1.5793 d=0.91,1.24, 5.34E+8 -2.3410 

1 BE-47 1.07E-48 7.5068 1.5793 d=0.91,1.24, 1.69E+8 -0.0607 

1.88E-47 1.07E-48 7.5038 1.5793 1.14 1.89E+8 0.5689 

1.85E-5 1 3.56E-53 9.6853 0.1458 1.90E+8 0.5658 

The negative R2 values are mainly a result of considering certain days in the 

campaign solely on their own. This results in SST value for that day being zero. This 

result (ie, the SST value being zero for a certain day) is the main reason for negative R2 

values in this section. 

5. 

The findings in the previous sections suggest that fitting models for separate 

Considering change points in the model 

phases of the battle might improve the fit to the data. This section considers one or more 

' I  
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attrition change points for each side. At each chosen point in the phase of battle all the 

parameters pertaining to that particular side will change. 

When the historical account of the battle is taken into account, it is apparent that 

the Germans generally attacked between July 5, and July1 1 , for the first seven days, and 

the Soviets attacked between the days July 12, and July 18, for the last seven days. This 

is the first change point to be considered and will be referred as change point 7/7. 

I Another approach is considering that the Germans attacked between July 5, and 

July 12, for the first eight days, and the Soviets attacked between July 13, and July 18, for 

the last six days. This is the second change point to be considered, and will be referred to 

as change point 8/6. This type of approach (considering change points for fitting the 

model to the data) is similar to what Hartley and Helmbold did in their study [Ref.lO]. 

No tactical parameter will be considered, and only linear regression will be used 

in fitting the data to the model with change points. For estimating the parameters of the 

model that minimize the sum of squared residuals of the actual and estimated attrition, S- 

PLUS software and the last 14 days of the aggregated data given in Table 14 in Section 

IV.A.1 are used. 

Results for the first half of the Linear Regression model for change point 717 with 

an SSR value of 6.53 x lo7 are: 

(42) 

(43) 

B = 8 . 9 1 ~  10-30~6.4117~-0 .4323 

R = 2.62x10-31~6.413713-.0.4323 

Results for the second half of the Linear Regression model for change point 7/7 

with an SSR value of 8 . 7 8 ~  lo7 are: 
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(44) 

(45) 

B = 1 -90 10-292 ~ 1 8 . 0 5 8 7 ~ 3 4 . 4 5 0 2  

8 = 4.37 10-291 ~ 1 8 , 0 5 8 7 ~ 3 4 , 4 5 0 2  

where both halves add up to a total SSR value of 1.53 x lo', and result in an R2 value of 

0.7448. 

Results for the first half of the Linear Regression model for change point 8/6 with 

an SSR value of 1.65 x lo8 are: 

(46) 

(47) 

= 7-75 10-5  ~ 4 . 4 2 1 2 ~ - 2 . 8 4 5 4  

R = 1 . g l x 1 0 - 6 ~ 4 . 4 2 1 2 ~ - 2 . 8 4 5 4  

Results for the second half of the Linear Regression model for change point 8/6 

with an SSR value of 7.78 x 10' are: 

(48) 

(49) 

B = 1 .94x 10-246~25,7652~18,7674 

R = 1 .3zX 10-247~25.7652~38.7674 

where both halves add up to a total SSR value of 2 . 4 3 ~  lo8 and result in an R2 value of 

0.3488. 

The SSR value for the change point 7M is the smallest SSR value we have seen. 

It gives a 9% better fit than Model 2 of Section IV.B.4 which is 1.69~10'. It is also 

almost a 56% better fit than the one found in section IV.B.l, where only one set of 

parameters is fit to the whole data. This model has the highest R2 value we have seen 

thus far, and easily the best fit we have obtained. We can conclude that fitting the model 

using the change points definitely improves the fit, and this is consistent with the result 

Hartley and Helmbold [Ref. 101 found in their study. 

However the only concern is that the 4 parameter for both the change point 717 

and change point 8/6 are negative, meaning that the number of a force's casualties 
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decreases as one of the force strengths increases. The p and q parameters found in the 

models are extremely high. Doubling the force size results in a dramatic change in the 

outcome and this does not intuitively make sense. Since this analogy is both illogical and 

unlikely, we resolve that even if the change point approach gives the lowest SSR value of 

l.53xlO*, with the change point 7/7 model, we cannot accept this fit as the best one. 

This result also suggests a wide range of parameters gives similar fits to the data 

In all the models explored in this section, the a and b parameters are significantly 

small, and except the equations given in IV.B.5.(44), IV.B.5.(45), a>b. This suggests 

that individual German effectiveness was greater than individual Russian effectiveness. 

When the p and q parameters are compared, it is observed that except the model 

given in equations IV.B.5.(44), IV.B.5.(45), the p parameter is greater than the q 

parameter. This comparison suggests that one side’s losses are more a function of his 

own forces rather than being a function of the opponent’s forces, and is different from 

what Fricker found in his study. 

6. Using different weights 

This section considers different weights for aggregating the battle data. Bracken 

[Ref.8] states in his study that, “The given weights are consistent with those of studies 

and models of the U.S.Army Concepts Analysis Agency. Virtually all theater-level 

dynamic combat simulation models incorporate similar weights, either as inputs or as 

decision parameters computed as the simulations progress.” Although Bracken’s points 

are well taken, this study will try to fit models by using different weights for exploratory 

purposes. The different weights are selected on a wholly intuitive basis and are a result 

of many different trial and error calculations. 
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The first weight combination will use the weights 1, 5, 20 and 40; the second 

weight combination will use the weights 1, 5, 15 and 20; the third weight combination 

will use the weights 1, 5, 30 and 40; the fourth weight combination will use the weights 

1,5,20 and 30 for manpower, APC, artillery and tanks, respectively. 

Note that tanks are weighted more because the Battle of Kursk was a major tank 

battle. Both linear and robust LTS regression models are used to fit the data, which is 

aggregated using the different weight combinations given above. 

Table 3 1 presents the aggregated data obtained using the first weight combination. 

Table 32 presents the aggregated data obtained using the second weight combination. 

Table 33 presents the aggregated data obtained using the third weight combination. Table 

34 presents the aggregated data obtained using the fourth weight combination. 

4. First weight combination 

The result for the linear regression model that gives an SSR value of 

1.15xlO'and an R2 value of 0.0870, is: 

(50) 

(51) 

B = 1 -25 10-38 ~ 5 2 2 9 8 ~ 2 . 2 7 4 6  

fi = 1 . 6 0 ~  10-39~5.2298~2.2746 

The result for the robust LTS regression model that gives an SSR value of 

1 . 0 7 ~ 1 0 ~  and an R2 value of 0.1514, is: 

(52) 

(53) 

B = 7-26 10-35 ~ 5 . 5 3 1 2 ~ 1 . 3 2 6 8  

R = 5.53x 10-36~55312~1.3268 

b. Second weight combination 

The result for the linear regression model that gives an SSR value of 

6 . 2 4 ~  10' and an R2 value of 0.0975, is: 
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Table 31. Data on forces which are aggregated by using weight combination 1. Forces 
are combat manpower, APCs, artillery and tanks, which are weighted by 1, 5, 20 and 40 
respectively. Here, a tank is considered to be twice as valuable as an artillery piece. 

Table 32. Data on forces which are aggregated by using weight combination 2. Forces 
are combat manpower, APCs, artillery and tanks, which are weighted by 1, 5, 15 and 20 
respectively. Here a tank is considered to be 33% more valuable than artillery. 
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9 
10 
11 
12 
13 
14 

48277 1 15542 360259 456 1 
471714 13633 357580 4160 
474809 807 1 3542 12 4597 
476151 41 10 357056 2395 
474726 2907 359565 1294 
470993 6820 360220 1649 

Day 
1 
2 

Blue Forces Blue Losses Red Forces Red Losses 
596213 1 1957 35995 1 12757 
585919 13563 348535 11912 

3 566765 18556 
4 549912 19342 
5 530702 2078 1 

J 

342735 7319 
354224 6522 

' 348144 7313 

97 

6 
7 

517883 15755 348004 3570 
508526 11964 346580 4745 

8 477543 323 12 
9 46693 1 14272 
10 456614 12403 

343085 5852 
343439 392 1 
340940 3650 

11 
12 
13 
14 

459969 706 1 338122 3777 
460301 3810 3403 16 2125 
458926 2487 342175 1204 
455603 5930 342520 1479 



(54) ‘ 

(55) 

B = 2 . 5 0 ~  1 0 - 4 6 ~ 5 . 7 6 3 8 ~ 3 . 1 2 2 2  

-47 5.7638 31222 k = 3 . 4 9 ~ 1 0  B R .  

The result for the robust LTS regression model that gives an SSR value of 

5.48 x 10’ and an R2 value of 0.2072, is: 

(56) 

(57) 

36 5.8613 11899 B = 7 . 8 5 ~ 1 0 - -  R B .  

