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ABSTRACT

In this thesis, we propose a standardi zed procedure
for detecting fraud in Defense Finance and Accounting
Service (DFAS) vendor paynent transactions through
Unsupervi sed Mddeling (cluster analysis). Cl enentine Data
M ning software is used to construct unsupervi sed nodel s of
vendor paynent data using the K-Means, Two Step, and
Kohonen al gorithns. Cluster validation techniques are
applied to select the nost useful nodel of each type, which
are then conbined to select candidate records for physical
exam nation by a DFAS auditor. Qur unsupervi sed nodel ing
technique wutilizes all the available valid transaction
data, much of which is not admtted under the current
supervi sed nodel i ng procedure. Qur procedure standardi zes
and provides rigor to the existing unsupervised nodeling
met hodol ogy at DFAS. Additionally, we denpnstrate a new
clustering approach called Tree Custering, which uses
Classification and Regression Trees to cluster data wth
automatic variable selection and scaling. A standardi zed
procedure for Unsupervised Modeling, detailed explanation
of all denentine procedures, and inplenentation of the

Tree Clustering algorithmare included as appendi ces.
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EXECUTI VE SUMVARY

The Defense Finance and Accounting Service (DFAS)
Internal Review Seaside (IR Seaside) office, also known as
Operati on Mongoose, S responsi ble for i dentifying
potentially fraudul ent transactions in vendor paynent data.
Their primary tool is data m ning of vendor paynent data to
identify candidate transactions for manual audit by DFAS
account ant s. The current procedure relies heavily on
supervi sed nethods such as Cassification and Regression
Trees and Neural Net wor ks, which predict the fraud
classification of transactions in an audit population.
These supervised nodels are “trained” using a Know edge
Base of transactions from 17 proven fraud cases.
Unfortunately, this data is outdated and inconplete, so
supervised nodels built with the Knowl edge Base may not
effectively exploit all the characteristics of audit

popul ati on dat a.

Unsupervi sed nodeling, or cluster analysis, is a data
mning technique that finds patterns or groupings in data
wi thout the need for a response variable (such as fraud
cl assification). Unsupervised nodels are specific to a
particular data set, and independent of any external data
for nodel construction. The current unsupervised nodeling
process is neither rigorous nor standardized. O the total
nunber of transactions selected for manual audi t,
supervised nodeling is used to identify 80% unsupervised
nodel ing accounts for 10% and the remaining 10% are
sel ected at random  Supervi sed and unsupervi sed nodel s are
trained using SPSS, Inc.’s data m ning software C enenti ne,
Version 7.0.



The intent of this thesis is to develop a
standardi zed, rigorous unsupervised nodeling nethodol ogy
that wutilizes all available valid transaction data and
anal yzes audit popul ation transactions independent of the
Know edge Base. Clenentine’s K-Means, Two Step, and
Kohonen algorithms are wused to construct unsupervised
nodel s of audit popul ation paynent data, and then cluster
val i dation techniques are applied to select the nost useful
nodel of each type. Finally, these three nodels are
conbined to select candidate records for physi cal

exam nation by a DFAS auditor

The selection of candidate records for audit is based
on the assunption that all the transactions belonging to
the sane contract are sonehow simlar, and should be
grouped together. After clustering the data, any
transaction that does not fall within the “honme” cluster of
its par ent contract 'S consi der ed an “or phan.”
Transactions that are identified as orphans under all three
clustering schenes are selected for audit.

This methodology is not intended to replace the
current system of supervised nodeling; rather it should be
consi dered conpl enentary. It is desirable to identify
different candidate transactions with each of the two
nmet hods, producing a nore robust collection of transactions

for manual audit.

This inproved nethodology was developed wusing a
previ ously audi t ed popul ati on of vendor paynment
transactions from the US Navy STARS system in Norfolk, VA
A total of 155 transactions (out of over 198,000) were

identified as orphans by all three of the unsupervised

XX



nodel s. The previously conducted supervised nodeling
effort identified 243 potentially fraudulent transactions
in the Norfolk data; there were only two transactions
sel ected by both nmethods, illustrating the independence and

conpl ementary nature of the two techniques.

Deliverables to IR Seaside include the Cenentine
files used to devel op the nethodol ogy, a Proposed Standard
Oper at i ng Procedure for Unsupervi sed Model i ng, t wo
spreadsheet tools for cluster validation, and a two-hour

training presentation for all Operation Mongoose personnel.

This thesis additionally denonstrates a new clustering
approach called Tree Clustering, which uses Cassification
and Regression Trees to <cluster data wth automatic
variable selection and scaling. This technique is
successfully denonstrated on a small set of sinple data
using Insightful Corporation's SPLUS statistics and data
anal ysis software. The technique is also applied to the
DFAS Know edge Base, with m xed results.

XX
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. 1 NTRODUCTI ON

A OPERATI ON MONGOOSE AND VENDOR PAYMENT AUDI Tl NG

The Defense Finance and Accounting Service (DFAS) is
responsi bl e for disbursing nearly all the funds expended by
the Departnent of Defense. G ven the enornmous nunber of
taxpayer dollars that are paid in the services' Vendor
Paynment systens, fraud is a major concern. In the md-
1990's, the Ofice of the Secretary of Defense (0OSD)
sponsored a project to uncover fraudulent vendor paynent
transactions called “Operation Mngoose.” This project was
subsequent|ly undertaken by the DFAS Internal Review section
in Seaside, CA (IR Seaside). To identify fraudul ent
paynments, a DFAS examner reviews the docunentation on
hundreds of vendor paynents, selected out of the hundreds

of thousands of total transactions. An effective and
efficient selection process is critical: auditing is very
time-consumng, there are a limted nunber of exam ners,

and fraudul ent paynents are very rare in proportion to the
total nunber of transactions. Data mining was selected as

the principal tool to select candidate records for audit.

IR Seaside contracted Dr. Dean Abbott of Abbott
Consulting, Inc., to develop its data mning nethodol ogy.
Dr. Abbott et al. devised a data mning process [6] wusing
the popular data mning software Cenentine [4]. Their
procedure conbines a Knowl edge Base (KB) of known
(successfully prosecuted) fraud transactions and sanpl es of
transactions from the popul ati on bei ng exam ned (presumably
not fraudulent) to “train” wvarious classification tree,

rul e-based, and neural network nodels to detect fraudul ent

1



paynent s. This technique is called “supervised nodeling.”
The supervised nodel s are eval uated, conpared, and conbi ned
in a weighted voting schene, which results in the selection
of candidate records for audit (transactions that the
nodels predict are likely to be fraudulent). Under the
current DFAS system the mjority of transactions (80%
sel ected for nmanual audit cone from the conbi ned supervised
nodel (or are related to those selected), wth the
remai nder selected randomy (10% or through unsupervised
nodel i ng (109 .

Since March 2000, the IR Seaside team has conducted
audits at thirteen vendor paynment system sites using the
nmet hodol ogy descri bed above. Although many of the paynents
audited after having been selected by data mning have one
or nore  Conditions Needi ng | mpr ovenent (CN; sone
deficiency or error which mght indicate potential fraud),
there has only been one case discovered with evidence of
fraud strong enough to warrant prosecution.

The Knowl edge Base (KB) of fraudulent transactions
that is used to “train” the supervised nodels used in the
current data mning process is snmall and outdated. There
are many data fields in the populations to be investigated
that are not populated in the KB, and thus are not used in
the current supervised nodeling process. These fields
contain information which if included could presumably
enhance the detection of fraudul ent paynents. Although Dr.
Abbott et al. used unsupervised |learning (cluster analysis)
in their initial classification of the fraud transactions
in the KB, the unsupervised nodeling conducted in the

current data mning process s neither rigorous nor

2



st andar di zed. Unsupervised |earning should be used nore
extensively to exploit the many data fields that are not
populated in the KB, which thus go unused in supervised
nodel i ng. Expl orati on of this ot herwi se “wast ed
information” could potentially enhance the detection of

data patterns that m ght indicate fraudulent activity.

B. A NEW CLUSTERI NG METHODOLOGY W TH AUTOVATI C VARI ABLE
SELECTI ON AND SCALI NG

When finding clusters in data, the choice of variables
i ncluded for nodeling can have an inpact on the results.
There nmay be one or nore fields whose values are unrel ated
to anything of interest, whose inclusion as variables for
nodel i ng m ght produce incorrect or msleading results. A
useful clustering nmethodology nust be able to detect and

elimnate such “noi se” vari abl es.

Anot her chal | enge when clustering data with continuous
variables is the choice of scale. Different scale choices
can produce wldly different, and possibly m sleading,
clustering results. Thus, an effective neans of scaling is
desirable for a clustering nethodology, as discussed in
[12] .

Buttrey has proposed a new nethod called “Tree
Clustering” in [2]. This technique wuses a set of
regression or classification trees (one for each origina
vari abl e) to find simlarities anong observati ons

(observations which tend to fall into the same | eaves being
simlar). This approach automatically selects the nost
i nport ant vari abl es for clustering and IS scal e-



i ndependent . The Tree Clustering nmethod is described in
detail in Chapter VI.

C. PURPOSE AND SCOPE OF THE THESI S

The purpose of this thesis is twofold: first, to
devel op a wuseful, rigorous, standardized cluster analysis
nmet hodol ogy for IR Seaside using the C enentine data m ning
software; second, to denonstrate the tree clustering
met hodol ogy on vendor paynent dat a.

This thesis will be limted in scope to analyzing DoD
vendor paynment data using unsupervised nodeling (cluster
anal ysi s) . It will not address any issues involving
supervi sed nodeling other than to point out shortcom ngs of
the current procedures. The specific data used to devel op
t he unsupervi sed nodel i ng met hodol ogy IS t he
NC2_STA POP_2000 database of US Navy STARS transactions
conducted in Norfolk, VA, from Cctober 2000 to March 2002.

D. OVERVI EW OF THESI S

This thesis is organized into four general areas:
backgr ound i nformati on, i npl enent ati on and results,
concl usi ons and reconmmendati ons, and appendi ces.

Chapters II, 1Il, and IV contain the background
information from which the nethodology is devel oped.
Chapter 11 describes the current state of classification
and detection of fraud in vendor pay transactions, the
Know edge Base and supervised nodeling, and potential
i nprovenents avail able wi th unsupervi sed nodeling. Chapter
1l is a primer on the basics of unsupervised | earning,

4



including data types, nodeling nethods, and validation
nmet hods. Chapter |V presents an introduction to the
Clenentine Data Mning software’s basic terninology,

functions, and unsupervi sed nodel types.

Chapter V presents the inplenentation and results of
unsupervi sed nodeling on the Norfolk vendor pay data. Each
of the four Cenentine streans is discussed in detail, as
well as the final clustering results. Chapter VI contains
a thorough discussion of the Tree Clustering nethodol ogy’s

t heory, inplenentation, and results.

Chapter VIl presents the conclusions drawn from
anal ysi s of t he results obt ai ned from Cenentine
unsupervised nodeling and application of the Tree
Clustering algorithm Appendix A displays a detailed
description of the four Cenentine streans discussed in
Chapter V, as well as supporting results. Appendix B is a
pr oposed St andard Operating Procedure ( SOP) for
Unsupervi sed Mdeling for Operation Mngoose. Appendi x C
contains the code for S-PLUS inplenentation of the Tree
Cl ust eri ng net hodol ogy.
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1. CLASSI FI CATI ON AND DETECTI ON OF FRAUD

A CLASSI FYI NG FRAUD

Dr. Dean Abbott et al. extensively examned the
Know edge Base of historical fraud cases and consulted at
length with the accounting experts in DFAS to develop a
classification schene for vendor pay fraud. This process
i s exhaustively detailed in Abbott’s Final Report [6]. The
end result was four classes of fraud: Big Systematic,
Smal | Systematic, Piggyback, and Qpportunistic.

Big Systematic and Small Systematic fraud are
characterized by a long-term process of well planned
actions designed to defraud the governnent. The primry
difference is one of scale of nopney stolen. Pi ggyback

fraud occurs when the crimnal “piggybacks” a fraudul ent
paymnment onto ot her, legitimate ones. Fi nal ly,
opportunistic fraud is just what it seens: a relatively
smal | -scal e theft of opportunity.

The class of fraud assigned to a transaction is used
as the output or response variable in supervised nodeling.
When a vendor pay site’'s population of transactions is used
as training, testing, and validation data to  build
supervi sed nodels, each transaction is assigned the class
of “NF” for “not fraud,” on the assunption that al
transactions in the population are legitinate. Thus the
conbi ned supervised nodels used by Operation Mngoose are
designed to select potentially fraudul ent paynents based on
the fraud class predicted by the nodel trained on the KB

dat a.



B. THE KNOW.EDGE BASE

Operation Mngoose’'s Data M ning Know edge Base (KB)
is an historical repository of 17 successfully prosecuted
fraud cases consisting of 442 total transactions, conducted
from February 1989 to June 1997. Each case is classified
according to one of the four classes of fraud described in
the previous paragraph. Each transaction contains 59
fields of original, transforned, and derived data. The KB
has several shortcomi ngs, which brings into question its
utility in predicting future fraud cases: first, it is
out dat ed; second, many of the fields found 1in the
popul ations are not populated in the KB; and finally, there
IS mssing data.

The age of the KB is problematic for two reasons.
First and forenost, all of the KB transactions were
conducted before the advent of electronic paynents, so the
characteristics of these transactions can be expected to

differ substantially from current EFT-type paynents. Thi s

contributes to the problem illustrated in the next
par agraph as well. Second, the fraudul ent paynents in the
KB represent the “state of fraud” at the tine. It is not

reasonable to presune that fraudulent practices have not
evol ved over tine; presunably nodern fraudsters would use

different nethods fromtheir predecessors.

The problem of wunpopulated fields in the KB relative
to the popul ati ons being exam ned relates to the age of the
Know edge Base, the evolution of data collection practices,
and the different types of vendor pay accounting systens in
use today. As nentioned in the previous paragraph, one of
the nost significant deficiencies of the KB is the |ack of
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any electronic paynent information. O course this is
unavoi dabl e given the age of the KB, but it greatly reduces
the utility of nodels built using KB data to predict fraud
in populations where electronic paynents exist. Besi des
EFT information, there are other data that is captured
today whose capture was infeasible prior to the advent of
nodern conputers and rel ational databases. These types of
fields are wunpopulated in the KB, of course. Final ly,
there are four different types of vendor paynent systens in
use in the DOD today, each of which has unique fields for
data entry as well as nore commbn ones. These uni que

fields are not populated in the Know edge Base.

O the 26,078 possible data entries in the KB, 596 of
them are mssing, primarily in two fields. Monteiro in
[13] conducted an analysis of the Know edge Base and
concluded that the pattern of mssing values is nonrandom
This nonrandom pattern results in conditional dependence
anong the four fraud classes, increasing the I|ikelihood of
m scl assification. Combined with the fact that current
busi ness practices may differ anong audit sites, it is
possi ble that supervised nodels trained on the KB are
predicting either the wong type of fraud, or predicting
sonething other than fraud altogether. These concerns
highlight the need to update, expand, and inprove the KB

for successful supervised nodeling.

C. DETECTI NG FRAUD W TH SUPERVI SED LEARNI NG
1. Current Procedures

The current DFAS Standard Operating Procedure for Data
Mning [7] is extensively detailed in its discussion of

9



supervi sed nodeling. The process begins wth random
division of the population into eight “splits,” each of
which is further subdivided into training, testing, and
val idation sets. Transactions from the KB are then
assigned to each of the 24 sets in a sequential, orderly
manner, resulting in eight sets of Training, Testing, and
Validation data containing both known fraud cases and

records fromthe popul ati on bei ng exam ned.

Next, several different nodel ers independently build a
nodel (or set of nodels) on a different split or set of
splits, using Cenentine supervised nodels such as
Classification & Regression Trees, C5.0 Decision Trees, and
Neur al Networks. The “best” of these nodels (in ternms of
correctly predicting the fraud class of the KB transactions
in their data splits) are conbined in a conplex weighted

voting schenme, which iteratively produces a |list of
candidate records for further investigation. These
candidate records and all related records from the

popul ation are then selected for manual audit. [7]
2. Shortcom ngs of Supervised Mdeling

The primary shortcomng of the supervised nodeling
nmet hodol ogy currently in place is its reliance on the
out dat ed, i nconpl et e, and potentially m scl assi fi ed
Know edge Base, as detailed in Section B of this Chapter
Addi tionally, the supervised nodelers at Operation Mngoose
work very hard to create conplex nodels and conbi nati ons of
nodel s that consistently “nail” all the KB transactions of

a particular type, which is overfitting the data.

Al t hough the population data is randomy divided, the
assignnment of KB transactions to the data splits is

10



predeterm ned, not random which brings into question the
validity of the predictions made by the resulting nodels.
Finally, the supervised nodels do not use many of the data
fields that are available in the population because they
are not popul ated in the KB.

3. Potential Inprovenents Wth Unsupervised Mdeling

The primary potential inprovement wth unsupervised
nodeling is the ability to exploit all the data in the
popul ati on W t hout regard to t he Know edge Base.

Additionally, an wunsupervised nodel wll reveal actual
patterns in the population data, independent of the
pr econcei ved (and potentially i ncorrect) fraud
classifications in the KB. There are, of course,

deficiencies and challenges associated wth unsupervised
| earni ng; these are addressed in Chapter | V.

11
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[11. UNSUPERVI SED LEARNI NG

A DEFI NI TI ON

Unsupervi sed |earning, also known as cluster analysis
or data segnentation, can be defined as the field of
statistical nodeling that does not predict the value of a
response variable as a function of one or nore factors.
Rat her, an wunsupervised nodel is used to describe a data
set in its entirety, grouping together simlar observations
into distinct clusters. The *“distance” between clusters
depends on their degree of dissimlarity; observations that
fall into two clusters that are “close together” are nore
simlar to each other than observations from clusters that
are “far apart.”

Some neasure of the simlarity between observations
must be calculated in order to find clusters in the data
set. Most clustering algorithns utilize a nunmeric matrix
(called a simlarity or dissimlarity matrix) to represent
t he distances between observations. Thus any non-nuneric
vari abl es nmust be coded nunerically in ternms of simlarity
or dissimlarity. For consi stency, I will di scuss
simlarity between observations in terns of distance or

dissimlarity.

B. TYPES OF VARI ABLES

The neasure of simlarity between observati ons depends
primarily on the type of data that mnakes up the

observati on. Il wll consider only the three data types
found in the vendor paynent data: interval-scaled, binary,
and nom nal variables, as well as mxed variables. Thi s

13



di scussion of wvariable types and dissimlarity neasures
foll ows Kauffman and Rousseau in [12]. Note that there are
other dissimlarity measures possible than those described
in the follow ng sections.

1. | nt erval - Scal ed Vari abl es

An interval-scaled variable takes on negative or
positive real values on a linear scale. The nost common
measure of dissimlarity, or distance, for this data type
is Euclidean distance. For a pair of observations i and

with p interval-scaled variables per observation, denoted

by X0 X, and X 5oy respectively, t he di st ance

2

(dissimlarity) is d(i,j)=\/(in—xﬂ)2+(xi2—xj2)2+...+(xip_xjp) _

2. Bi nary Vari abl es

A binary variable takes on only one of two values or
states, such as one and zero, on and off, or true and
fal se. In data applications, binary variables are usually
coded using one and zero. There are two types of binary
vari abl es, symretric and asynmetric.

a. Definition of Symmetric and Asymmetric
Bi nary Vari abl es
A symmetric variable, the nobst common type, is
one where each state is equally informative, and it does

not matter which state is coded as a one. For exanple, the

vari abl e “sex” has possible states “male” and “female.” It
can be stated with confidence that two observations which
are both “fermale” both have the sane sex. An asymretric
bi nary variable, however, possesses states that are not

equally informative, such as the “presence or absence of a

14



relatively rare attribute.”[12] The convention is to code
the nost inmportant, or rarest, outcome, with a one. For

exanple, consider the variable “hair color” wth states

“red” and “not red.” In this case, two observations wth

“hair color” of “not red” cannot reasonably be assunmed to
have the sanme color. Asymmetric binary variables are not

as conmon as symetric binary vari abl es.

b. Measuring dissimlarity in binary variabl es
Consi der two observations i and J, each
consisting of p Dbinary variables. The first step in

calculating their dissimlarity is to consider a 2-by-2
contingency table for them such as shown in Table 1. In
this table, a is the nunber of data elenents (binary
vari abl es) that equals one for both observations, 5 and c
represent the nunber of variables that are different
between the two observations, and 4 is the nunber of data
el enents that equals zero for both observations. The sum
a+b+c+d equals the total nunber of variables, p. The
case where both observations have ones (a in Table 1) is
also called a positive match, whereas observing two zeros

(d in Table 1) is likew se called a negative nmatch.

observation j

1 0
observation i 1 a b a+b
0 c d c+d
a+c b+d P

Table 1 Bi nary Variabl e Contingency Table (from[12])
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The distinction between the two kinds of binary
variables is inportant when considering the dissimlarity
neasure to be used for clustering in a particular
appl i cation. When considering symetric binary variables,
positive and negative natches are equally inportant, so
invariant dissimlarity coefficients, in which « and d
carry equal weight, are appropriate. The nost conmon
invariant coefficient (which is also the sinplest and nost
intuitive) is called the sinple matching coefficient, and
is also known as the Mcoefficient or affinity index. |t
is defined as the proportion of disagreenents between the
two observations i and j:

b+c
a+b+c+d’

d(i, )=

When considering an asynmetric binary variable,

however, the npbst inportant (and rarest) outcone is

typically coded as a one, so a positive match is nore

significant than a negative natch. Thus a noninvari ant

coefficient is required, one that gives nore weight to a

than d. The nost popul ar noninvariant coefficient, the

Jaccard coefficient, |ooks remarkably simlar to the sinple

mat ching coefficient except that d is left out of the
equation entirely:

b+c

D= e

3. Nom nal Vari abl es
A nomnal variable is one that takes on one of a
finite set of values, such as a field containing hair

color, with possible values brown, blond, black, red, and
ot her. Generally speaking, these states or values are
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coded as integers 1,2,3,..M, where M is of course the total

nunber of possible values, and each integer corresponds to
one of the actual values (brown = 1, blond = 2, etc.).
These states are unordered, and each one is equally

i nportant, so the coding can be done in any order.

Returning to the exanple of observations i and ;, we
now consi der each one to consist of p nomnal variables.
The nobst common neasure of dissimlarity between them is
t he sinple matchi ng approach:

.. —u
i, j)=L—%,
p

where u 1is the total nunber of natches (the nunber of
variables out of p that have the sane value for both
observations). Because the coding of possible states is
unordered, this dissimlarity measure is invariant.

4. M xed Variabl e Types

In the event that all of the variables in a data set
are of the sanme type (interval scaled, binary, or nom nal),
a dissimlarity matrix can be constructed wusing the
dissimlarity nmeasures described in the previous three
subsecti ons. However, in many real-world data sets, there
are variables of nore than one type. Therefore, to cluster
m xed vari abl e type observati ons, sone conbi ned
dissimlarity neasure nust be used.

Kauf man and Rousseeuw in [12] descri be a
generalization of the nmethod of Gower [9], which applies to
all of the variable types previously discussed. Consider a

data set of n»n observations each with p variables of m xed

types, with the follow ng definitions:
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» x, is the f"variabl e of observation i
» ¢/ is an indicator variable

5/ = 1if both x

i and X are nonm ssi ng

f

= 0 if either x, or x,
variable fis an asymetric binary variable and
observations i and ; constitute a 0-0 match

is mssing or if

> R

, 1s the range of an interval-scaled variable f

» d’ is the contribution of the (" variable to the
dissimlarity between observations i and

o for a binary or nomnal variable f
) = i
/) =1 if x,#x,
= 0 otherw se

o for an interval-scaled variable f

) _ ‘xif _xf/" :
i T ,

!
Not e that Euclidean distance is not used in this case.

0<d’ <1

Usi ng t he pr ecedi ng definitions, t he overal |

dissimlarity between observations i and ; is defined as:

Bl

) 70N
.50
d(i, j)=+5——

S )
Z 5:‘/’
7=l

Because 4;”€{0,l} and 0<d/’<1, 0<d(,;j)<1 and it can be

entered directly into an nxn dissimlarity matrix for use

in a clustering algorithm

18



C. UNSUPERVI SED LEARNI NG METHODS
1. Partitioning

A partitioning mnmethod groups a data set of n
observations into k£ distinct clusters. This groupi ng nust
satisfy the requirenents of a partition: each group nust
contain at |east one observation, and each observation nust
fall in exactly one group. The user nust specify the
value of k& before conmencing clustering. A partitioning
al gorithm can construct any specified nunber of clusters,
but not all such groupings will be natural or wuseful for
the given data. Therefore final selection of &k is
dependent on trial and error, expert opinion, or other
nmet hods. This problemis discussed nmore fully in section D
of this chapter. Figure 1 shows a data set generated to

illustrate partitioning clustering.

Generated Cluster Data
15
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Oo d‘a@ nt : -l
® ch et . « Group 1
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g o *e = Group 2
3 o & o *
§ : < e T S a Group 3
A A
>A5 0 & LR AL 15 | x Group 4
o KX IR ‘A‘p“ o Group 5
XXX X g(x XX‘ AA AA
X X
-10 4
15
X Value

Figure 1 Generated Data for Clustering by Partitioning
Met hods
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A popular partitioning nethod for data clustering
di scussed in [12] is called K-Mans. This technique uses
Eucl i dean di stance between observations and cluster centers
as its dissimlarity measure, so it is nost applicable to
interval -scaled data. Sone software (including Cenentine)
transforns categorical data for clustering by this nethod;

see Chapter IV, Section B for a detail ed discussion.