= 4 . 7 5 x 1 0 - 3 7 ~ 5 . 8 6 1 3 ~ 1 . 1 8 9 9  

c. Third weight combination 

The result for the linear regression model that gives an SSR value of 

1 15 x lo9 and an R2 value of 0.0926, is: 

(58) 

(59) 

B = 3.7gX 1 0 - 3 9 ~ 5 , 2 2 9 3 ~ 2 , 3 5 1 3  

= 5 .34~10-40B52293132 .3513  

The result for the robust LTS regression model that gives &I SSR value of 

1 .06~10~  and an R2 value of 0.1637, is: 

(60) 

(61) 

B = 1.46x10-”~5.9619B1.0159 

R = 9.33x 1 0 - 3 7 ~ 5 . 9 6 1 9 ~ 1 . 0 1 5 9  

d. Fourth weight combination 

The result for the linear regression modei that gives an SSR value of 

8.63~10’ and an R2 value of 0.0943, is: 
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The result for the robust LTS regression model that gives an SSR value of 

7.74~10' and an R2 value of 0.1873, is: 

(64) 

(65) 

B = 5 . 0 5 ~  10-35~5.6294~1.2631 

fi = 3.5 1 10-36 ~5.6294~1.2631 

Using different weights to aggregate the data can improve the fit to the 

data. The SSR value observed for the second weight combination when the data is fitted 

using the Robust LTS Regression model is the lowest SSR value found for models 

without the tactical parameter d. But, this result may be due to the small size of the 

weights used for aggregating the data. Comparing SSR values makes sense as long as the 

weights used for aggregating the data are constant for all models compared, but this is not 

the case in our discussion. In such circumstances, the R2 value is a better parameter to use 

for comparison purposes rather than the SSR value because the R2 value adjusts to scale. 

How the R2 value is computed is given in equation IV.A. 1 .b.( 10). 

The parameters and the R2 values for each weight combination are given in Table 

34 for both linear regression and robust LTS regression models. When the R2 values are 

compared for the models presented in this section, it is observed that weight combination 

2 gives the best fit when the robust LTS regression technique is used, with the greatest 

R2 value of 0.2072. The second best fit is found when weight combination 4 is used 

with the robust LTS regression technique, and the third best fit is found when weight 

combination 3 is used, again with robust LTS regression technique. These models with 

different weight combinations do not give a better fit as a whole when compared to the 

two models given in IV.B.l.d.(26), IV.B.l.d.(27) and IV.B.3.d.(38), IV.B.3.d.(39) where 
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both models have an R2 value of 0.2262 and use the weight combination of 1, 5, 20 and 

40, for combat manpower, APCs, tanks and artillery, respectively. 

When the p and q parameters are compared, it is evident that for all the models 

discussed in this section, the p parameter is greater than the q parameter. This result 

suggests that one side’s losses are more a function of the opponent’s forces rather than 

being a function of his own forces, resembling earlier findings. 

Except for the model given in IV.B.6.d.(64) and IV.B.6.d.(65), the a and b 

parameters are significantly small and a>b for all the models discussed in this section. 

This result suggests that individual German effectiveness was greater than individual 

Russian effectiveness. 

One can easily argue that tanks are more effective during an offensive then they 

are during a defense. Likewise, artillery can be considered to have different effects on 

the outcome of the battle depending on the type of a campaign. The weights used in the 

second weight combination may give a better fit than the models which use the other 

three weight combinations. However the relevance of the weights used is another topic 

of discussion in itself. In short, it is clear according to our examples that changing the 

weights can help find a better fit, but one must be careful in doing so that the issue of 

relevancy to the real world is not ignored. Further investigation is recommended for 

determining weight combinations. 

Figures 49 and 50 show fitted losses plotted versus real losses for the Soviet and 

the German forces respectively, for the robust LTS regression model using the second 

weight combination which gives the best fit. 
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For ease of comparison, the results for all the models using different weight 

combinations and the previous two results are given in Table 35. 
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Figure 50. Fitted losses plotted versus real losses for the Soviet Forces for the robust LTS 
regression model using the weight combination 2. The same pattern where the model 
overhnderestimates the battle in three distinctive phases is observable in this plot. 
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Figure 51. Fitted losses plotted versus real losses for the German Forces for the robust 
. LTS regression model with the weight combination 2. 

101 



Type 
Of the 
model 

Previous 
Best 

Result 
Weight 
Comb. 1 
Lin.Reg. 
Weight 
Comb. 1 
Rob.LTS 
Weight 
Comb.2 
Lin.Reg. 
Weight 
Comb.2 
Rob.LTS 
Weight 
Comb.3 
Lin.Reg. 
Weight 
Comb.3 
Rob.LTS 
Weight 
comb.4 
Lin.Reg. 
Weight 
Comb.4 
Rob.LTS I I 

4 

7.26E-35 

2.50E-46 

7.85E-36 

3.78E-39 

1.46E-35 

2.89E-42 

5.05E-35 

d 

5.53E-36 5.5312 

3.49E-47 5.7638 

4.75E-37 5.8613 

5.34E-40 5.2293 

9.33E-37 5.9619 

3.91E-43 5.4863 

3.51E-36 , 5.6294 

SSR R2 

1.73 12 

2.2746 

l -  1.3268 1.07E+9 0.1514 

3.1222 l -  1 6.24E+8 I 0.0975 

l -  1.0159 1.06E+9 0.1637 

2.6660 

1.2631 

7. 

In this section, Force Ratio (FR) and Fractional Exchange Ratio (FER) models are 

Force ratio and fractional exchange ratio models 

explored and analyzed. The reason for including this approach in our discussion is that 

both analysts and military staff use force ratios in models for combat outcomes and 

decisions. For this purpose, five different models are investigated. The first model uses 

the FR of aggregated forces as a predictor to predict the percent of casualties for each 

side. The FR of blue forces is equal to the total number of aggregated blue forces divided 

by the total number of aggregated red forces, and likewise for the FR of the red forces. 
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The percent of casualties of the blue forces is equal to the total number of aggregated 

blue losses divided by the total number of aggregated blue forces. 

Figures 52 and 53 show loss ratio plotted against the FR for Soviet and German 

forces, respectively. The representation of Model 1 looks like: 

( B I B )  = I ]  + I ,  + ( B I R )  

(kIR) = I ,  + I ,  + ( R I B )  (67) 

(66) 

where I ,  is an indicator of the blue force or red force, and I, indicates the difference 

between the attacker and defender, and are given as: 

Il = 1 if Blue 
I ,  = 0 if Red 

I ,  = 1 if attacker 
I ,  = 0 if defender (69) 

The resulting model for Model 1 with the intercept that gives an SSR value of 

3 . 0 9 ~  and an R-squared value of 0.2296 (given by the S-PLUS software) is: 

PC = -0.0103 - 0.00741, + O.OO68I2 + O.O275(OFR) (70) 

where PC denotes the percent of casualties as given in IV.B.7.(64), IV.B.7.(65), and OFR 

denotes the opponent’s FR for a given side. 

The R-squared value given above is not calculated using the formula given in 

equation IV.A.1.(10) but given by the S-PLUS software and will be used for all the 

models throughout this section. 

Here, indicator variables are mainly used for the purpose of adjusting the 

intercept. When the intercept term is used in the model, the correlation matrix of the 

estimated coefficients shows a high correlation between the estimates that, due to high 
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Loss Ratio vs. Force Ratio for Soviets for Model 1 
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iigure 53. Loss ratio plotted versus force ratio for German forces for model 1. Germans 
lost a lower percentage of their forces as their force ratio increased. 

104 



- 

Intercept 4 1 2  

0.9754 4 

1 2  
-0.8662 -0.8291 

-0.9945 -0.9895 0.8379 
I I I I 

Table 36. Correlation matrix of the estimated coefficients of the first model. Notice the 
high correlation between the model's coefficients, and especially the correlation between 
the intercept and the force ratio, which can result in a very bad fit. 

collinearity can result in very inaccurate estimates [Ref.18]. Because of this result, an 

intercept term is not used in the following models. The correlation matrix of the 

estimated coefficients is given in Table 36. 

. 

Concern over whether or not leaving the intercept term out is correct or not can be 

addressed by doing a hypothesis test. The null hypothesis will be, H ,  : intercept = 0, and 

the alternative hypothesis will be, H ,  : intercept# 0. With a' significance level of 

a = 0.1 and 24 degrees of freedom, the null hypothesis will be rejected if 

t 2 to,05,24 = 1.7 1 1 or if t I -to,os 24 = -1.7 1 1. The t-statistics of the intercept of Model 1 

is t =-0.2899 which is not in the rejection region. 

rejected, and the intercept will be assumed to be zero throughout the models. 

So, the null hypothesis is not 

The resulting model for Model 1 without the intercept gives an SSR value of 

3.105 x and a multiple R-squared value of 0.7699 and looks like: 

PC = O.OOlZ, +0.00481, +O.O147(OFR) (71) 

Table 37 shows the coefficients, standard errors, and t values for Model 1. 
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I1 

I2 

Value Std. Error 

0.0010 0.0064 

0.0048 0.0039 

t'value Pr(>ltl) 

coefficients for Model 1. 