The basic K-Means algorithm uses three steps to
cl uster data:

1. During an initial pass through the data, k£ initial
cluster centers are sel ected.

2. In the second pass, the Euclidean distance from each
observation to the nearest center is calculated, and
the observation is initially assigned to that cluster.

3. During the third data pass, the cluster centers are
updated based on the nean distance between all
observations wthin it.

Steps two and three are iterated until the decrease in
mean di stance achieved by changing the cluster assignnment
of any observation is below sone specified threshold, or a
speci fied maxi mum nunber of iterations is reached. Each
observation is ultimately assigned a cluster nunber | abel
and (Euclidean) distance fromits cluster center.

2. Hi erarchi cal Met hods

Wile a partitioning nethod seeks to create a
pr edet er m ned nunber of gr oups of observati ons,
hi erarchical clustering results in every possible nunber of
clusters from1l (all observations in the same cluster) to =
(one observation per cluster). As the nane inplies, as %
increases from 1 to n, clusters on each “level” of the
hi erarchy consist of subsets of the clusters on the I|eve
above (smaller k). For exanple, if k increases from five

to six, the sixth cluster is a subset of one of the other
20



five; conversely, if k decreases fromfour to three, one of
those three clusters wll <contain all the observations
found in sone pair of the original four clusters. Thi s
type of clustering is best visualized as a dendrogram or

tree (see Figure 2).
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Figure 2 A H erarchical Custering Dendrogram of U S.
States fromthe S-PLUS [14] AGNES d ustering
Al gorithm

There are two ways to conduct hierarchical clustering:
top down (divisive), and bottom up (agglonerative). A
divisive clustering algorithm begins with £=1, with all =
observations in one cluster. The clustering consists of
splitting the data into snmaller and smaller groups based on
sone simlarity (or dissimlarity) measure, until k=n. An

aggl onerative clustering algorithm works the opposite way,
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beginning with »n clusters containing one observation each,

then repeatedly conmbining simlar clusters until k=1.

A clustering schene with either k=n or k=1 is not
very useful in nost cases, so the user nust select the
appropriate nunber of clusters by “pruning” the hierarchy
to a neaningful size. This has traditionally been
considered a separate problem distinct from clustering
itself. As will be shown later, Cenentine’s Two Step
hi erarchical clustering algorithm automatically selects the

appropriate nunber of clusters.

3. Sel f - Organi zi ng Maps

A sel f-organizing map, or SOM 1is described in [10] as
“a constrained version of K-Means clustering.” This nethod
is closely related to principal curves and surfaces, and
has the simlar benefit of reducing high-dinensional data

to one- or two-dinensional space for data visualization.

Teuvo Kohonen, a Finnish mathematician, developed a
popul ar algorithm to construct a SOM fittingly called a

Kohonen nap. A Kohonen SOM builds on a two-dinensional
¢,%q, grid lying in the principal conponent plane of the
data. There are K=g¢qq, intersections in the grid, each one

containing a “prototype” or representative observation,
analogous to the initial <cluster centers of a K- Mans
nodel . Each intersection has a two-dinensional *“address”

(0.0,), where Qe{l2,..,q} and Q,e{l,2,.,q,}. Each prototype

m, has an associated label [,€(QxQ, where je{l2,. . ,K}.
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Taking for exanple n observations with p interval-
scaled variables, the basic Kohonen algorithm processes

each observation x one at a tinme, and finds the closest

(Euclidean distance in 9R”) prototype m,. For each

prototype m, wthin the neighborhood of m m, is noved

j 1

toward x, by this update:
m, <—m, +a(x,—m,),

where «o is a learning rate coefficient which decreases

either linearly or exponentially at each step through the

dat a. A prototype m, lies in the neighborhood of m, if

J
Vj—g‘<r, where r is a distance threshold which decreases on

each iteration

Thi s process IS r epeat ed iteratively unti |
predeterm ned stopping criteria are nmet, wth «o and r
decreasing on each iteration. The result is displayed as a
two-di nensional grid of prototypes and their associated

observations, which can be interpreted as a mapping or
folding of the original p-dinmensional data space onto 9%°.

Figure 3 illustrates how prototypes that are closer
together tend to contain nore simlar observations.
Furthernore, the “folding” of the data space neans that
each corner is also “close” to its opposite.
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Fi gure 3 5x5 Kohonen Map of Generated C uster Data

D. EVALUATI ON OF CLUSTERI NG RESULTS
1. Opti mum Nunber of Clusters for K-Means

When applying a partitioning clustering algorithm such as
K- Means, the nunber of desired clusters mnust be selected
before clustering. Because cluster analysis is typically
used to describe natural groupings in a data set, it is
valuable to be able to calculate the optimum or “true”
nunber of clusters, denoted by £k*. Hastie et al. propose
in [10] a method to approximate k* by wthin-cluster
dissimlarity W, as a function of k. W, is a measure of
within-cluster dissimlarity such as total sum of squares,
t ot al vari ance, or Root - Mean Squar ed St andard
Devi ati on. [ 15] As k increases (the data is partitioned

into nore, snmaller clusters), W, wll decrease (the

clusters becone nore honbgeneous). Once the optinum nunber
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of clusters is exceeded, this increase in honbgeneity
(decrease in W) wll be |ess pronounced, because clusters
of simlar objects are being divided into snaller groups of
very simlar objects. Thus, an approximation of k£* is the
smal |l est value of &£ where this “kink” or flattening of the
curve exists. Figure 4 shows this graph for the generated

data in five distinct clusters, and k* = 5 is quite readily

apparent.
Within-Cluster Sum of Squares vs. Number of Clusters
Generated Data
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Figure 4 Eval uati on of Optimm Nunber of Clusters

2. Cluster Validation

When building a supervised nodel, such as a
classification tree, it is standard practice to validate
the trained and tested nodel on a subset of the data that
has not been previously “seen” by the nodel. There are
di fferent neasures of perfornmance for these nodels, such as
m sclassification rate, etc. In the unsupervised case,

however, the true clustering arrangenent of the data is
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typically unknown, so there is no response variable wth
which to conpare cluster nenbership for validation. How,
t hen, does one evaluate clustering results? This question
is particularly difficult in high-dinmensional space, where

vi sualization is not possible.

The nost obvious (but |east rigorous) solution to the
cluster validation problem and one which is appropriate in
many contexts, is “does it work?” In other words, does the
simlarity anmong clustered objects nmake sense to an expert?
Wiile this is not a very objective neasure of performance,

it can be a good first step.

Gordon describes a nore rigorous nethod in [8]. The
data set of interest is randomy divided into tw sets,
called 4 and B. Set A4 is clustered using the nodel to be
val i dated, and then the observations in B are “napped” to
the clusters found in 4. Call this mapping B'. Set B is
then clustered by the sane nethod used to cluster A4, wth
t he sane nunber of clusters. The final step is to conpare
the cluster nenbership of B with B' to determne the “co-
clustering rate” of the nodel. In a “perfect” nodel, each
observation would have the sane cluster nenbership in both
B and B'. This *“co-clustering” is easily exam ned by
formng a k x k contingency table for B and B', as shown in
Table 2. Assuming the cluster |labels are arbitrary, it is
usually possible to rearrange the columms of this table so
that the “best” cluster mapping lies along the nmain
di agonal, as shown in Table 3.
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B clusters
cluster-1 | cluster-2 | cluster-3 | cluster-4 | cluster-5
cluster-1 11 0 0 0 2
cluster-2 0 17 0 0 0
B' clusters [custer-3 0 0 0 0 12
cluster-4 0 0 10 0 0
cluster-5 1 0 0 10 0
Table 2 A/ B Validation Contingency Table for Generated
Cluster Data
B clusters
cluster-1 | cluster-2 | cluster-5 | cluster-3 | cluster-4
cluster-1 11 0 2 0 0
, cluster-2 0 17 0 0 0
B clusters | siera 0 0 12 0 0
cluster-4 0 0 0 10 0
cluster-5 1 0 0 0 10
Table 3 A/ B Validation Contingency Table for Generated

Cluster Data (Rearranged to Illustrate C uster

Mappi ng on Mai n Di agonal)

In the case of perfect co-clustering, all of the off-
di agonal entries would be zero. However, in any real
clustering problem the co-clustering will not be perfect.

How t hen t he

chosen cl ustering nodel ?

to analyze “goodness” or

validity of the

Conover in [5]
dependence and association between the rows and colums of
an The

wel |

di scusses various techniques to neasure

rXxc

conti ngency table.

co-clustering problem
this,
has been chosen as the neasure of

descri bed above lends itself

Coef fi ci ent

to and Craner’s

associ ati on
for our analysis.
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i=1 011 012 O1C I

i=2 021 022 )
]
i=r Or1 Or2 Orc I
C1 C2 Co-1 Cc N

Tabl e 4 Exanple of rxc Contingency Table

Craner’s Coefficient is developed as follows,

referring to Table 4: given a contingency table with r

rows and c¢ colums, with row sums r,7,.,r. and colum suns
¢,Cy505C,, the observed value of cell (i,j) is denoted O;, and

its estimated expected value (assum ng independence of the

r.c,
rows and columms) is defined as EU:#. The chi-square

t est statistic comonly wused for testing the null

hypot hesis of independence 1in contingency tables, is
r c O_E 2
defined as 7=>> (fE—f)

i=l j=I1 i

Craner’s Coefficient is the square root of the ratio
of the observed value of T to the maxi mum possi bl e val ue of

T for a contingency table wth the sane nunber of

observations and rows/colums, or CC= L. N is the
\ N(g-1)

nunber of observations, and ¢ is the mninum of r and c.

For our purposes, either r or ¢ wll do, as r=c=k when
conparing clustering results for A/B validation. For the
generated clustering data validation shown in Table 2, CC =
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0. 945. This can be interpreted as a “94.5% clustering

nodel ,” which would be assuned to be “better” than, say, a

75% cl usteri ng nodel .

Craner’'s Coefficient has two properties that make it
desirable as a conparative neasure: first, it is
di mensionl ess and unit-scaled (00<CC<1.0); and second, it

is scale-invariant in 0,, and c; -

1
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| V. CLEMENTI NE DATA M NI NG SOFTWARE

A OVERVI EW

Clenentine data mning software, produced by SPSS,
Inc., is a robust tool that enables the user to quickly and
easily determine relationships wthin large data sets
t hrough supervised and unsupervised nodeling. | R Seasi de
uses Version 7.0, which is nore user-friendly and intuitive
t han previous editions.

Clenentine is used to analyze data by building what is
called a data stream or sinply a stream a sequence of
operations that begins with a data source, flows through
one or nore nodes where the data is manipulated by field or
record operations, and ultimately is used to build sone
sort of nodel. Qutput can be to a file, plot, or table.

Clenmentine uses three main data types, Sets, Flags,
and Ranges, which are analogous to those discussed in
Chapter 111, Section A Set fields are analogous to
nom nal variables (nuneric or non-nuneric); Flag fields are
binary variables (either 1-0 or sone other coding schene)

and Range fields are interval scal ed vari abl es.

B. UNSUPERVI SED LEARNI NG MODEL TYPES
1. K- Means

The K-Means Node in Cenentine produces a partition of
the input data into k& clusters. This type of nodel is
intended for interval-scaled (Range type) data, but it wll
al so accept categorical (Set and Flag type) variables by
use of data transformations, discussed below. Figure 5

shows an exanple of a K-Means nodeling dialog box, where
31



the user specifies k as well as other paranmeters for nodel
bui | di ng. Input fields nay be selected at build time, or
the nodel can use the Type Node settings, which are found

upstream

Pl
® .
Model narme: (' Auto @ Custom |K-Meansis |
Specified number of clusters: liﬁj
[v| Generate distance field
[v| Show cluster proximity
Cluster label: @ String ! Number
Label prefi |c|uster |
LHWLMDUEI LExpert Lnnnutatiuns |
QK B Execute Cancel Reset

Figure 5 K- Means Node Model Options Di al og Box Moddel Tab

The “Expert” options available for building a K-Mans
nodel control the stopping criteria for the iterative
cluster refinenent process (nunber of iterations or change
criteria) and encoding values for Set fields. The def aul t

encodi ng value of 0.70711 is approximately equal to Jos,
whi ch properly weights the recoded Flag fields to produce a
di stance of 1.0 between observations with different val ues.
Values closer to 1.0 weigh Sets nore heavily than nuneric
fields. Figure 6 shows an exanple of the Expert Tab.
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Ol 1x

Mode: 1 Simple (®) Expert

Stop an: {_r Default il

Maximum iterations: Elilil
Change tolerance: D.Dil
Encoding value for sets: 0.Favt :I

| Fields | Model | Expert | Annotations |

] B Execute Cancel Apply Reset

Figure 6 K- Means Node Model Options Di al og Box Expert Tab
(Default Val ues)

K- Means executes a “quick cluster” algorithm that

clusters nuneric data very quickly and efficiently. The
al gorithm nmakes three passes through the data. In the
first pass, initial cluster centers are selected. The

second pass updates the initial cluster centers, and the
final pass reassigns <cases to the nearest cluster.

Eucl i dean di stance is used to determ ne “cl oseness.”

Binary (Flag type) variables are coded as 0 and 1, and
their values are treated as continuous by the algorithm
This leads to sone shortcom ngs, which are enunerated in

the foll owi ng section.

K- Means handl es nom nal (Set type) variables by
recoding theminto 1-0 Flag variables and treating them as
described in the preceding paragraph. The transfornation

is undertaken by creating one dumry Flag field for each
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possi ble value of the original Set field. For exanpl e,
suppose a Set field “PMI_TYPE' has possible values of A B,
and C. K-Means <creates three dumy Flag fields,
PMI_TYPE A, PMI_TYPE B, and PMI_TYPE C. Thus a record wth
PMI_TYPE of A would have PMI_TYPE A = 1, PMI_TYPE B = 0,
and PMI_TYPE_C = 0.

Wen a K-Means Node is executed, the result is a
“nugget” that represents the nodel. This nodel can be
browsed to examne the nunber of clusters, nunber of
records pl aced into each cluster, inter-cluster
proximties, input fields, nodel build settings, and node
training summary information. When data is clustered by
the generated nodel, two new fields are created for each
record: $KM <nmpdel nane>, the cluster assignnent |abel,
and $KMD- <npdel name>, the distance from each record to its
cluster center. For exanple, a nodel named KMeansOl will
have resulting fields $KM KMeansO01l and $KMVD- KMeansOl
Figure 7 is an exanple of browsing a K-Means nodel nugget,
showi ng the cluster results of this particul ar nodel.
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4 K-Means05 X|

File |} @
2 Collapse Al o Expand Al

cluster1: 34 recaords
cluster 2 20 recaords
cluster 3: 29 recaords
cluster 4: 25 recaords
cluster 18 recards

@@@@@E %

Model

(] Cancel Apply Reset

Figure 7 K- Means Cener ated Mdel s Di al og Box Mddel Tab

2. Two Step

The Two Step Node in Cdenentine produces a
hierarchical clustering of the data set. The user can
ei ther specify the nunber of clusters or allow the Two Step
algorithm to automatically determne the appropriate
nunber. There are no Expert options per se, but there are
options to standardize nuneric fields and exclude outliers.
Figure 8 shows an exanple of the Two Step nodel building

di al og box.
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4 TwoStepAuto x|
@
Model name: ) Auto @ Custom  |[TwoStepAuto |
[v| Standardize numeric fields || Exclude outliers
Cluster label: @ String 7 Number
Label prefi |c|uster |
% Automatically calculate number of clusters
i 15i|ru1inimum: Eil
) Specify number of clusters
Fields | Model | Annotations |
0] I Execute Cancel Appl Reset

Figure 8 Two Step Node Model Options D al og Box Mddel Tab

Two Step uses a log-likelihood function as a distance
nmeasure, and aggl onmeratively produces hierarchical clusters
out of “dense regions” of records. The two steps inplied
by the name of the algorithm are pre-clustering and cluster
menber shi p assi gnnent . Each step entails one pass through
t he data. The pre-clustering step consists of sequenti al
exam nation of the data records, determnation of dense
regions, and tabulation of cluster features. After
conpletion of the first data pass, the appropriate nunber
of clusters (if not user-selected) is determned by finding
the mninmum Bayesian Information Criterion (BIC) value
nmeasured at each nerge in the pre-clustering step, and
refining it based on the ratio change in distance between
the two nerging clusters. The clustering step conprises a
second pass through the data, during which each data record
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is assigned nmenbership in the cluster that is closest in
terms of the |log-likelihood distance neasure. A nore
detail ed discussion of the Two Step algorithm is avail abl e
in[3].

Executing a Two Step node results in a browsable
nugget . Browsi ng the nodel, as shown in Figure 9, reveals
the same type of information as described in the preceding
paragraph for a K-Means nodel. When clustering data with
the generated Two Step nodel, a cluster l|abel is assigned
to each record in the form $T-<nodel nane>. Because the
di stance neasure for Two Step is based on a likelihood
function, no distance field is generated.

’ TwoStepAuto

File

Ol

2 Collapse Al T Expand Al

@ S5 cluster 1 61 records
@ SE cluster 2 28 records
&
e

© 2 cluster 3 36 records

]\Mudel L Summary L Annotations

(]34 Cancel Apply Reset

Figure 9 Two Step Cenerated Mdel s Di al og Box Mddel Tab

3. Kohonen

The Kohonen node in Cdenentine essentially uses
Kohonen’ s al gorithm as described in Chapter |1l to produce
a two-dinmensional nmapping of the data set. The only

difference is that Cenentine’s algorithm does the mappi ng
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in two phases. The first phase conprises rough estimation

to capture gross patterns in the data; the second phase

refines the mapping to finer detail. Figure 10 shows the

“Sinpl e” nodel options available, which essentially control

stopping criteria and reproducibility.

X
£
Model name: ® Auto Custom
[_| Continue training existing model  [¥] Show feedback graph
Stop an: i Default

i Time {mins) :I
[_| Set random seed :I
Fields | Model | Expert | Annotations |
4 Cancel Apply Reset

Figure 10 Kohonen Node Model Options D al og Box Mdel Tab

The Expert options, shown in Figure 11, give the user
much nore control over the details of the Kohonen mapping.
They allow selection of the map’'s dinensions and the
| earning paraneters discussed in Chapter II1. The

“nei ghbor hood” par anet er corresponds to the radi us

paraneter r; “eta” represents the learning rate paraneter
o; and the “nunber of cycles” is the stopping criteria for

the iterative process.
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Ol 1x

Mode: 0 Simple ® Expert]
Wicith: 10/=  Length: =

Learning rate decay. @ Linear 1 Exponential
Phase 1

MNeighborhood: 2]~ Initial Eta: 0.3} Cyeles: 20/
Phase 2

Meighborhood: 1] nitial Eta: 0.1]= Cycles: 150/

| Fields | Model | Expert | Annotations |

] b Execute Cancel Apply Reszet

Figure 11 Kohonen Node Model Options Di al og Box Expert Tab

Unli ke the K-Means and Two Step CGenerated Mdel Dialog
Box, browsing the Kohonen nugget does not reveal nuch
usef ul information other than the dinmensions of the
mappi ng. Because a Kohonen nodel is a type of neural
network, there is a strong elenment of the “black box” to
its function. This kinship with neural nets is also
evident in the nunmber of input and output neurons shown

under “Anal ysis” on the Summary Tab shown in Figure 12.
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Ol 1x

] File Eﬁ

o d
|| & collapse Al T Expand Al

@ [ Analysis
FkH-Kohonen: 4
FkY-Kohonen: 3
Input Layer. 2 neurons
Cutput Layer: 12 neurons

& T Fields

@ [ Inputs
&K
&
@ 7 Build Settings
@ [ Training Sumrmary

L Summary L Annotations

(]34 Cancel Apply Reset

Figure 12 Kohonen Generated Mdels Dial og Box Sunmary Tab

As with K-Means and Two Step, a Kohonen node
generates |label fields for each record of a data set that
is passed through it. In this case the fields are $KX-
<nodel nane> and $KY-<npbdel nane>, representing the (XY)
coordi nates of the prototype or node to which each record
“bel ongs.”

C. SHORTCOM NGS OF CLEMENTI NE UNSUPERVI SED MODELI NG

Clenentine’s data mning process is for the nost part
very wuser friendly and intuitive. However, there are
several caveats and issues that nust be understood to
successfully conduct unsupervised nodeling. Mst of these
required the assistance of SPSS Technical Support to
t hor oughl y resol ve.
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The following issues, if heeded and understood, wll

greatly

expedite the unsupervised nodeling process and

| oner the nodel er’s average frustration | evel.

1.

Al t hough K- Means provi des a mechani sm for
clustering categorical data, SPSS experts reconmend
against it. Their reason is that the clustering
results obtained by using the K-Means al gorithm on
binary data tend to be arbitrary and are strongly
dependent on the order of data presentation. See

Appendi x B for an exanple of this phenonenon.

The Two Step algorithm requires conplete data for

nodel building. |If there are mssing values in the
data used to build a nodel, those records wll be
i gnor ed. Mssing values in data which are

clustered by an existing Two Step nodel may result
in cluster |abel assignnent of $null$.

Kohonen nodeling can be very nenory- and tine-
i nt ensi ve, particularly wth large data sets.
Changing any of the Jlearning paraneters may
aggravate this problem to the point where the tine
required to build a | arge Kohonen map i s excessive.

K- Means nodel s sonetines cannot be browsed unless
all data fields are converted to String and then
re-typed. This is acconplished in the Basic Filter
& Type Supernode di scussed in Chapter V.
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V.  FINDI NG CLUSTERS | N NO2 VENDOR PAYMENT DATA
USI NG CLEMENTI NE UNSUPERVI SED MODELS

A OVERVI EW OF THE PROCESS

The wunsupervised nodeling procedure is divided into
three parts: first, data pre-processing to select the data
used for nodeling; second, developing cluster nodels for
the data set using each of the three types of Cenentine
unsupervised nodeling nodes; finally, conmbining and
conparing clustering output to select candidate records for
exam nati on. The next six subsections describe this
process from database access through analysis. Det ai | ed
screen shots and other docunentation can be found in
Appendi ces A and B.

B. SOURCE DATA: THE NOZ2 POPULATI ON DATABASE

The source data for developnment of the inproved
nmet hodol ogy is the Mcrosoft Access database table called
NC2_STA POP2000/ Popul ation. The data is introduced into
each stream using an SQ. node to select the pre-established
Open Dat abase Connectivity (ODBC) connection. Appendi x A
shows the nodified Operation Mngoose “Fields to Use”
matrix for the NO2 data, which lists each field, its
description, and the status of the field (not used, nodel

i nput, or analysis only).

The population data being clustered is organized by

contracts. Each unique conbination of the fields PIIN
(Procurenment ldentification Nunber) and DEL _ORD (Delivery
Order) conprises a unique contract. The “null hypot hesis”
for clustering these transactions is that all t he
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transactions from a particular contract will fall into the
same cluster, and that transactions (and contracts) falling
into the sane cluster are simlar. The ultimate objective
of this process is to identify the “orphan” transactions
(ones that don't fall into the *“home cluster” for their
parent contract) for further inspection by an auditor. A
simlar notion applies to Kohonen nodels, and is discussed

in section F of this chapter

C. DATA PRE- PROCESSI NG THE BASI C FI LTER & TYPE SUPERNODE

The intent of applying unsupervised nodeling to vendor
pay is to use as nuch of the data as possible, but certain
fields have inconplete and/or unusable data that wll not
contribute to successful clustering, and nust be excluded.
The Basic Filter & Type Supernode, shown in Figure 13, pre-
processes the data in order to avoid data-related problens
with nodel building, and generates two new fields to be
used for analysis. Screen Shots showing the details of

each node’s configuration are found in Appendi x B.
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From Stream Basic Filter To String Filler Basic Type Filter Bad Fields PMTMI’H Filler

- G B D @D @

To Stream /inaIilter Fieldsto Lse Contract WalSet F'MT_T‘IE Filler

Distribution Tahle Distributions and Statistics

Figure 13 Basic Filter & Type Supernode

The Basic Filter Node renoves the fields marked “N in
the nodified “Fields to Use” matrix shown in Appendix A
In general these are fields that are never wused for
nodeling. The To String Filler node converts each field to
a String, then the Basic Type Node re-types each field to
the appropriate Type. This step is necessary to ensure the
browsability of generated nobdels, as nentioned in Chapter
IV, Section C

The remaining fields are examned using the Quality
Node and the Distributions and Statistics Supernode. These
two steps identify “problent fields, denoted by an “B” in
Appendi x A, that are filtered fromthe stream by the Filter
Bad Fields Node; for exanple, Flag or Set fields that have

only one value and all fields with less than 50% valid
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entries. The two fields PMI_METH and PMI_TYPE have the
value $null$ for four records. Because they exceed the 50%
quality threshold, they are dealt with by replacing $null$
with “Blank” in the PMI_METH and PMI_TYPE filler nodes.

The Val Set Derive Node creates a validation set |abe
field based on the field RNDMNUM which is wused to
separate the data set into two random partitions for
cluster wvalidation. The Contract Derive Node creates a
single field concatenating the fields PIIN and DEL_ORD for
ease in finding and manipulating records belonging to a

uni que contract.

Several fields are either not always appropriate as

nodel inputs but have wutility for nodel conparison and
analysis, or are only used as nodel inputs in certain
cases. These fields, marked “A’ in Appendix A, are not

completely filtered from the data stream but rather their
“Direction” is set to “none” in the Final Type Node. The
Final Filter Node renoves the remaining unusable fields
(marked “F” in Appendix A) identified by the Distributions
and Statistics Node or prelimnary nodeling efforts.

The end result “out” of this Supernode is 63 fields
set as nodeling inputs, of all three field types Range,
Set, and Fl ag. There are also 14 other fields avail able
for nodeling or analysis downstream whose default direction

is “none” in the final Type Node.