0.1534 

1.2385 

3.2419 

The positive coefficient of the indicator variable I ,  indicates a Geman advantage 

0.8793 

0.2270 

0.0034 

(though insignificant), where the positive coefficient of the indicator variable I, indicates 

OFR 

a defender advantage, and again is insignificant. The positive coefficient of the force 

ratio variable indicates that as the force ratio increases, so do the losses. Even though 

0.0147 0.0045 

statistically significant, this result does not intuitively make much sense. 

The second model uses the total aggregated force ratios as a predictor to predict 

the fractional exchange ratios for each side. FER for the blue forces is equal to the 

percent of blue casualties divided by the percent of red casualties, and likewise for the 

FER of the red forces. Figures 53 and 54 show the FER plotted against force ratio for 

Soviet and German forces, respectively. The representation of Model 2 looks like: 

( B / B ) / ( k / R )  = I, +I, + ( B / R )  

( R / R ) / ( B / B )  =I, +I, + ( R / B )  (73) 

(72) 

where I ,  indicates the difference betweep the blue force and red force, and I, indicates 

the difference between attacker and defender (time of battle) and have the values given in 

IV.B.7.(68) and IV.B.7.(69). 

106 



Fractional Excahnge Ratio vs. Force Ratio for Soviets for Model 2 
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Tigure 54. Fractional exchange ratio plotted versus force ratio for Soviet forces for 
model 2. 
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Figure 55. Fractional exchange ratio plotted versus force ratio for German forces for 
model 2. 
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Table 38 shows the coefficients, standard errors, and t values for Model 2. 

I1 

I2 

OFR 

Value Std. Error t value Pr(>ltl) 

1.1849 0.40 19 2.9483 0.0068 

0.5647 0.2409 2.3441 0.0273 

0.4153 0.2837 1.4638 0.1557 

The resulting model for Model 2 that gives an SSR value of 12.120 and a multiple 

R-squared of 0.6963, is: 

FER = 1.18491, +0.56471, +0.4153(0FR) (74) 

where FER denotes the fractional exchange ratio as given in IV.B.7.(72), IV.B.7.(73), 

and OER denotes the opponent’s FR for a given side. 

Similar to the results found for Model 1, the positive coefficient of indicator 

variable I, indicates a German advantage and is significant, where the positive coefficient 

of indicator variableI, indicates a defender advantage and is significant too. The 

positive coefficient of the force ratio variable indicates that as the force ratio increases so 

do the losses. Again, the coefficient is not significant and does not intuitively make 

much sense. 

Model 3 uses the force ratio of tanks as a predictor to predict the percent of tank 

losses for each side. Figures 56 and 57 show the tank loss ratio plotted against the tank 

force ratio for Soviet and German forces, respectively. The representation of Model 3 

looks like: 
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Tank Loss Ratio vs. Tank Force Ratio for Soviets for Model 3 
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Figure 56. Tank loss ratio plotted versus tank force ratio for Soviet forces for model 3. 

Tank Loss Ratio vs. Tank Force Ratio for German forces for Model 3 
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Figure 57. Tank loss ratio plotted versus tank force ratio for German forces for model 3. 
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(BTLIBT)=I,  + I , + ( B T I R T )  (75) 

I1 

I2 

OTFR 

(RTLI RT) = I ,  + I ,  + (RTIBT)  (76) 

Value Std. Error t value Pr(>ltl) 

-0.2703 0.092 -2.9377 0.007 

0.1442 0.0291 4.9549 0 

0.1375 0.0367 3.747 0.0009 

where I, indicates the difference between blue force and red force, and I, indicates the 

difference between attacker and defender (time of battle) and have the values given in 

IV.B.7.(68) and IV.B.7.(69). BTL, RTL, BT and RT denote blue tank loss, red tank loss, 

number of blue tanks and number of red tanks, respectively. 

Table 39 shows the coefficients, standard errors and t values for Model 3. 

The resulting model for model 3, which gives an SSR value of 0.220 and a 

Multiple R-Squared value of 0.7077 is: 

PTL = 4.27031, + 0.14421, + 0.1375(0TFR) (77) 

where PTL and OTFR denote the percent of tank losses and opponent’s tank force ratio, 

respectively for a given side. 

In contrast to the results we found for Model 1 and Model 2, the negative 

coefficient of indicator variable I ,  indicates a Soviet advantage, and is significant. The 

positive coefficient of indicator variable I, indicates a defender advantage, and is also 

significant. The positive coefficient of the force ratio variable indicates that as the force 
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ratio increases, so do the force’s losses. 

intuitively does not make much sense. 

Again this is statistically significant but 

The fourth model uses the total aggregated tank force ratios as a predictor to 

predict the FER of tanks for each side. The FER of tanks for the blue forces is equal to 

the percent of blue tank losses divided by percent of red tank losses, and likewise for the 

FER of tanks for the red forces. Figures 58 and 59 show the FER of tanks plotted against 

Force ratio of tanks for Soviet and German forces, respectively. The representation of 

Model 4 looks like: 

(BTLIBT)/(RTLIRT) = I ,  + I ,  + (BTIRT)  

(RTLIRT)I(BTLIBT) = I ,  + I ,  +(RTIBT)  

(78) 

(79) 

I1 

I2 

OTFR 

where I ,  indicates the difference between the blue force and red force, and I ,  indicates 

the difference between attacker and defender and have the values given in IV.B.7.(68) 

and IV.B.7.(69). BTL, RTL, BT and RT denote blue tank loss, red tank loss, the number 

of blue tanks and the number of red tanks, respectively. 

Table 40 shows the coefficients, standard errors, and t values for Model 4. 

Value Std. Error t value Pr(>ltl) 

\ 

-0.1242 1.8843 -0.0659 0.948 

2.2276 0.5959 3.7382 0.001 

0.2865 0.75 17 0.381 1 0.7064 
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Tank Fractional Exchange Ratio vs. Tank Force Ratio for Soviets for Model 4 
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'igure 59.Tank fractional exchange ratio plotted versus tank force ratio for German 
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Tank Fractional Exchange Ratio vs. Tank Force ratio for Germans for Model 4 
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The resulting model for Model 4, which gives an SSR value of 92.637 and a 

multiple R-squared value of 0.4941 is: 

TFER = -0.12421, + 2.22761, + 0.2865(OTFR) (80) 

where TFER and OTF’R denote the FER of tanks and the opponent’s tank FR for a given 

side. 

Similar to the results we found for Model 3, the negative coefficient of indicator 

variable I, , indicates a Soviet advantage and is not significant. The positive coefficient of 

indicator variable I, indicates a defender advantage and is significant. The positive 

coefficient of the force ratio variable indicates that as the force ratio increases so does 

your losses. Again the coefficient is not significant and intuitively does not make much 

sense. 

The fifth model uses the same setup as Model 1,  but it will do so by using the 

different weights first introduced in section IV.B.6 as the second weight combination, 

namely 1, 5, 15 and 20 for manpower, APC, artillery and tanks, respectively. Figures 60 

and 61 show the loss ratio plotted against the force ratio for Soviet and German forces, 

respectively, using these weights. The presentation of model 5 looks like: 

( B I B )  = I, + I, + ( B / R )  

( R l R )  = I ,  +I, + ( R / B )  

(81) 

(82) 

where I, indicates the difference between Blue force and Red force, and I, indicates the 

differcnce between attacker and defender and have the values given in IV.B.7.(68) and 

IV.B.7.(69). 
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Tank Fractional Exchange Ratio vs. Tank Force Ratio for Soviets for Model 5 
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Figure 60. Loss ratio plotted versus force ratio for Soviet forces for model 5.  
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igure 61. Loss ratio plotted versus force ratio for German forces for model 5.  
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where Il  indicates the difference between Blue force and Red force, and I ,  indicates the 

I1 

I2 

OFR 

difference between attacker and defender (time of battle) and have the values given in 

Value Std. Error t value Pr(>ltl) 

-0.001 8 0.0072 -012544 0.8013 

0.0053 0.0039 1.3592 0.1862 

0.0159 0.0049 3.2633 0.0032 

N.B.7.(68) and IV.B.7.(69). 

Table 41 shows the coefficients, standard errors, and t values for Model 5. 

multiple R-squared value of 0.7679 is: 

PC = -0.OO181, + 0.00531, + O.O159(0FR) (83) 

where the notation has the same meaning as in Model 1. 

Similar to the results we found for Model 3 and Model 4, the negative coefficient 

of indicator variableI, indicates a Soviet advantage and is not significant. The positive 

coefficient of indicator variableI, indicates a defender advantage and is not significant. 

The positive coefficient of the force ratio variable indicates that as the force ratio 

increases so do the losses. The coefficient is statistically significant and again, this 

interpretation intuitively does not make much sense. 