D. K- MEANS MODELI NG KMEANS_UNSUP_POP_GWR. STR
1. Methodol ogy

As described in Chapter 111, Sections C and D, a

“good” K-Means cluster nodel can be selected by evaluating
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cluster dissimlarity as a function of nunber of clusters
to find the optinmum value of k, and then validated using
the A/B random partitioning and cluster correspondence
t echni que. The stream Kneans_unsup_pop GAR, shown in
Figure 14, is used to generate K-Means nodels and output
necessary to evaluate them Screen shots with details of

each node are found in Appendi x B.

|
==
MOZ_STA_FOP2000: P.
YA
Basic Fijter & Type K-Means
PCAEEf'\pIeAEI

-&) — & — 7 -
-4 -A>

i
i
Standld Type N/eriﬂ\i WalSet select AB Validation Model.. FEM-K-Means8A30 x FK.

AB10 Mode\ AB20 Models AB30 PCA Models

A

Surn of Squares

WOW

A10 Models A20 Models

Figure 14 Kneans_unsup_pop_GAR Main Palette
As described earlier in this chapter, the source data
is brought in from the database, pre-processed in the Basic
Filter & Type Supernode, then typed using the Standard Type
Node. The Nunmeric Type Node selects only “Range” type

fields for nodeling the nuneric-only nodels.
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The first step in the nodel building and validation
process is to build K-Means clustering nodels for all
desired values of Kk. This is acconplished by a K-Mans
Node with Sinple (default) settings, producing cluster
nmenber ship | abel $KM <Mbdel Nane> and distance field $KMD
<Mbdel Nane> for each record. The K-Means nodels are naned
in the format K-neanskkvwnn, where kk is the nunber of
clusters (01, 02,.) ; W is the validation set (A or B; AB
denotes the entire data set); and nn is the nodel series
(10 is all fields, 20 is nuneric fields, 30 is nuneric
fields Principal Conponent Analysis). For exanple, K-
MeansO5AB20 is a five-cluster nodel of the entire data set

using only the numeric fields.

Construction of these nodels can be extrenely tedious,
as each one takes on the order of 2 to 5 mnutes to build,
and typically the nodeler is interested in values of k from
1 to 10, 15, or even 20. This stream incorporates a
G enentine script, shown in Figure 15 to automate the
process. In each case the KMeans nodeling node is used to

generate the nodel

get model zeriez = "10"
forkinl 2345673585910
et 'E-HMeanszs' |
num_clusters=k
nodel name="K-Means0"={k=<{"AB"=model_series
'
if k£ »>= 10 then
get 'K-Means'.model name="E-Means"=<k=-<"48"=<nodel_series
endif
execute 'E-Means'
endfor

Figure 15 Model Building Script
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After all the desired nodels are constructed, the
“optinmuni value of k nust be determned to select the
“best” nodel. The method described in Chapter 111 is used,
whi ch invol ves examning a plot of the total sum of squares
of the distance field for each nodel vs. Kk. The first
(lowest wvalue of k) “kink” or flat spot in the curve
indicates the “optinmuni value of Kk. The total sum of
squares is derived in the Sum of Sqguares Supernode,
detailed in Appendix B. The spreadsheet tool “Sum of
Squares,” described in Appendix C, is used to produce the

Sum of Squares vs. Nunmber of Clusters plot.

Once the “best” nodel in ternms of cluster honobgeneity
is chosen, it is validated by randomy partitioning the
data set into two equal parts, validation sets A and B.
Each set is then clustered with k = £* (the “optinmni val ue
of k determ ned previously). Validation set B is then
passed through the two nodels (K-Means06A20 and K-
Means06B20, for exanple) and the clustering results are
conpared in a two-way contingency table. Craner’s
Coefficient is then calculated, and the nodel’s validity
can be evaluated and conpared with that of other nodels.
The spreadsheet tool “Cluster Correspondence Analysis
Tenpl ate,” described in Appendix C, is used to calculate
Cramer’ s Coefficient.

2. Al Fields: AB10 Models

One of the objectives of this thesis is to utilize
nore of the data fields in population data sets than is
possible in the supervised nodeling process. The majority
of these fields are categorical, so it is not intuitive
that they would be useful for the K-Means algorithm which
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was devel oped for nuneric data. However, C enentine’ s K-
Means nodeling node admits categorical variables (Sets and
Flags) as inputs by way of transfornmation as described in
Chapter | V. The nethodol ogy described in the preceding
par agr aph, when applied to the data streamas it |eaves the
Basic Filter & Type Node, results in the graph shown in
Figure 16. Conparing this graph to the one shown in Figure
4, it is obvious there is no “kink” in this curve, so it is
inpossible to determne the optinmm nunber of clusters

using this nethod with these results.

Within-cluster Sum of Squares vs. Number of Clusters
AB10 Models, Entire Data Set
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Figure 16 K-Means Models Built Wth Al Fields

Fur t her nore, clustering nodels built wth binary
variables (Flag fields) tend to be arbitrary and are very
sensitive to the ordering of the data. Reordering nuneric
data also changes the clustering results, but not as
dramatically. Table 5 illustrates this difference; there

is less simlarity between the nodels built on the
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categorical data than there is between those built on the
nuneri c data. The details of this conparison appear in
Appendi x B.

Cramer's Coefficient

Numeric, Categorical,
Reordered Reordered
Kmeans06AB50| Knmeans06AB70
Numeric Kneans06AB20 83.03% N/A
Categorical Kmeans 06 AB60 N/A 72.12%

Table 5 Effect of Reordering Data on K-Means Model s Built
Wth Categorical Data

3. Nuneric Fields Only: AB20 Model s

The nost |ogical approach to K-Means clustering is to
use nureric variables (Range Type fields) only. The AB20
series nodels include all the Range fields included wth
the AB10 nodels, as well as several others that are used in
place of the Set fields derived from them Figure 17
indicates the proper nunber of clusters is six, and
Cramer’s Coefficient for this six-cluster nodel is 83.23%
Details of this nodel and calculation of Cramer’s

Coef ficient appear in Appendi x B.

This nodel, KMeans06AB20, is considered a “good” nodel
and is included in the cluster analysis node as a tool to
sel ect i nteresting transaction records for further

i nvestigation.
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Within-Cluster Sum of Squares vs. Number of Clusters
AB20 Numeric Models, Entire Data Set
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Figure 17 K-Means Nuneric Only Mdel s

Sum of Squares

4

4. Nuneric Fields Only (Principal Conponents
Anal ysis): AB30 Mddel s

In an effort to further reduce the dinensionality of
the dataset, Pri nci pal Conponents Analysis (PCA) was
applied to the nuneric fields, and the K-Means clustering
process was then conducted on the resulting PCA-transforned
data, resulting in the graph shown in Figure 18. Note that
there are several “kinks,” but the first one is at k=4.
This nodel, KMeans04AB30, has a Cramer’s Coefficient of
82.38% Because it is not obvious that this is the correct
nunber of clusters (there are also “kinks” at k=6 and k=9),
and furthernore because the PCA transformation reduces the
information available for clustering, this nodel was not
selected as a tool for further analysis. Details of the

PCA process and this cluster nodel appear in Appendi x B.
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Within-cluster Sum of Squares vs. Number of Clusters
AB30 PCA Models, Entire Data Set
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Figure 18 K-Means PCA Nuneric Only Models

E. TWO STEP MODELI NG  TWOSTEP_UNSUP_POP_GAR. STR

Building a Two Step cluster nodel is not nearly as
involved as for K-Means, because the *“right” nunber of
clusters is automatically selected by Cenentine. The only
real decision that needs to be nmade is the choice of input
fields, which is already determned in the Basic Filter &
Type Supernode. Figure 19 shows the stream palette. For
Two Step nodels, the 20 series denotes the second iteration
of nodeling, rather than nunmeric only data.
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Figure 19 TwoStep_unsup_pop GAR Main Palette

The nodel generated by the TwoStep node contained

seven clusters, and is naned TwoStep07Aut oAB20. Its
Cramer’s Coefficient is 91.96% For the sake of
conparison, a six-cluster nodel, TwoStep06AB20, was also

constructed; its Craner’'s Coefficient is 90.83% Thi s
indicates that when all the fields are included, the
appropriate nunber of clusters is seven. The seven-cluster
Two Step nodel is included as a tool for cluster analysis
and selection of interesting records. Details of this
stream the nodel, and calculation of Craner’s Coefficient
appear in Appendix B.

F.  KOHONEN MODELI NG  KOHONEN UNSUP_POP_G/R STR

Building a Kohonen Self-Organizing Map is very
straightforward conpared to the K-Means nodeling process
described earlier. Figure 20 shows the Kohonen nodeling
stream and details of the Kohonen node settings are given

i n Appendi x B.
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Due to conputer difficulties at Operation Mngoose,
the only Kohonen nodels that were generated are a 5x5 map
and a 10x11 map, shown in Figure 21 and Figure 22,
respectively.

Interpretation of Kohonen mappi ng results S
strai ghtforward, as suggest ed by Abbot t in [7].
Consi deri ng t he fields $KX- KSOMLOXx11AB02 and $KY-
KSOMLOXx11AB02 as “X’ and “Y", one selects the records that
are mapped to the “sparse” prototypes, such as the line
along Y =1 for X =5, 6, 7, 8 9, by generating a Sel ect
node for those values of X and Y. These records can then
be evaluated using the analysis stream discussed in the
next paragraph.
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Figure 21 5x5 Kohonen

F RS OMA0:114B02

10—

Fho-KSOMA0:11ABOZ

Figure 22 10x11 Kohonen Map
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G MODEL ANALYSIS: ANALYSI S UNSUP POP_GAR. STR
1. Overview

Thi s stream uses t he t hree gener at ed nodel s
(KMeans06AB20, TwoSt epAut 007AB20, and KSOMLOx11AB02) to
“vote” for the records to be further analyzed by a DFAS
auditor. Figure 23 shows the main palette, whose output is
a table listing the “interesting” transactions selected for
further investigation by a DFAS auditor. The definition of
an interesting transaction depends upon the type of
cl ustering. The next few paragraphs detail the selection

of interesting transactions for the different types of

nodel s.
—
NOQ_STA_iprDDD CPL Sparse intnh.rpes
Basic Filter & Type KSOM10x11ABD2 Kohonen Labels CuntraltCnunt
i? S @ — o —
Crplyans Cluster Labels k-MeansBAEZ0 TwoStepOvAutoAB20
Triple Orphans Filter Tahle

Figure 23 Analysis_unsup_pop GAR Main Palette
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2. K-Means and Two Step Model s

For the K-Means and Two Step nodels, an interesting
transaction is one that is an “orphan.” An orphan is
defined as a transaction that falls into a different
cluster than the one containing 70% or nore of the
transactions belonging to its parent contract. The 70%
level for this conparison was chosen to sinplify the
identification of honme clusters and limt the nunber of
orphans to be exam ned. For exanmple, if 50% were the
criteria for selecting home clusters, it is not obvious how
to determine the hone cluster of a contract whose
transactions are evenly divided between two clusters.

3. Kohonen Maps

There are two ways to approach the task of identifying
interesting transactions using a Kohonen map. The first is
the one discussed in the previous section, selecting all
the records assigned to the sparse prototypes of the nap.
Unfortunately the definition of sparse is conpletely
subj ective, so this selection can be arbitrary when done by
“eyebal ing” the Kohonen map. Oher criteria are possible,
of course, such as selecting all records assigned to
prototypes less than a certain size, or a certain nunber of

prototypes containing the fewest records. These are also
arbitrary but less subjective than the “eyeball” nethod.
Table 6 shows the results of this approach: KSOM 10

denotes the ten sparsest prototypes; KSOM 15 contains the
fifteen sparsest ones; and KSOW500 selects the 26
prototypes with fewer than 500 records assigned to them
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Spar se Prototype Nunber of
Sel ecti ons Transacti ons
KSOM 10 1254
KSOM 15 2339
KSOWK500 6175

Table 6 Sparse Prototype Transaction Counts

The second possible approach uses the concept of
or phans, allowing the Kohonen nodel to vote for
transacti ons based on the same criterion as the K-Means and
Two Step nodels. W identify the “hone region” or group of
prototypes for each contract, then proceed to find orphan
transactions which do not fall into the sane group of
prototypes as the mpjority of the transactions for that
particul ar contract. It is appropriate to identify a hone
region rather than a hone prototype for a Kohonen nap
because with the |arge nunber of groups of transactions, it

is likely that some of the contracts wth thousands of
records will be nore or less equally divided along a |ine
of pr ot ot ypes. The nechanics of sel ecting orphan

transactions is the sanme in this case as it was for the
other two nodels: an orphan transaction is one assigned to
a prototype containing less than a specified percentage of
the transactions in the parent contract.

It is difficult to pick a percentage criterion for
selection of orphan transactions that works well for all
contracts. This was possible for the other two nodels
because the maximum nunber of clusters occupied by
transactions of any one contract was four. For the Kohonen

59



nodel, however, there are over 1,300 contracts whose
transactions are assigned to four or nore prototypes, and
t he maxi mum nunber of prototypes occupied by one contract
is fourteen. The challenge is to select a percentage
criterion that is small enough to ignore relatively |arge
groups of transactions but still large enough to find
orphans from contracts with a small nunber of transactions.
As can be seen in Table 7, the choice of percentage
criterion has an enornous inpact on the nunber of records
sel ect ed. This is an area in which further research is
required, ideally to tailor the selection percentage
criterion to the nunber of transactions in a contract as
well as the nunber of prototypes anong which those
transactions are divided.
4. Inplenmentation and Results

Each of the three clustering nodels selects its orphan
transactions as described in the previous paragraphs, then
the transactions selected by all three of the nodels are
identified for further exam nation. Table 7 shows the
nunber of orphan transactions for each of the three nodels,
as well as the nunmber of conmon records sel ected by various
conmbi nations of nodels. Note that three different
percentage criteria for the Kohonen nodel, 30% 20% and
10% are exam ned. The end result is that between 52 and
229 transactions are identified for physical exam nation by
a DFAS auditor. Details of the orphan selection process
and all the nodes shown in Figure 23 are given in Appendi X
B
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Model Nane Nunber of O phan Records
KM 3494
TS 3665
Kohonen 30% 31, 602
Kohonen 20% 16, 612
Kohonen 10% 4299
KM & TS 229
Kohonen 30% KM & TS 155
Kohonen 20% KM & TS 97
Kohonen 10% KM & TS 52
Table 7 O phan Transaction Distribution
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VI . TREE CLUSTERI NG

A OVERVI EW

As proposed in [2] and described in Chapter I, Tree
Clustering is a new unsupervised |earning technique that
exploits the properties of classification and regression
trees to cluster data. This method is independent of
variable type and includes automatic variable selection,
automatic data scaling, and automatic selection of the
optimum nunber of data clusters. This technique is
inmplenented in S-PLUS by the function tree.clust(),
detailed in Appendix B, which returns a dissimlarity
matrix for further clustering by a conventional algorithm

B. CLASSI FI CATI ON TREES
1. Definition

Classification Trees are non-paranmetric supervised
procedures to explain and/or predict a categorical response
based on one or nore input variables. The input variables
can be categorical or nuneric. Figure 24 shows an exanple
of a classification tree that illustrates the follow ng
di scussi on. This tree is based on the S-PLUS Iris data,
and it predicts the species (Setosa, Vi rgini ca, or
Versicolor) of a flower based on its sepal length and w dth
and petal |ength and w dth.
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Petal W<1.75

Setosa

_ﬂLElS—‘ —Petall<4.95
M Virginica Virginica

Versicolor Versicolor Virginica

Figure 24 Cassification Tree of the S-PLUS Iris Data

2. Construction

A classification tree is a binary splitting structure
of the input data, beginning with a node containing all the
data, called the root. The root is divided into two

branches, each of which termnates in a node containing a

subset of the data. These two nodes can each be divided
into two branches, and so on. The term nal node of any
branch is known as a | eaf. Each of these node divisions is

made by choice of a splitting variable and criteria to
maxi m ze the reduction in “node inpurity” (in terns of
predi cted response) for the split. Theoretically (assum ng

each observation is unique), these divisions could continue

until there are n |eaves, one for each observation in the
data set. In practice, however, excessive subdivision
usually results in an overfit nodel. Therefore a tree is

64



typically “pruned” using cross-validation to obtain a nodel
wi th reasonabl e predictive power that is not overfit. [1]

3. Node Inpurity and Devi ance

The concept of node inpurity is inportant, because it
is the basis for selection of splitting variables at each
node. Deviance is a common neasure of inpurity; the higher
the deviance in a node, the less related the observations
are in ternms of predicted response, and the higher the
inmpurity. The followng discussion from Holnmes [11] is

i nformative.

For a given classification tree of =n observations
having a response wth K levels, the probability
distribution of the response classes at leaf i is p,,
k=12,.,K. For leaf i, the joint distribution of the nunber
of observations of each of the K levels is nultinomal wth

probabilities p,, k=12,.,K. The deviance at leaf i is

defi ned as Di=_2zniklog(ﬁik)’ where n, is the observed nunber
k

of observations in level &, and p, is the maximm
l'i keli hood estimate of p,. The total deviance of the tree

is equal to the sumof all the |eaf deviances, D =) D,.

As ment i oned in t he previ ous subsecti on, a
classification tree 1is typically pruned to achieve a
bal ance between predictive power and conplexity. Thi s
pruning is usually acconplished by mnimzing a conplexity
function such as R, =R(T)+a-size(T), where R(T) is a risk
function that penalizes a high level of msclassification

rate, inmpurity or some other neasure of effectiveness,
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size(T) is a measure of conplexity such as nunber of |eaves,
and o is a coefficient determning the weight given to the

si ze functi on.
C. TREE CLUSTERI NG | MPLEMENTATI ON

In Tree Clustering, the simlarity of a pair of
observations is neasured by the their tendency to fall in
the sanme | eaves of classification and regression trees. A
classification tree is a type of supervised |earning, and
requires a response variable for its construction; however,
in the clustering problemthere is no such thing. Gven =
observations wth p variables each, the Tree Custering

net hod sequentially constructs p trees, where the response

variable of tree ¢ is x for te{l2,.,p}. Each tree is

:
“pruned” to its optimum size in terns of smallest cross-
val i dat ed devi ance. Each of the p trees can be described
by its size (nunber of termnal |eaves) and deviance (that
is, decrease in overall deviance from the root to the
terminal level). A tree with only one leaf (and thus zero
devi ance) suggests that its response variable contributes

nothing to the simlarity of observations. Likew se, these

variables will likely not be <chosen as “splitting”
variables in other trees. Such a “noise” variable will be
ignored entirely, which automatically limts selection

variables to those wth significant contribution to
simlarity.
After the trees are built, the distance between any

two observations is proportional to the nunber of trees for
whi ch both observations fall in the same |eaf. The | abel

L (i) denotes the leaf in tree ¢ containing observation i. A
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sinple dissimlarity nmeasure d(i,j) between observations i

and j is
p ..
d(i,j)=).d,
t=1

where d’ is an indicator variable such that d’ = 1 if

t

L@#L(j), and d’ =0 if L@G)=L()).

This dissimlarity neasure is rather naive, as it
takes no account of the different degrees of dissimlarity
anong | eaves of each tree. For exanple, two observations i

and ;j in different |leaves split from the same parent are
presumably “less different” than i and k£, which fall into
| eaves at different levels of the tree. Figure 25
illustrates this concept.

Figure 25 Cassification Tree Illustrating Degrees of
Dissimlarity

It s possible to overcone this shortcomng by
inplenenting a nore sophisticated dissimlarity measure.
Using this neasure, the distance between two observations
in the sane tree is the ratio of the change in deviance

67



obtained by trimring the tree back to their parent node
(the lowest node containing both observations) to the
overall deviance of the tree. For exanple, in the tree
shown in Figure 25 the parent node of observations i and j
is only one level up, so the change in deviance resulting
from trimmng the tree back to that node is very small

Therefore the deviance ratio is small, indicating that
observations i and ; are “close.” Considering observations

i and k, however, the tree would have to be trimmed all the
way back to the root, and the change in deviance would be
equal to the deviance of the whole tree. This results in a
deviance ratio of 1.0, indicating the two observations are
very different. The overall dissimlarity between the two
observations is the sum of their distances over all of the
trees. This dissimlarity nmeasure can be witten as

AL
D ’

5.t

p
d(i,j)=,

t=1

where A’ is the change in deviance resulting from trinm ng
tree ¢+ back to the parent node s containing observations i

and j, and D, is the deviance at the parent node s. The

S-PLUS function tree.clust(), shown in Appendix C
calculates this distance for each (i,j) pair, then uses
them to construct an S-PLUS object of type “dissimlarity”
which can be used as an input to any of the S PLUS

clustering functions.

D. DEMONSTRATI ON OF THE TECHNI QUE

To denonstrate the variable selection capability of

the Tree Custering nethod, we add five “noise” variables
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to the S-PLUS Iris data set (detailed in Appendix OC).
Addi tionally, to denonstrate t he net hod’ s scal e
invariability, we multiply one of the original variables

and one of the noise variables by ten, they are one
order of magnitude greater than the other variables. After
running treeclust() on the noisy data, the resulting
dissimlarity matrix is passed to pam), a partitioning
function in S-PLUS, with k 3 clusters specified. Tr ee
Clustering admts two of the noise variables and all of the

original variables, and the PAM clustering results are as
shown in Table 8, wth Craner’s Coefficient = 92.22%
Speci es Cluster 1 Cluster 2 Cluster 3
Set osa 50 0 0
Ver si col or 3 47 0
Virginica 2 3 45

Table 8 Contingency Table for Tree O ustering Scal ed

Iris Noise Data

To provide a standard for conparison, the scaled,

PAM w th

vari abl es

noisy data was clustered st andar di zed
vari abl es. PAM

subtracting

usi ng
st andar di zes (col ums) by

the colum nean and dividing by the colum

standard devi ati on. These results are shown in Table 9,
with Craner’s Coefficient = 70.58%

clearly superior to the “straight” PAM clustering.

The tree clustering is
Detail s
of these results appear in Appendix C.

69




Speci es Cluster 1 Cluster 2 Cluster 3
Set osa 48 2 0
Ver si col or 0 17 33
Virginica 0 7 43

Table 9 Contingency Table for Custering Scaled Iris
Noi se Data wi th PAM ( St andardi zed Vari abl es)

E. APPLI CATI ON TO VENDOR PAYMENT DATA

To denonstrate the Tree Custering nethod on a nore
conplicated data set, we apply tree.clust() to the DFAS
Know edge Base. Use of the Know edge Base provides a four-
| evel response variable, FRAUD TYPE, with which to eval uate
the Tree Custering results. There are 442 records, each

with 43 input fields, used for this application.

Tree Clustering the Know edge Base admtted all of the
variables and resulted in the cluster assignnments shown in
Table 10, wth Craner’'s Coefficient = 27.33% Thi s
clustering “score” is nmuch lower than that obtained using
the Iris data, probably because of a significant difference
in t he “true” classification of each data  set.
Specifically, while the classifications of the iris species
is conpletely objective, the Know edge Base transaction
classifications are derived from (subjective) expert
opinion of the type of fraud used to describe each
transaction’s parent case. Furthernore, the fraud experts

originally proposed six classes of fraud, which were nerged
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into the four

cl asses

used

t oday.

The seemngly poor

results perhaps reflect these two issues.

Fraud d ass Cluster 1| Custer 2 Cluster 3 Cluster 4
Bi g 144 107 29 2
Systematic
Qpportunistic 40 3 1 1
Pi ggyback 9 2 20 0
Smal | 46 17 20 1
Systematic

Tabl e 10

Contingency Table for Tree Custering Know edge
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VI . CONCLUSI ONS AND RECOMMENDATI ONS

A SUPERVI SED LEARNI NG VS. UNSUPERVI SED LEARNI NG

One objective of wusing unsupervised nodeling is to
identify interesting transactions in the popul ati on paynent
data that mght not be selected by the supervised nodeling
process. This can be evaluated by using a Derive Node to
generate a Flag Field called Sup_Selected, whose value is
“T" for the records selected by the supervised nodeling
stream Likewi se, a Derive Node is used to generate a Fl ag
Field called Unsup _Selected for the records that are
“triple orphans” in the unsupervised nodel analysis stream
Figure 26 clearly shows that the unsupervised nethodol ogy
is selecting different records from the supervised process,
as there are only two records sel ected by both.

Matrix of Unsup_selected - | I:Ilil

&) File Edit & @EE[;] Eiﬂ

Sup_Selected

Linsup_selected F | T |
F 198220 241
T 143 2

Cells contain: cross-tabulation of fields

]\I'u'latrix anpearance Lnnnntatiuns |

Figure 26 Conparison of Records Selected by Supervised and
Unsupervi sed Model s

B. RELATI VE COVPARI SON OF K- MEANS, TWO STEP, AND KOHONEN
CLEMENTI NE MODELS
Each of the three generated nodels, KMeans0O6AB20,
TwoSt epAut 07AB20, and KSOMLOx11AB02 were used to identify
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orphan transactions in the paynent

advant ages

and di sadvant ages

sunmari zed in Table 11

to each type of

dat a. There are

nodel i ng,

Model Type Advant ages Di sadvant ages
K- Means Met hod exists to Limited to nuneric
sel ect numnber of dat a
I r :
clusters Construction of
Handl es m ssi ng nodel s for Sum of
val ues fairly well Squares analysis is
. very tedious if not
Nbdels can be built aut omat ed
fairly quickly
Two Step Accepts categori cal M ssi ng val ues not
dat a al | owed
Only one nodel is Sonet i mes assi gns
required $nul1'$ as cluster
| abel
Kohonen Easy to interpret Det er mi nati on of
in ternms of sparse or phan transacti ons
nodes can be difficult
Expert Settings
require expert
know edge
Model buil ding can be
very time- and
menory-int ensi ve
Tabl e 11 Conparison of Unsupervised Mdel Types
Using all three nodels to “vote” for candi date records
for audit should capitalize on the strengths of each type

of nodel while conpensating for

weaknesses. Anot her

approach could be to Iimt the voting to the K-Means and

Two Step nodels, because their structures are very simlar,

al though the clustering results are different.
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results can then be used to identify records assigned to
the sparse prototypes, and either treat them separately or

include themin the voting schene.