- 

In general, in the models we investigated in this section, the indicator variable I ,  

is always positive, different from the result we found in the sections, which investigated 
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the tactical parameter d. This observation suggests that it is advantageous to be the 

defender, not the attacker. Another interesting, yet ironic, result is the positive force ratio 

coefficient found in the models throughout the section, suggesting that the more powerful 

you are, the more you lose, which intuitively does not make much sense. 

When the plots are investigated it is seen that, the higher the force ratio or FER is, 

the less the loss’is, except for the Soviets in Model 1, Model 3 and Model 5. So, the 

results are telling somewhat different than what the plots are telling. This may be due to 

the interpretation that fitting the logarithmically transformed equations does not 

necessarily gives the best fit in the original form. 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Table 42 summarizes the results found in this section. 

I1 I2 Predictor Multiple R-squared 

0.001 0.0048 0.0147 0.7699 . 

1.1849 0.5647 0.4153 0.6963 

-0.2703 0.1442 0.1375 0.7077 

-0.1242 2.2276 0.2865 0.4941 

-0.001 8 0.0053 0.0159 0.7679 

When the overall results given in Table 42 are examined it is seen that Model 1 

and Model 2 have positive I, coefficients, which indicates a German advantage while the 

rest of the models have negative I, coefficients, which indicates a Soviet advantage. All 
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models have positive I ,  coefficients, which indicates a defender advantage. The first 

model with the highest multiple R-squared value gives the best fit. 

8. 

This section fits the basic Lanchester Equations, (i.e., Lanchester Linear, 

Lanchester Square and Lanchester Logarithmic models), to the Battle of Kursk data. The 

basic Lanchester equations are given in I.B.(l) and I.B.(2). 

Fitting the standard Lanchester equations 

For the Lanchester linear model where p=q=1, the loss for one side will be equal 

to the product of the existing number of forces of both sides, and a coefficient. The 

Lanchester linear model will look like; 

B = aRB (84) 

R = bBR (85) 

This model is solved like a typical regression through the origin equation and the 

resulting model for the Lanchester linear model, which gives an SSR value of 6 . 2 4 ~ 1 0 ~  

is: 

B = 6.6834 x low8 RB 

R = 2.6893 x lo-* BR 

(86) 

(87) 

Figures 62 and 63 show fitted losses plotted versus real losses for Soviet and 

German forces, respectively, for the Lanchester linear model. 

For the Lanchester Square Model, where p=l and q=O, the loss for one side will 

. be equal to the product of the existing number of forces of the opponent and a coefficient. 

The Lanchester square model will look like; 

B = aR (88) 

R = b B  (89) 
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Figure 62. Fitted losses plotted versus real losses for Soviet forces for the Lanchester 
linear model. The same three-phase pattern where the model overhnderestimates the 
battle in three distinctive phases is observable in this plot for the model, which uses the 
Lanhester linear model, too. 
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Figure 63. Fitted losses plotted versus real losses for German forces for the Lanchester 
linear model. Eight days are underestimated while six days are overestimated. 
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The resulting model for Lanchester square model that gives an SSR value of 

6.79 x lo8 is: 

B = 0.0335R (90) 

R = 0.0098B (91) 

The high value of the a parameter in the above equation indicates that the 

Germans fought three times better than the Soviets. 

Figures 64 and 65 show fitted losses plotted versus real losses for Soviet and 

German forces, respectively, for the Lanchester square model. 

For the Lanchester logarithmic model where p=O and q=l, the loss for one side 

will be equal to the product of the existing number of forces of its own and a coefficient. 

Lanchester logarithmic model will look like: 

B = aB (92) 

R = b R  (93) 

The resulting model for Lanchester logarithmic model, which gives an SSR value 

of 6.57 x 10' is: 

B = 0.0243B (94) 

R = 0.0131R (95) 

Figures 66 and 67 show fitted losses plotted versus real losses for Soviet and 

German forces, respectively, for the Lanchester logarithmic model. 

The basic Lanchester Equations do not give the best fit for the Battle of Kursk 

data. Out of the three Lanchester Models analyzed, the Lanchester linear model gives the 

best fit (i.e., smallest SSR value). 
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Fitted vs. Real Soviet losses for Lanchester Square model 
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Figure 64. Fitted losses plotted versus real losses for Soviet forces for the Lanchester 
square model. The same three-phase pattern where the model overhnderestimates the 
battle in three distinctive phases is observable in this plot for the model, which uses the 
Lanhester square model, too. 
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Figure 65. Fitted losses plotted versus real losses for German forces for the Lanchester 
square model. Eight days are underestimated while six days are overestimated. 
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Fitted vs. Real Soviet Losses for Lanchester Logarithmic 
Model 
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Figure 66. Fitted losses plotted versus real losses for Soviet forces for the Lanchester 
logarithmic model. 
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Figure 67. Fitted losses plotted versus real losses for German forces for the Lanchester 
logarithmic model. 
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Again in all Lanchester Models, the a and b parameters are significantly small and 

Fricker’s findings were closest to Lanchester’s logarithmic model, while 

I Bracken’s findings were closest to Lanchester’s linear model. Out of the three basic 

Lanchester models, it is the Lanchester linear model that best fits the Battle of Kursk 

data. The Lanchester logarithmic model gives the second best fit for the Battle of Kursk 

data, while the Lanchester square model gives the third best (i.e., the worst) fit for the 

Battle of Kursk data. 

9. Fitting Morse-Kimball equations 

This section will fit the Morse-Kimball Equations to the Battle of Kursk data. 

Morse and Kimball suggest that one side’s losses do not depend solely on the opponent’s 

forces, losses also depend on one’s own failures and other mechanical breakdowns too, 

like the case in the logarithmic law. The Morse-Kimball Equations are: 

B = aR+a,B (96) 

R = bB+a2R (97) ’ 

These equations are fit separately for the Germans and the Soviets, and the 

resulting model for the Morse-Kimball Equations, which gives an SSR value of 

5 .51~10~ and an R2 value of 0.2297 is: 

l? = -0.0412R + 0.0537B 

R = 0.0603B - 0.0707R 

(98) 

(99) I 

Figures 68 and 69 show fitted losses plotted versus real losses for Soviet and 

German forces, respectively, for the Morse-Kimball Equations model. 
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Figure 68. Fitted losses plotted versus real losses for the Soviet forces for the model using . 
Morse Kimball Equations. The same three-phase pattern where the model 
overhnderestimates the battle in three distinctive phases is observable in this plot for the 
model, which uses Morse Kimball equations, too. 
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Figure 69. Fitted losses plotted versus real losses for the German forces for the Morse 
Kimball Equations Model. 
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Fitting Morse-Kimball Equations to the Battle of Kursk data improves the fit. 

The SSR value of 5 . 5 1 ~ 1 0 ~  is one of the lowest SSR values we have so far. But, just as 

in the models used for the change points approach for each side in section IV.B.5, the 

parameters physically do not make sense. 

For the blue force, the negative a parameter indicates that the more the red forces 

there are, the less the number of blue casualties. For the red force, the negative a, 

parameter indicates that the greater the number of the red forces is, fewer red casualties 

are going to be. This physically does not make much sense; so, even if fitting Morse- 

Kimball equations give a low SSR value of 5.5 l x lo8, we cannot accept this fit. 

10. Fitting the parameters found by Bracken and Fricker 

In this section, the parameters for the Ardennes data found in Bracken and 

Fricker's studies will be used to fit the Battle of Kursk data. 

a. Bracken's parameters 

In his study, Bracken's conclusion for the Lanchester Model with the 

tactical parameter is given as: 

8 10 
10 8 

= 8 x 1 0-9 (- or -)R'B' (loo) 

Figures 70 and 71 show fitted losses plotted versus real losses for Soviet 

and German forces, respectively, for the parameters of Bracken's model (with the tactical 

parameter) given above, which yields an SSR value of 2.39xlO'for the Battle of Kursk 

data. 
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Figure 70. Fitted losses plotted versus real losses for Soviet forces for Bracken's model 
with the tactical parameter d. Bracken's Ardennes parameters always underestimated the 
Soviet losses for the Battle of Kursk. 
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Figure 71. Fitted losses plotted versus real losses for German forces for Bracken's model 
with the tactical parameter d. Except the last three days of the battle, Bracken's 
Ardennes parameters always underestimated the German losses for the whole Battle of 
Kursk data. 
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Bracken’s conclusion for the Lanchester model without the tactical 

parameter is given as: 

( 102) B = 8x10-9R1.3B0.7 

(103) fi = 1 1 0 - s ~ l . 3 ~ 0 . 7  

Figures 72 and 73 show fitted losses plotted versus real losses for Soviet 

and German forces, respectively, for the parameters of Bracken’s model (without the 

tactical parameter) given above, which yields an SSR value of 2.46 x lo9 for the Battle of 

Kursk data. 