C. RECOMVENDATI ONS FOR | NTERNAL REVI EW SEASI DE

Appendi x E contains the Recommended Standard Operating
Procedure (SOP) for Unsupervi sed Mbdel i ng, which is
intended to supplenent the existing Datanm ning SOP. Thi s
SOP should be wused together with the spreadsheet tools
described in Appendix C to conduct unsupervised nodeling
with nore rigor and success than is possible under the
current process. Applying this nethodol ogy should enhance
| R Seaside’s ability to successfully identify records for
audit that contain Conditions Needing |nprovenent or

fraudul ent paynents.

Supervi sed Modeling should continue to be a part of IR
Seaside’s datamining tool box. The single largest
i npedi ment to inprovenent of this process and successful
detection of fraud is the age and inconpleteness of the
Knowl edge Base. If at all possible, nore current fraud
cases should be obtained and used to update and expand the
Know edge Base. If this is not achieved, the supervised
nodel i ng process and results will not inprove.

Finally, it is recomended to investigate the utility
of nodeling using the CN database rather than the
Knowl edge Base as a nodel -training tool. This is an area
ripe for further graduate research that could maintain the
strong relationship between IR Seaside and the Nava
Post gr aduat e School Operations Research Departnent.
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D. TREE CLUSTERI NG W TH LARCGE DATA SETS

Al though the results shown in Chapter VI, Section D
are not “good” in the sense of clustering based on fraud
classification, they do denonstrate the utility of the Tree
Clustering nethodology on a relatively large data set.
Using this nmethod on a very large data set (for exanple,
the NO2 data used to develop the wunsupervised nodeling
nmet hodol ogy), wll be limted primarily by the ability of
the S PLUS clustering algorithms to handle very |arge
dissimlarity matrices. Wiile the scalability of the
tree.clust() function is theoretically unlimted, its
performance is heavily dependent upon the size of the data
set to be «clustered, particularly in the nunber of

observati ons.

There are two primary performance factors in Tree
Clustering a very large data set: the nunber of trees
constructed (a function of the nunber of variables, p), and
the size of the dissimlarity matrix produced (a function
of the nunber of observations, n). Using “Big O notation
and assuming n? >> p, the function tree.clust() runs in
Q(n?) tine, because the dissimlarity between each pair of
observations nust be calculated. |In the unusual case where
p > n% the function wWill run in Qnp) tine while building p
trees with the n variabl es. The storage required is also
Q n?), because t he dissimlarity mat ri x (actual ly
i npl enented as a vector), nust contain entries for each

pair of observations.
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APPENDI X A. NC2 POPULATI ON DATABASE

g:\home\abottdw\Clemlib\ProcessDocumentation\FieldsToUseNO2.xls

Sup&UnsupTypeNodeFieldInputs

rt&dc28may02

Field Name

Transformation Description

I = Not filtered in Basic Filter & Type Supernode. These fields may be used as direct input for mod

CLEM Type

Comment

leling or as a potential source for a Clementine derive node.

A = Not filtered in Basic Filter & Type Supernode. These fields are used for analysis or record identification or as a potential source for a Clementine derive node, but not as a modeling input.

B ="Bad field" iltered in the Basic Filter & Type Supernode. These fields are never used directly or indirectly for modeling input and are not used for analysis or record identification in the m

N = Fi

Itered in the Basic Filter & Type Supernode. These fields are never used directly or indirectly

for modeling input and are not used for analysis or record identification in the modeling pr¢

1/SUB_DT Submission Date N Set
2|SYS_ID System ID N Set
3[SITE_ID Submission Site ID N Set
144|FILE_SEQ File Sequence Number N |Typeless
5|PIIN Procurement Identification Number A | Typeless
6|DEL_ORD Delivery Order A |Typeless
145|SYS_DCN System Document Control Number N |Typeless
8/DOV_NUM Disbursing Office Voucher Number N | Typeless
19|DOV_AMT Disbursing Office Voucher Amount N _| Real Rg
9|PMT_NUM Payment Number N |Typeless
50|VOU_STAT Voucher Status B Set  |Unsupervised modeler may wish to use this set versus the vou_stat flags below.
13|CHK_DT Check Date I | Typeless
15|DSSN Disbursing Station Symbol Number N_| Typeless
10|CHK_NUM Check Number N | Typeless
12|CHK_AMT Check Amount | [ RealRg
53|EFT_ACCT EFT Account Number N | Typeless
54|EFT_RTN EFT Routing Number N |Typeless
47|TIN Tax identification number N | Typeless
55|DUNS_NUM Data Universal Numbering System N_| Typeless| NAME CHANGED FROM 'DUNS'. Not populated in the KB
CAGE_CD Contractor and Government Entity N_| Typeless|NEW FIELD Not populated in the KB
30|MAN_IND Manual Indicator N Set |Use m_pymt flag
14|CHK_STAT Check Status N | Typeless|Are payment cdf records created when check status equals V?
CHK_CAN_DT Date Check Cancelled N | Typeless|NAME CHANGED FROM 'DTCKCAN' Not populated in the KB
57|CHK_XREF Cross Reference Check Number N_|Typeless
INT_PD_AMT Interest Paid Amount N | Real Rg |[NAME CHANGED FROM'IP_AMT" Not populated in the KB
46| TAX_AMT Tax Amount N | Real Rg |Not populated in the KB
16|DISC_AMT Discount Amount N | Real Rg |Use discount flag transformation.
18|LOST_AMT Lost Discount Amount N | Real Rg |Not populated in the KB. Could be used to derive set range field.
17|LOST_CD Lost Discount Code N Set  |Not populated in the KB
34|PMT_METH Payment Method | Set  |Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the
pmt_meth flags below.
35|PMT_TYPE Payment Type | Set  |Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the
pmt_type flags below.
33|PMT_CAT Payment Category || Typeless|Not fully populated in the KB
36|PMT_PROV Payment Provision | Set  |Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the
pmt_prov flags below.
PPA_XMPT Prompt Payment Act Exempt | Set  |NEW FIELD Not populated in the KB
29|INV_AMT Invoice Amount | | RealRg
25|INV_DT Invoice Date I |Typeless
26|INV_NUM Invoice Number N | Typeless
27|INV_RCVD Invoice Receipt Date I | Typeless
INV_ENTR DT Invoice Entered Date N | Typeless|Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus
INV_ENTR_DT. Not populated in the KB.
22|FRT_STAT Freight Status N Set  |Not populated in the KB
7|LINEITEM Line ltem N | Typeless|Contract Line Item Number
FOB Freight on Board | Set  |Not populated in the KB
21|FRT_AMT Freight Amount N | Real Rg |Not populated in the KB
MDSE_ACC_DT Merchandise Acceptance Date N | Typeless|Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus
INV_ENTR_DT. Not populated in the KB.
MDSE_DEL_DT Merchandise Delivery Date I | Typeless|Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus
INV_ENTR_DT. Not populated in the KB.
RMT_CD Remit Code N | Typeless
RMT_NAME Remit Name N | Typeless

Tabl e 12

Modi fied Fields To Use Matrix (on four pages)
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39 RMT_L1 Remit to Address Line 1 N [Typeless
40/ RMIT_L2 Renmit to Address Line 2 N | Typeless
41|RMT_L3 Renit to Address Line 3 N | Typeless
42|RVIT_L4 Remit to Address Line 4 N [ Typeless|Not populated in the KB
43 RMT_CITY Remit to City N [Typeless
44/ RMT_ST Remit to State N [Typeless
45 RMIT_ZIP Remit to Zip Code N [Typeless
BCO ID Base Contracting Office ID N_[ Typeless|Not populated in the KB
101 AWARD_DT Award Date N | Typeless
CON_AMT Contract Amount N | Real Rg|Not populated in the KB. Could be used to derive ranges in unsupervised modeling.
GS IND Goods/Service Indicator | Set  |Not populated in the KB
NET_WND Net Vendor Days N [ Typeless|Not populated in the KB
CON_STAT Contract Status | Set  |Not populated in the KB
CON_TYP Contract Type | Set  |Not populated in the KB
WND_NAVE Vendor Name N [ Typeless|Not populated in the KB
WND_ADR1 Vendor Address 1 N | Typeless|Not populated in the KB
WND_ADR2 Vendor Address 2 N | Typeless|Not populated in the KB
WND_ADR3 Vendor Address 3 N [ Typeless|Not populated in the KB
WN\D_CITY Vendor City N [ Typeless|Not populated in the KB
WND_ST Vendor State N | Typeless| Not populated in the KB
WN\D_ZIP Vendor Zip Code N [ Typeless|Not populated in the KB
WND TYP Domestic or Foreign Vendor |_{Typeless|Not populated in the KB
WND ID Vendor Identification Nunrber N_| Typeless|Not populated in the KB
VE1_CD Voucher Examiner Code 1 B | Typeless| Not populated in the KB
VE2 CD \oucher Examiner Code 2 B | Typeless|Not populated in the KB
VE3 CD Voucher Examiner Code 3 B | Typeless|Not populated in the KB
VE4 CD Voucher Examiner Code 4 B | Typeless|Not populated in the KB
VE5 CD Voucher Examiner Code 5 B | Typeless|Not populated in the KB
SYS UNIQ System unique data not recorded N [ Typeless|Never used as input, information only.
CDF_RMT_NAVE CDF Remit Name N | Typeless
CDF_RMT_L1 CDF Remit to Address Line 1 N _| Typeless
CDF_RMT_L2 CDF Remit to Address Line 2 N_| Typeless
CDF_RMT_L3 CDF Remit to Address Line 3 N_| Typeless
CDF_ RMT_L4 CDF Remit to Address Line 4 N | Typeless
CDF_RMT_CITY CDF Remit Gity N | Typeless
CDF RMT ST CDF Rerit State N | Typeless
CDF_RMVIT_ZIP CDF Rerit Zip Code N | Typeless
PAYVENT Consolidates transaction into a single N [ Typeless|Field used to consolidate transactions into a single payment
payment
74 TRANS NUM Nurrber of transactions associated with a N | Rea Rg
single payment
75|PAYEE Conplete name of Payee N | Typeless|Never used as input! Required for results calculations! Leave in as Typless/None!
143|PAYEE13 First 13 Characters of Payee N_[Typeless
ADDRESS13 First 13 Characters of Address N_[Typeless
C_INV_NUM Cleaned Invoice Number N | Typeless| Modify dean invoice number to drop leading zeros.
88| AGGREG_PAYEE Total Dollar Amount Paid to a Specific N | Real Rg|Derive range sets or flags for modeling. May be able to use Real Range for NN modeling.
Payee
89|AGGREG ADR Total Dollar Amount Paid to a Specific N | Real Rg|Derive range sets or flags for modeling. May be able to use Real Range for NN modeling.
Address
102 INV_AWARD DT Nurber of days between invoice date N | IntegerR| Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
and contract award date g |Also, consider boosting in Real Range is used for input for C5 model.
103 INV_RECV_AWARD DT Number of days between invoice N [ IntegerR| Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
received date and award date g |Also, consider boosting in Real Range is used for input for C5 model.
104 CHK_ AWARD DT Nurmber of days between check dateand| N | IntegerR| Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
award date g |Also, consider boosting in Real Range is used for input for C5 model.
105INV_RECV_INV_DT Number of days between invoice | | IntegerR | Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
received date and invoice date g |Also, consider boosting in Real Range is used for input for C5 model.
106 CHK INV_DT Nurmber of days between check dateand| | | IntegerR| Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
invoice date g |Also, consider boosting in Real Range is used for input for C5 model.
107|CHK_INV_RECV_DT Nurmber of days betweenthe check date | | | IntegerR| Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
and invoice received date g |Also, consider boosting in Real Range is used for input for C5 model.
60| INTEREST Was Interest Paid | Fag |Caution: No occurrence in KB.
61|MLPAY Military Pay Appropriation | Fag |Caution: Limited occurrence in KB.
62| DBOF DBOF Appropriation | Fag
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63/BRAC BRAC Appropriation | Fag |Caution: No occurrence in KB.
64| OTHERX X Year Appropriation other than BRAC, | Fag
DBOF, UNUSUAL
65| UNUSUAL Appropriation = 5188, 5189, 6875, 3880, | B Fag |Caution: Limited occurrence in KB.
3875 0r 8164
66|ALLX All X year appropriations | Flag
67/Y1_PROR 1 year Expired Appropriation | Flag
68/ Y1_CUR 1 Year current appropriation | Flag
69Y2 PROR 2 Year Expired Appropriation | Fag |Caution: Limited occurrence in KB.
70 Y2 CUR 1ST 2 Year Current Appropriation Paid 1st | Fag |Caution: Limited occurrence in KB.
Year
71)Y2_CUR 2ND 2 Year Current Appropriation Paid 2nd | Fag
Year
72/Y3 PLUS 3 or more year appropriation | Flag
73/ALL_ OTHER None of the above appropriations | Flag |Caution: Limited occurrence in KB.
starting with MILPAY
76|CNT_CDF OBE N [ Fag |Should never be used as input.
141|PAY_ORDER Some version of 'Pay tothe Order’ inthe | N Flag |Change in business practice should have eliminated this flag.
Remit to field
138/ ENHANCE_PAYEE Flag when Payee found in Remit L1 field| | Fag
77|ORDER _CDF Replace 'Pay to the Order’ with Remit L1| N | Flag |Should never be used as input.
79|STE Pymt mede to site address | Flag
80| LOCKBOX Payments to lockboxes B Flag | Caution: No occurrence in KB.
81|POBOX Payments to PO box | Fag
82|INV_PAYEE Payee with different invoice number | Fag
lengths
83[INV_CNT Contract with different invoice number | Fag
lengths
84| DOVAMT 2K DOV_AMT >=to 2000 | Flag
85/ DOVAMT_1K DOV_AMT >=t0 1000 | | PRag
86|AVG 5K Average payment amount to payeeis >=| | Flag
5K
87|PAYEE_4 PYMT 4 or more payments tothe same payee | | Fag
90| MULTI_PAYEE Muittiple payees to the same address N Flag |Caution: Modeler should consider using derive node to combine with eft_payee. Ref: ?.nod
91|MULTI_ADR Muliple address to the same payee N | Flag |Caution: Modeler should consider using derive node to combine with eft_adr. Ref: ?.nod
R2/INV_SEQ Invoices out of sequence to the same | Flag
payee
93 PMT_FREQ HI Regular payments over a period of time | | Fag
A PMT_FREQ LO Payments occuring in a short period to | Flag
time
95| TINS Tax identification number is present in | Fag |Notes: 1) Not fully populated in KB. 2) When tins flag="1", tinis null!!!
record
96| MULTI_TINS Muitiple TINS for a Payee | Fag |Not fully populated in KB.
97| MULTI_PAYTIN Multiple Payees to the same TIN | Flag | Caution: No occurrence in KB.
148 MULTI_PAYEE K Muitiple Payees to the same contract | Flag
149 MULTI_ADDR K Multiple Addresses to the same contract | | Flag |Modeler should consider using derive node to combine with multi_eft_k. Ref: ?.nod
150/ MULTI_TINS K Muitiple TINS to the same contract | Flag | Caution: Limited occurence in KB.
151|MULTLEFT_K Multiple EFT to the same contract [ Fag |Caution: No occurrence in KB. Modeler should consider using derive node to combine with|
multi_addr_k. Ref: ?.nod
98| DISCOUNT Wias discount paid | Flag | Caution: Limited occurence in KB. In NO2, 10,515.
99 M PYMT Manual Payment | Fag
100|FEW_PYMT Flag companies that have <200 | Fag
payments in a year
108/MISC_OBLIG Flag that looks for MORD or MODinthe | | Fag
PIN
109\ EFT_PAYEE Muliple payees to same EFT N | Fag |Caution: No occurrence in KB. Modeler should consider using derive node to combine with|
multi_payee. Ref: ?.nod
110|EFT_ADR Multiple EFTs to a single Payee N | Fag |Caution: No occurrence in KB. Modeler should consider using derive node to combine with|
multi_adr. Ref: ?.nod
134| DUPPAY102 Duplicate Payment Indicator 102 - Logic: | N Flag |Note Dup pays are sparsly populated in KB/Possible vendor fraud
Same PIIN, Same SPIIN, Same Inw#,
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DP109 Duplicate Paynert Indicatar 109-Logic: | | | FAeg
SareK Sarelnv Art, Sare