Fitting Brackens’s parameters to the Battle of Kursk data does not 

improve the model’s fit and gives the highest SSR value thus far. It is significant that 

Bracken’s parameters always underestimates the real casualties for the Battle of Kursk 

data. 

b. Fricker’s parameters 

In Fricker’s study, the conclusion for the Lanchester model with the 

tactical parameter is given as: 

B = 4.7 x lo-” (--- or 0.8093)B5 
0.8093 

>R5 (104) 
1 R = 3.1~10-*~(0.8093 or - 

0.8093 

Figures 74 and 75 show fitted losses plotted versus real losses for Soviet 

and German forces, respectively, for the parameters of Fricker’s model (with the tactical 

parameter) given above that yields an SSR value of 3.02 x lo9 for the Battle of Kursk 

data. 
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Figure 72. Fitted losses plotted versus real losses for the Soviet forces for Bracken’s 
model without the tactical parameter d. Bracken’s Ardennes parameters always 
underestimated the Soviet losses for the Battle of Kursk data. 
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Figure 73. Fitted losses plotted versus real losses for the German forces for Bracken’s 
model without the tactical parameter d. With the exception of the last three days of the 
battle, Bracken’s Ardennes parameters always underestimated the German losses for the 
whole Battle of Kursk data. 
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Fitted vs. Real Soviet Losses for Fricker's model with d 
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Figure 74. Fitted losses plotted versus real losses for Soviet forces for Fricker's model 
with the tactical parameter d. Fricker's Ardennes parameters always underestimated the 
Soviet losses for the Battle of Kursk. 
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Fricker’s conclusion for the Lanchester model with the air sortie data 

added is given as: 

B = 2 . 7 ~ 1 0 - ~ ~ ( -  or 0.7971)B4.6 ( 106) 0.797 1 

1 ~ 4 . 6  R = 1.6~10-~~(0 .8093 or - 
0.8093 

Figures 76 and 77 show fitted losses plotted versus real losses for Soviet 

and German forces, respectively, for the parameters of Fricker’s model (with air sortie 

data added) given above, which yields an SSR value of 2.77 x109 for the Battle of Kursk 

data. 

Like Bracken’s models, fitting Fricker’s parameters to the Battle of Kursk 

data does not improve the model’s fit, it gives the highest SSR value in this study so far. 

Fricker’s parameters always underestimate the real casualties for the Battle of Kursk data. 
1- 

This finding is similar to the one for Bracken’s parameters. 

In general, fitting Bracken’s or Fricker’s Ardennes parameters to the Battle of 

Kursk data does not improve the fit; they both give the highest SSR value we have in this 

study so far. This result suggests that the parameters of one battle data cannot be used to 

predict another. Each battle has its own unique parameters which cannot be applied to 

another one battle. 

Another interesting finding is that when Bracken’s or Fricker’s Ardennes 

pararneters are applied to Kursk data, they always underestimate the daily attrition rates. 

This finding suggests that Battle of Kursk was a much more intense battle than the 

Ardennes campaign. 
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Figure 76. Fitted losses plotted versus real losses for Soviet forces for Fricker's model. 
with the air sortie data added. Notice that Fricker's Ardennes parameters always 
underestimated the Soviet losses for the Battle of Kursk. 

Fitted vs. Real German Losses for Fricker's Model with 
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Figure 77. Fitted losses plotted versus real losses for German forces for Fricker's model 
with air sortie data added. Notice that Fricker's Ardennes parameters always 
underestimated the German losses for the Battle of Kursk. 
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1 .o 

0.8093 

0.7971 

8.88E+8 

1.57E+8 

2.64E+7 

11. Summary of results 

This section summarizes the results of all the models explored in previous 

chapters. +, 1.63E+9 

Name 
of the 
model 

Bracken 
Model 1 
Ardennes 
Bracken 
Model 2 
Ardennes 
Bracken 
Model 1 

Kursk 
Bracken 
Model 3 

b a P 4 R2 

0.2552 8.OE-9 

8.OE-9 

1 .OE-8 

1 .OE-8 

1 .o 

1.3 

1 .o 

0.7 0.0493 

0.0006 9.OE-9 1.2E-8 0. I 2.0 

-0.0266 1.8 9.OE-9 

3.1E-26 

1.6E-23 

1.2E-8 

4.7E-27 

0.3 

0 5 -0.7938 

0.5256 

0.1703 

wlo sorties 
with d 

Frick.Ard. 
w sorties 2.7E-24 0 4.6 

with d 
Frick.Kursk 

0.79 1 5.94E+8 3.76E-33 1.09E-32 0.0604 6.3066 wlo sorties 
with d 

Frick-Kursk 
wlo sorties 1.6 1 E-33 0.0657 2.16E+9 3.44E-33 

5.76E-27 

3.85E-27 

3.6736 

0.0955 

1.4983 

2.6934 

5.2207 

3.8179 

0.93 1 6.23E+8 0.1294 

-0.0222 

with sorties 
with d 

Frick.Kursk 
with sorties 

wlo d 
Clemens 
Linear 

Regression 
Clemens 
Newton- 
Raphsop 
Linear 

Regression 
Model 
Robust 

LTS 
Resession 

3.35E-27 

5.01 E-27 
I 

I 7-16E+8 

6.94E-48 5.3157 3.6339 0.9975 1.13E+9 6.92E-49 

3.73B-6 

1.06E-47 

5.9 1 E-6 0.0 -0.6242 

0.1 126 

1.6178 

3.3356 1.9OE-48 5.7475 

5.54E+8 I 0.2262 2.27E-40 1.84E-4 1 6.0843 1.7312 
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Name 
of the a b 
model 

Lin.Reg. 
With 1.4OE-30 2.09E-36 5.1323 1.7793 6.85E+8 0.0433 

Air sorties 
Robust LTS 

Air sorties 
Linear 

Regression 1.88E-47 1.07E-48 7.5038 1.5793 1.17 6.24E+8 0.1295 
With d 
Robust 

With d 

P 4 . d  SSR R2 

- 

with 1.21E-38 1.75E-39 5.3691 2.0883 7.58E+8 -0.0579 

LTS 2.27E-40 1.84E-4 1 6.0843 1.7312 1 .o 5.54E+8 0.2262 

Campaign in 4 periods 

Parts 1.0,1.17 
Campaign in 4 periods 

Parts 0.32J.17 
Campaign in 

four 1.88E-47 1.07E-48 7.5038 1.5793 1.14 1.89E+8 0.5689 
Parts 

Campaign in 
four 1.85E-51 3.56E-53 9.6853 0.1458 1.90E+8 0.5658 
Parts 

Change 
Point 8.91E-30 2.62E-31 6.41 17 -0.4323 1.53E+8 0.7448 
7/7 

Change 

7/7 
Change 

816 
Change 

816 
Weight 
comb. 1 1.25E-38 1.6OE-39 5.2298 2.2746 lf15E+9 0.0870 

Lin.Reg. 
Weight 
Comb. 1 7.26E-35 5.53E-36 5.5312 1.3268 - 1.07E+9 0.1514 

Weight 
comb.2 2.50E-46 3.49E-47 5.7638 3.1222 6.24E+8 0.0975 

1 Lin.Reg. 
' Weight 

1 Rob.LTS 
1 Weight 

1 Lin.Reg. 

. four 1.88E-47 1.07E-48 7.5038 1 S793 d=O.9 1,1.24, 5.34E+8 -2.34 10 

four 1.88E-47 1.07E-48 7.5068 1.5793 d=O.91,1.24, 1.69E+8 -0.0607 

- 

- Point 1.9OE-232 4.37E-291 18.0587 34.4502 1.53E+8 0.7448 

Point 7.75E-5 1.91E-6 4.4212 -2.8454 2.43E+8 0.3488 1 

Point 1.94E-246 1.32E-247 25.7652 18.7674 - 2.43+E8 0.3488 

- 

1 Rob.LTS 

- 

Comb.2 7.85E-36 4.75E-37 5.8613 1.1899 5.48E+8 0.2072 

comb.3 3.78E-39 5.34E-40 5.2293 2.3513 - 1.15E+9 0.0926 
. I  
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Name 
of the 
model 
Weight 
Comb.3 

Rob.LTS 
Weight 
comb.4 

Lin.Reg. 
Weight 
Comb.4 

Rob.LTS 

b SSR R2 a P 4 d 

1.46E-35 9.33E-37 5.9619 1.0159 1.06E+9 0.1637 

2.89E-42 3.9 1E-43 5.4863 2.6660 8.63E+9 0.0943 

5.05E-35 3.5 1E-36 5.6294 7.74E+8 0.1873 1.263 1 

1 .o 
Lanchester 

Linear 
model 

Lanchester 
Square 
model 

6.68E-8 2.68E-8 1 .o 6.24E+8 0.1290 

0.0335 0.0098 1 .o 0 6.79E+8 0.0521 

Lanchester 
Logarithmic 

model 
Morse 

Kimball 
Equations 
Bracken’s 
Parameters 

with d 
Bracken’s 
Parameters 

0.0243 0.01 3 1 0 1 .o 6.57E+8 0.0831 

b=0.060 

1 .o 

a=-O.O4 1 

8.OE-9 

5.5 1E+8 

2.39E+9 

0.2297 

-2.4235 

a, =0.053 

1 .OE-8 

cC2 =-0.07 

1 .o 1.25 

’ 8.OE-9 1 .OE-8 1.3 0.7 2.46E+9 -2.4430 
wlo d 

Fricker’ s 
4.7E-27 3.1 E-26 0 5 .O 0.8093 3.02E+9 -3.2 123 Parameters 

with d 
Fricker’ s 
Pars with 
air sortie 

2.7B-24 1.6E-23 0 4.6 0.797 1 2.79E+9 -2.9021 

Table 42. Results of all the models explored and investigated in Chapter IV. 

The R2 value (0.9975) given for Clemens’ linear regression model is the self 

reported value by Clemens and must have been calculated differently than the R2 values 

calculated throughout the thesis. When recomputed, a negative R2 value is found. 

Clemens provided four digits of precision in his estimates of p and q, while 

Bracken and Fricker gave two. The R2 values that are found for the models, which do 

not use the parameters from other studies, are calculated using parameters with four digits 
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of precision. The slightly negative R2 values found for some of these models are not a 

result of using low precision. 

When the above results are examined, it is seen that the best fitting model for the 

Battle of Kursk data is the robust LTS regression model used in section N.B.l, with an 

SSR value of 5.54x108and an R2value of 0.2262. This.finding is true for the models 

that handle the battle in one phase. 

When the models which consider the change points are examined, it is seen 'that 

the model with the change point 7/7 is the one with the best fit, with an SSR value of 

1 . 5 3 ~ 1 0 ~  and an R2 value of 0.7448. 

Figure 78 shows the p and q values plotted for every model whose parameters are 

given in Table 42, except for the models with the change points since they have very 

large p and q parameters. The p and q values are also excluded for the model using the 

Morse-Kimball equations since these equations do not use p and q parameters. 

:t 
p and q values of all models 

+ 

-4 -2 1 + 

p values 

Figure 78. p and q parameters plotted for all the models given in Table 42. 

134 



When the pattern seen in Figure 78 is examined it is apparent that p and q 

parameters are clustered in two regions-one around the p=5-6, q=I-4 region, and the 

other around the q=I-6, p=O region. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This thesis explores the applications of regression models on data from the World 

War I1 Battle of Kursk-the greatest single tank battle in history. The analysis tools used 

are two regression techniques, linear regression and robust LTS regression. The results 

and a brief interpretation of each regression model are given in the model’s 

corresponding section. The results obtained from the statistical regression models are 

intended to provide insight into the Battle of Kursk, as well as into combat modeling in 

general. 

When all the regression models are viewed together the following conclusions are 

reached. 

It is observed that the original Lanchester equations do not fit to the Battle of 

Kursk data, and therefore may not be appropriate for modeling the combat. Of 

the three ill-fitting Lanchester equations, the best fit is obtained by applying the 

linear law, which is used for modeling ancient warfare or area fire. 

The parameters derived from Bracken and Fricker’s Ardennes studies do not 

apply to the Battle of Kursk data. This implies that there are no unique 

parameters that apply to all battles. 

Another interesting result with respect to Bracken’s methodology and models is 

that, upon a closer examination of his findings, the SSR values given by multiple 

p and q values are in the same vicinity, as seen when plotted using a 3-D plot. 

This is clearly seen in Figures 79 through 82, which cover the breadth of 

approaches and show a variety of fits. 

0 
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Figure 79 shows the SSR values plotted versus p and q parameters using 

Bracken's model, with the tactical parameter, for the Ardennes Campaign data when 

a = 8 ~ 1 0 - ~  , b = lxlO-' and d=1.25. 

The SSR values do not change much in the vicinity of the best fit. Except for the 

spike seen on the upper far right corner, the SSR values are relatively insensitive to p and 

q values. Figure 80 gives a closer look at the region in which the lowest SSR value is 

found when p=l  and q=l .  A broad range of parameters fit about the same in a valley of 

the surface as p increases and q decreases. 

For Bracken's model, without the tactical parameter, for the Ardennes Campaign 

data when a = 8 ~ 1 0 - ~ ,  b = lxlO-', p=l.3 and q=0.7, the same pattern observed in Figures 

79 and 80 also hold true, and this is true for other p and p analyses too. 

Figures 81 and 82 show the 3-D grid plots for Bracken's model with the tactical 

parameter for the Battle of Kursk data when a = 1.2x10-' , b = 9 ~ 1 0 - ~  and d=O.9. Figure 

82 provides a closer look at the region in which the lowest SSR value is found (i.e., when 

p=O. 1 and q=2.0). This pattern is similar to what we have seen for Ardennes. 

For Bracken's model, without the tactical parameter, for the Battle of Kursk data 

when a = 1.2x10-' , b = 9 ~ 1 0 - ~  , p=0.3 and q=1.8, the same pattern observed in Figure 81 

and Figure 82 also holds true. This result is again similar to what was found for the 

Ardennes data, suggesting that a broad range of possible models fit just about as well. 

L? the light of the findings stated above, it is a logical next step to have a look at 

the model's residual surface when a and b depend on p and q, and d=l. The results are 

given in Figures 81 through 84, where a and b parameters are chosen to minimize SSR 
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Bracken’s model with d for Ardennes Campaign data 

Figure 79. SSR values plotted versus p and q parameters using Bracken’s model with the 
tactical parameter for Ardennes Campaign data. 

A closer look at Bracken’s model with d for Ardennes Campaign data 

3gure 80. A closer look at the lowest SSR value for Bracken’s model with the tactica 
parameter, for Ardennes Campaign data whenp=l and q=l. 
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Bracken’s model with d for Battle of Kursk data 

I 

igure 82. A closer look at the lowest SSR value for Bracken’s model with the tactical 

A closer look at Bracken’s model with d for Battle of Kursk data 

parameter, for the Battle of Kursk data when p=O.1 and q=2.0. The observed pattern is 
similar to what is observed for Ardennes. 
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for regression through the origin given p and 4. The best fitting a and b parameters are 

given as follows: 

a = i=l 
" 

b = i=l 

C [ B ( i ) P  R(i)"* 
i=l 

where i is the index of the days in a given battle, and n is the number of days in a given 

battle. 

Figure 83 shows the 3-D plot of SSR values-found for the Battle of Kursk data, 

where p values are varied between -0.5 and 10.0 with increments of 0.1, q values are 

varied between -1.0 and 3.0 with increments of 0.1, d=1.0, a and b values depend on p 

*and 4, and are determined by equations V.A.( 108) and V.A.( 109). Figure 85 shows the 

same area using a contour filled plot. A contour plot displays the contours of equally 

fitting p and q values in terms of SSR. This surface was generated with d fixed at 1.0. 

The models found in Fricker, Bracken and Clemens used a d parameter; hence their place 

on the surface does not necessarily measure the goodness of their fit. Furthermore, 

Fricker and Clemens used differently formatted data. 

Figures 85 and 86 represent a detailed description of the region with the best fit. 

Figure 85 shows the 3-D plot of the SSR values found for the Battle of Kursk data, where 

p values are varied between 3.0 and 9.0 with increments of 0.1, q values are varied 

between 0.0 and 2.5 with increments of 0.1, d=l.O, a and b values depend on p and q, and 
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3D plot for Battle of Kursk data where a and b depend on P and q 

I 
Figure 83. 3D plot of SSR values for Battle of Kursk data, p values are varied between - 

increments of 0.1, d= 1 .O, a and b values depend on p and q. 

I 0 2 4 6 a 
p parameter 

Figure 84. Contour filled plot of SSR values for Battle of Kursk data, p values are varie 
between -0.5 and 10.0 with increments of 0.1, q values are varied between -1.0 and 4.0 
with increments of 0.1, d=1.0, a and b values depend on p and 4. Also shown are each of 
the similar findings around the same area. 
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3D plot for Battle of Kursk data where a and b depend on P and q 

Figure 85. 3D plot of SSR values for Battle of Kursk data. p values are varied between 
3.0 and 9.0 with increments of 0.1, q values are varied between 0.0 and 2.5 with 
increments of 0.1, d= 1 .O, a and b values depend on p and q. 

Contour filled plot for Battle of Kursk data where a and b depend on P and q 
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- 8 1.5 
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R 
m 1 .o 

0.5 

0.0 
3 4 5 6 7 8 

p parameter 

'igure 86. Contour filled plot of SSR values for Battle of Kursk data. p values are variec 
between 3.0 and 9.0 with increments of 0.1, q values are varied between 0.0 and 2.5 with 
increments of 0.1, d=l .O, a and b values depend on p and q. 
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are given as in equations V.A.(108) and V.A.(109). Figure 86 shows the same area using 

a contour filled plot. 

The above results imply that there is no absolute best fit, as long as one stays in 

the broad vicinity of the identified best fit, it is likely to have similar fits, and there is not 

just one set of parameters that clearly gives a best fit. One can still find a similar fit as 

long as the estimated parameters are in the vicinity of the best fit. However, the area of 

the surface bounded by the lowest contour in Figure 86 says, roughly, the best fitting 

models have a q parameter between 0.5 and 2, while the p parameter is between 4 and 8. 

This observation is significant in that the Lanchester linear and square laws have a p 

value of 1 and the logarithmic law has a p value of 0. When p=l, the best fitting model 

has a 9% higher SSR value than the lowest found value of 5.54~10'; which was found 

by using LTS regression. I 

A wide range of parameters fit equally well, but the question is, is this true for 

Ardennes campaign data too? Figure 87 shows the contour filled plot for the Ardennes 

data together with the best fits determined by Bracken and Fricker. Again, a and b 

depend on p and q, and d=l. The a and b parameters are chosen to minimize SSR for 

regression the through origin, and are given in equations V.A.(108) and V.A.(109). 

When Figure 87 is examined, one can see that the general pattern observed for the Kursk 

data is also observed for the Ardennes campaign data. 

The bottom line conclusion is that different researchers using different methods 

all came up with very different answers because the surface around the models' fits is 

very flat. 
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5gure 87. Contour filled plot of SSR values for Ardennes Campaign data. p values are 
varied between -6.0 and 6.0 with increments of 0.1 , 4 values are varied between -6.0 and 
6.0 with increments of 0.1, d=1.0, a and b values depend on p and 4. Note: Fricker’s 
method has a better R 2 ,  this is not apparent from this figure which uses differently 
formatted data and no tactical parameter d. 

rn Fricker’s methodology, when applied to Battle of Kursk data gives a better fit 

than Bracken’s. This conclusion implies that the algorithm Fricker introduces in 

his study is useful in fitting the data and can be used in further studies. 

rn Throughout the study, with the exception of the two models whose results are 

given in equations IV.A.2.( 14), IV.A.2.( 13 ,  IV.A.2.( 18), IV.A.2.( 19), and the 

models with the negative exponential parameters, the a parameter is always 

greater than the b parameter. This consistency implies that individually, German 

soldiers are more lethal than Soviet soldiers, and they also fought better than the 

Soviets. Also, according to this difference in parameters, German military 

expertise was much better than the Soviets’ in the Battle of Kursk. This finding 
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was consistent throughout the battle. Despite their lack of military expertise, the 

Soviets won the battle due to their massive amount of supplies and manpower. 

Another significant result for the a and b parameters is that both are very small, 

and this result is consistent with Fricker’s findings. 

The best fit to the data is observed when robust LTS regression model is applied. 

Robust LTS regression gives the smallest SSR value, which is 5 . 5 4 ~ 1 0 ~  when 

d=l .O. This finding was significant because it indicates no attackeddefender 

advantage. 

The d parameter, which gives the best fit using the linear regression model, is 

found to be 1.17. Using the a, b, p and q parameters found in equations 

IV.B.3.b.(40) and IV.B.3.b.(41), the data is analyzed in four distinct periods. The 

analysis revealed that it was usually advantageous to be the attacker in Battle of 

Kursk campaign. The only two days when the defender had the advantage w e  

the first day when Germans attacked and the eighth day when the Soviets 

attacked. The Battle of Kursk was a major tank battle. Since a tank is an assault 

weapon, and is not optimally used as a defense weapon, the rationalization that 

the attacker will always have the advantage is considered a natural outcome of 

this battle. 

Finding only one tactical parameter d,  and refusing to vary from that parameter 

through the battle is apparently a mistaken approach. The tactical parameter for a 

battle in which one side attacks a defender behind heavily fortified positions must 

not be the same with the tactical parameter for a battle in which one side is 

counterattacking and the other is making a hasty defense. 
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The tactical parameter in the first half of the battle, being greater than the tactical 

parameter in the second half, indicates that the Germans were better than Soviets 

both in attack and defense. This finding is especially consistent with the tactical 

parameter value of 0.32 found on the eighth day, during which the Soviets 

counterattacked. 

The plots investigated in Section IV.B.7 show that if the force ratio is higher, then 

loss will be reduced because, as force ratio increases, loss decreases. This result 

is consistent with the force ratio approach, which is widely used in military 

simulation models today, showing the effectiveness and validity of the approach. 

The R2 values given in Table 32 indicate that the model with the change point 7/7 

represents the data with the best fit, with an R2 value of 0.7748. The second best 

fit is observed with the model that divides the campaign in four different parts, 

with an R2 value of 0.5689. This suggests that even an individual battle cannot 

be viewed as homogenous. 

Some models have negative R2 values, meaning that one can have a better 

estimate of the attrition just by using the mean value, as opposed to using the 

model itself, and going into the modeling business. In other words, it is better to 

use the mean value for estimating the attrition instead of using the estimate given 

by the models, which have negative R2 values. The negative R2 values found in 

section IV.A.2 for Fricker’s models occurred because the parameters were 

rounded off in Fricker [Ref.6]. Had more precise values been available the R2 

values would have been positive. 
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Throughout the thesis, the robust LTS regression technique gives better fits to the 

data than the linear regression technique. This is because the robust regression 

models are useful for fitting linear relationships by discounting outlying data 

when the given data in hand contains significant outliers, as in our case. 

Combat models cannot provide clear-cut results to a military analyst. One cannot 

determine the outcome of a battle precisely by using combat models. Together 

with their use to gain insight about the battles and cmpaigns that happened in the 

past, combat models heip to make better decisions by enabling the decision-maker 

to compare different alternatives using various combat modeling techniques. 

B. RECOMMENDATIONS 

The models presented in this thesis study do not include nor analyze total 

manpower data. Data for total manpower is present in the KDB and can be examined in 

the future studies. 

The weights used for aggregating the forces are subject to research. A more 

complex model, one that includes the weights of weapons systems as unknown 

parameters to be estimated, can be set up and analyzed to find a better fit. And when the 

complex and numerous different weapon systems of today’s military are considered, this 

shows potential to be a very interesting research topic. 

Weapon systems other than the featured tanks in this study can be used to find a 

model with a better fit using a homogenous weapons scenario. 

In this thesis, the change points for each side is on the same day. Another way to 

find a better fit would be to use different change points for each side, rather than using 

the same change point. 
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A final recommendation for the continued analysis of the Kursk database is to try 

to fit additional models other than the Lanchester models. 

149 



THIS PAGE IS LEFT INTENTIONALLY BLANK 

150 



APPENDIX A. DETAILED INFORMATION ON TYPES OF MANPOWER 

AND WEAPON SYSTEM LOSSES FOR BATTLE OF KURSK 

A. TYPE OF MANPOWER CASUALTIES 

Figure 88 shows the fraction of each type of casualty relative to total casualties. 

When all of four casualty types are considered, WIA accounted for the largest amount of 

casualties for both sides, and the German WIA fraction (0.751) was significantly higher 

than the Soviet WIA fraction (0.543). The next largest Soviet casualty fraction was for 

CMIA (0.230) while CMIA fraction accounted for the third largest German casualty 

fraction (0.031). The Soviet CMIA fraction was over 7 times greater than the German 

fraction. KIA accounted for the second largest German casualty fraction (0.15) while 

KIA fraction accounted for the third largest Soviet casualty fraction (0.217). Fewer than 

1 percent of total casualties were DNBI for the Soviet (0.008), while DNBI accounted for 

almost 7 percent of total German casualties (0.65), which is over 7 times greater than the 

Soviet fraction. 

Figure 89 shows the fraction of each type of casualty relative to initial OH 

Personnel. When all four casualty types are considered, WIA accounted for the largest 

amount of casualties for both sides again, and the Soviet WIA fraction (0.126) was 

slightly higher than the German WIA fraction (0.089). The next largest Soviet casualty 

fraction was for CMIA (0.053), while CMIA fraction accounted for the smallest German 

casualty fraction (0.003). The Soviet CMIA fraction was over 14 times greater than the 

German fraction (14.401). KIA accounted for the second largest German casualty 

fraction (0.018) while KIA fraction accounted for the third largest Soviet casualty 

fraction (0.050). While less than 1 percent of total casualties were DNBI for the both 
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sides, German DNBI fraction (0.007) was almost four (3.84) times higher than the Soviet 

DNBI fraction (0.002). 
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Figure 88. Fraction of personnel casualty types relative to total personnel casualties. 
V I A  accounted for the largest amount of casualties for both sides. 
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Figure 89. Fraction of personnel casualty types relative to total initial OH personnel. 
WIA accounted for the largest amount of casualties for both sides. 
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Figures 90 through 97 show daily and cumulative casualties for each casualty type 

of KIA, WIA, CMIA and DNBI consecutively. The largest differences are in KIA and 

CMIA. The Soviets had almost 5 (4.621) KIA for every one German KIA. The gap is 

even bigger for CMIA, with almost 24 (23.905) CMIA for every German CMIA. KIA 

and CMIA together, accounted for almost 45 (0.448) percent of total Soviet casualties, 

while they accounted for only slightly over 18(0.183) percent of total German casualties. 

For both sides, the majority of casualties were WIA. The Soviets had more than twice 

(2.343) as many WIA as the Germans. 

The peak daily combat casualty rates occurred on July 5 and 12. The German 

peak daily rate was on July 5. The first day of the German attack was July 5, when only a . 

minority of the Soviet force was engaged, and several Soviet units were overrun. 
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Figure 90. Daily number of total personnel casualties that are KIA. KIA denotes 
personnel that are killed in action. 
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Figure 91. Daily cumulative number of total personnel casualties that are KIA. KIA 
denotes personnel killed in action. 
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Figure 92. Daily number of total personnel casualties that are WIA. WIA denotes 
personnel wounded in action. 
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Figure 93. Daily cumulative number of total personnel casualties that are WIA. WIA 
denotes personnel wounded in action. 
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Figure 94. Daily number of total personnel casualties that are CMIA. CMIA denotes 
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Figure 95. Daily cumulative number of total personnel casualties that are CMIA. CMIA. 
denotes personnel captured or missing in action. 
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Figure 96. Daily number of total personnel casualties that are DNBI. DNBI denotes 
casualties due to disease and nonbattle injuries. 
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Figure 97. Daily cumulative number of total personnel casualties which are DNBI. DNBI 
denotes casualties due to disease and nonbattle injuries. 

B. TYPE OF TANK LOSSES 

Figure 98 shows the fraction of each type of tank loss relative to total tank losses. 

When both types of losses are considered, DAMAGED accounted for the largest amount 

of tank losses (0.849) for the German side, while DST+ABND accounted for the largest 

amount of tank losses (0.543) for the Soviet side. Consequently, DST+ABND accounted 

for the 15 (0.150) percent of tank losses for the Germans and DAMAGED accounted 

for the 54 (0.543) percent of tank losses for the Soviets. Overall, for every 1 

DAMAGED Soviet tank, 1 (1.008) German tank was DAMAGED, and for every 1 

DST+ABND German tank, almost 7 (6.655) Soviet tanks were DST+ABND. 

Figure 99 shows the fraction of each type of tank loss relative to initial amount of 

OH tank. When both types of losses are considered, again DAMAGED accounted for the 

largest amount of tank losses for the German side, while DST+ABND accounted for the 
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largest amount of tank losses for the Soviet side. 89 (0.888) percent of the initial amount 

of OH German tank was DAMAGED, while only one sixth of that amount, i.e. 16 (0.157) 

percent, was DST+ABND. Fifty (0.495) percent of the initial amount of OH Soviet tanks 

was DST+ABND, while 42 (0.415) percent, was DST+ABND. 

Figures 100 through 103 show daily and cumulative tank losses for each type of 

tank losses, namely DST+ABND and DWAGED consecutively. 

C. TYPE OF APC LOSSES 

Figure 104 shows the fraction of each type of APC loss relative to total APC 

losses. When both types of losses are considered, DAMAGED accounted for the largest 

amount of APC losses (0.739) for the Germans, while DST+ABND accounted for the 
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Figure 98. Fraction of each type of tank loss relative to total tank losses. When both types 
of losses are considered, DAMAGED accounted for the largest. amount of tank losses for 
the German side, while DST+ABND accounted for the largest amount of tank losses for 
the Soviet side 
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Figure 99. Fraction of each type of tank loss relative to initial number of OH tanks. When 
both types of losses are considered, DAMAGED accounted for the largest amount of tank 
losses for the German side, while DST+ABND accounted for the largest amount of tank 
losses for the Soviet side. 
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Figure 100. Daily number of total tank losses that are DST+ABND. DST+ABND denotes 
the weapons that are destroyed or abandoned. Soviets had no tanks that are DST+ABND 
on day 1, Germans had no tanks which are DST+ABND on day 15. 
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Figure 101. Cumulative number of tank losses that are DST+ABND. DST+ABND 
denotes the weapons that are destroyed and abandoned. 
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Figure 102..Daily number of total tank losses that are damaged. Soviets had no damaged 
tanks on day 1. 
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Figure 103. Daily cumulative number of total tank losses that are damaged. 

largest amount of APC losses (0.623) for the Soviet side. Consequently, 

DST+ABND accounted for the 26 (0.260) percent of APC losses -for the Germans and 

DAMAGED accounted for the 38 (0.376) percent of APC losses for the Soviets. 

Overall, for every 1 DAMAGED Soviet APC, more than 3 (3.227) German APCs were 

DAMAGED, and for every 1 DST+ABND Geman APC, 1.46 Soviet APCs were 

DST+ABND. 

Figure 105 shows the fraction of each type of APC loss relative to initial amount 

of OH APC. When both types of losses are considered, again DAMAGED accounted for 

- the largest amount of APC losses for the German side, while DST+ABND accounted for 

the largest amount of APC losses for the Soviet side. Twelve (0.121) percent of the 

initial amount of OH German APC were DAMAGED, while only one third of that 

amount, i.e. 4 (0.042) percent, were DST+ABND. Fourteen (0.142) percent of the initial 
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amount of OH Soviet APC were DST+ABND, while 9 (0.086) percent, were 

DST+ABND. 

Figures 106 through 109 show daily and cumulative APC losses for each type of 

APC losses, namely DST+ABND and DAMAGED consecutively. 
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Figure 104. Fraction of each type of APC loss relative to the total APC losses. 
* DAMAGED accounted for the largest amount of APC losses for the German side, while 
DSTcABND accounted for the largest amount of APC losses for the Soviet side. 

D. TYPE OF ARTILLERY LOSSES 

Figure 110 shows the fraction of each type of Artillery loss relative to total 

artillery losses. When both types of losses are considered, DST+ABND accounted for the 

largest mount of artillery losses for both sides, and the Soviet DST+ABND fraction 

(0.847) was significantly higher than the German fractioc (0.559). Consequently, 

DAMAGED accounted for the 44 (0.440) percent of artillery losses for the Germans 

and 15 (0.152) percent of artillery losses for the Soviets. Overall, for every 1 

DAMAGED Soviet Artillery, nearly 3 (2.545) German artillery was DAMAGED, and for 
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every 1 DST+ABND German artillery, almost 2 (1.718) Soviet artillery was 

DST+ABND. 

Types of APC Losses relative to initial amount of APCs 

0.14 

0.12 

c;l 0.1 
0 .GermanAFTLoss 
5: 0.08 
0 Soviet APC Loss 

3 
cr 

.- 
2 0.06 
L 

0.04 

0.02 

0 
Damaged Dst+Abnd 

h Y S  

Figure 105. Fraction of each type of APC loss relative to the initial amount of APCs. 
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Figure 106. Daily number of total APC losses that are DST+ABND. DST+ABND 
denotes weapons that are destroyed or abandoned. Soviets had no APCs that are 
DST+ABND on days 1,13,14. Germans had no APCs that are DST+ABND on day 1. 
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Figure 107. Daily Cumulative number of total APC losses that are DST+ABND. 
DST+ABND denotes weapons that are destroyed or abandoned. 
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Figure 108. Daily number of Total APC losses that are damaged. Soviets had no 
damaged APCs on days 1 ,2 ,3 ,7 ,  12 and 13. Germans had no damaged APCs on days 1, 
13 and 14. 
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Figure 109. Daily cumulative number of total APC losses that are damaged. 
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Figure 110. Fraction of each type of artillery losses relative to total artillery losses. 
DST+ABND accounted for the largest amount of artillery losses for both sides. 
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Figure 111 shows the fraction of each type of artillery loss relative to initial 

amount of OH artillery. When both types of losses are considered, again DST+ABND 

accounted for the largest amount of artillery losses both for the German side and also for 

the Soviet side. 6 (0.059) percent of the initial amount of OH German artillery was 

DST+ABND, while 5 (0.047) percent was DAMAGED. 17(0.169) percent of the initial 

amount of OH Soviet artillery was DST+ABND, while only almost one sixth of that 

amount, i.e. 3 (0.030) percent, was DAMAGED. 

Figures 1 12 through 115 show daily and cumulative Artillery losses for each type 

of artillery losses namely DST+ABND and DAMAGED consecutively. 
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Figure 111. Fraction of each type of loss relative to initial amount of artillery. 
DST+ABND accounted for the largest amount of artillery losses for both the German 
side and the Soviet side. 
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Figure 112. Daily number of total artillery losses which are DST+ABND. DST+ABND 
denotes weapon systems that are destroyed or abandoned. 
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Figure 113. Daily cumulative number of total artillery losses that are DST+ABND. 
DST+ABND denotes weapon systems that are destroyed or abandoned. 
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Figure 114. Daily number of total artillery losses that are damaged. Soviets had no 
damaged artillery .on days 1,6, 11, 13, 14 and 15. Germans had no damaged artillery on 
days 11 and 14. 
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Figure 115. Daily cumulative number of total artillery losses that are damaged. 
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