DRIl Duplicate Payert Indicetor 111-Loga| | | Fleg
SeneK Sarelnv At Inv At
AINDE Qd does it carfomtothe Reg

NOT_CFAR DFAR |

140 FRALD TYFE Knonledge Bese: BgSys, SeISs, N| St |Neverusedasinput Aweysautduingnodd aedlion
Ragy, Qpporturistic
Payment Ropudtiont Assumed Not
Fraud (NF)
1R¥KAID Reoord Sequence IDNUber N |IntegerRy

NUVADR K Nurrber of addresses (AR LAY G | |IntegerRy
anindviduel aontract (RINHFDO).

NUIVEFT K Nurrber of BFT addtesses (ACCTHRTN)| | {IntegerR{ Nt populeted inKB. Mbddler should consider dirived fild combined w NUVIADR K
toanindvide cortract (AINHDO).

NUVADREE Nunber of addresses (AR LAY G | |IntegeRy
awdepayee

NIVEFTEE Nurrber of BFT addresses (ACCTHRIN)| | |IntegerRg Not populated in KB. Mbddler should aonsider derived field aonrbined w NUVADREE
toawhdepayee.

N.MEE K Nrrber of whde payeestoanindvidd | | |IntegerRy
aontrect (RINFDO).

MDEAWDT Nrrber of days betweenthe KAnard | N {InfegerRd Suggest fuiure range set. Adual nunber may be gaprapriatein Neural Net nodds7?
Dete and the Merchendise Delivery Dete. Caution Anerd Ot nat always reliedle.

MDEL(KDT Nrrber of days betweenthe Check Detg | {IntegerRa Suggest fulure range set. Adual nunber ey be gaprapriatein Neural Net moddis7?
and the Merdhrendise Delivery Dete:

MDHINDT Nrrber of days between the Invaice | {IntegerRy Suggest fuiure range set. Adiud nuber may be gppropriae in Neurdl Net roods7?
Dete and the Merdhendise Delivery Dete.

MDHIRDT Nunber of days betweenthe Invaice | {IntegerRy Suggest fuiure range set. Adiud nurber may be gppropriae in Neurdl Net rocdls?7?
Recsived Dete and the Merchendise:
Deivery Dete.
Nrrber of aortradts (FINHDO) viththe | N {IntegerRt Suggest fulure range set. Adual nunber ey be goprapriate inNeural Net nodds?7?
sareanad datetothe semevhde Cautiort Anerd I not aweys relieke.

NUVKANEE payes.

NUMHEE Nurber of cdheds tothe sarewhde | {IntegerRy Suggest future range set. Adual nunber ey be goprapriateinNeural Net modds?7?
payeeantresaredsy.

CASE Knonledge Bese Case Nare: - | Typeless|Never used asinput! Reuired far resits celauetions! Leaveinas TyplessNore!

RNDM NOM Rendomnurber A | Typdless Qredled in popuiation oy nt in Sdits

MINV ANVARD RG Renges of days betweentheinvdiceand | | St | Caution Averd It nct aweys relieble.

MINV REOV AVVRD RG | Ranges of diays betweentheinvaice | St |Cation Anerd X nt aveys relisble:
received and anerd detes

MOKAVRD RG Rengesof daysbetweenthecheckand | | | Set |Cautiont Anerd Dt not aveys relicke:

MINV RECV INV RG Renges of days betweenthe invaice | s
received andinvaice detes

MOKINRG Rengesof daysbetweenthecheckand | | | St

MOKINV REOV RG Rengesof daysbeweenthecehckand | || St
invoioe received dates

M STE1 CR BXX1 STEflag=1 ar ROBXfleg=1ar. I'| Rag

M DBCF1_CR NOFART DBCOFflag=1C0RNOT_DFARfleg=1 | | | HRag

M DBCF) CR NOFART DBOFflag=1andNOT_DFARfleg=0| | | Hag

M DBCF1_AND NOFART DBCFflag=1andNOT_DFARflag=1| | | Rag

M DBCF) AND NCFART DBCFflag=0andNOT_DFARfleg=1| | | Rag

MMORKT CR MEFTK1 1| Rag

MMACR1 CR EADRI MLLT ADR=1ar BFT_ACR=1 I'| Rag

MAG ARRG Renges of AGGREG ADRamounts | s

MAGG PAYEE RG Ranges F AGCREG PAYEEamourts | || St

M DOVAMI_RG Ranges of DOV AMT aourts | St
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4 MOZ2_STA_POPZ000 : .Population il

= " Refresh @
MO2_STA_POPZO00
Mode: @ Table ' SOL Query
Data source: | NO2_STA_POP2000 -
Tahble name: |.Population Select...
@uote tahle and column hames: @ As needed O Always i Newer
Strip lead and trail spaces: ® None  Left (¥ Right ' Both

Data

] Cancel Apply Reset

Figure 27 SQ. Node Dial og Box for NO2_STA POP2000 Dat abase
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APPENDI X B. NO2 POPULATI ON UNSUPERVI SED MODELI NG
| MPLEMENTATI ON AND DETAI LED RESULTS

1. BASIC FILTER & TYPE SUPERNCDE

As described in Chapter V, this Supernode pre-
processes the data in preparation for clustering.

4 Basic Filter x|
€
Y- @ Fields: 193 in, 101 filtered, 0 renamed, 32 out
Field Filter | Field |

SUB_DOT 2 SUBE_DOT -
Svs_ID 5 Svs_ID

SITE_ID —— SITE_ID

FILE_SE®Q e FILE_SEQ

PN —_— PN

DEL_ORD —_— DEL_ORD

SvE_DiCH 5 SvE_DiCh

Doy RJLIA —— Doy PRI

Dov_AMT e Coov AT

PRAT LI ——» PRAT_ ML

Wil STAT —_— Wil STAT

CHE_DT —_— CHE_DT =
i View current fields ' View unused field settings

| (0] 4 | | Cancel | | Apply | | Reset

Figure 28 Basic Filter Node D al og Box

Figure 28 is an exanple of a Filter Node dial og, where
the nodeler can renove or renane fields from the nodeling
stream The other Filter Node dialogs in this Supernode

are very simlar so are not shown.

83



4 To String Filler x|

Fill in fields:

& INTEREST =

& MILPAY =
& DBOF -

Feplace: Always b

Condition:
‘@BL&NK{@FIELD} il |

Feplace with:
to_stringi@EFIELD) - ||

 settings |/ annotations |

] Cancel Apply Reset

Figure 29 To String Filler Node D al og Box

Figure 29 is an exanple of a Filler Node dialog. This
particul ar one converts all fields to String storage prior
to the Basic Type Node to prevent nodeling problens
downst r eam The PMI_METH and PMI_TYPE Filler Nodes are
simlar, wused to replace $null$ values with a new Set
val ue, “Blank.”
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4 Basic Type x|
@
| Type | Yalues | missing | Check | Direction |
A < Digscrete =Reaq= Mone sy In -
A| DEL_ORD £ Discrete =Reaq= Mone sy In
A WVOL STAT Set D Mone sy In
24 CHK_DT & Range [2000-10-0... Mane . In i
G CHK_AMT & Range [0.0,1.0E7] Mone
A| FMT_METH Set D.E Mone ® out
i PMT_TYPE Set F MHone -@ Both
A| PMT_CAT Set MHone Q MNone
A| FMT_PROY Set F.H Mone e
A] PPA_SMPT Set Mone sy In =
@ View current fields ' View unused field settings
] Cancel Anply Reset
Figure 30 Basic Type Node Di al og Box
Figure 30 is an exanple of a Type Node, which
specifies the variable storage, Type, and Values of each
field, as well as the “Direction” of the field for
nodel i ng. The four possible Direction settings are In
(used as an input or independent variable for nodeling),
Qut (used as an response or dependent variable for
nodel ing), Both (input and response), and None (not used
for nodeling). In this node all fields are initially set
to “In.” The Final Type Node sets the Direction of all
fields marked “A” in Appendix A to “None.” Al'l ot her

fields remain as “In.”
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Flags gstribution A
E4_CD
VEZ_CD A

VE1_CD

T

Mumetic Statist

JAN

WOL_STAT:

o>
N AN
-A>
rom Sti!m . \ o
PMT_METH A
A M_AGG_PAYEE_RG

M_CHK_AWARD_RG f
A i M_AGG_ADR_RG

M_IN_AWARD_RG
A '
M_INY_RECY_MAARD_RG A A

M_CHK_INY_RG

)\

M_CHK_INV_RECV_RG

M_IMY_RECV_INV_RG

Figure 31 Distributions and Statistics Supernode

The Distributions and Statistics Supernode creates
plots of the distribution of categorical variables as shown
in Figure 33. This plot allows the nodeler to determne
the qualtity of categorical fields, which mght contain all
one value, for exanple, and thus be useless and inputs for
nodel i ng. Figure 32 is an exanple of a Distribution Node
D al og Box. All the other Distribution Nodes in this

Supernode and their outputs are simlar.

86



& PMT_METH X|

JAN
Field: PMT_METH

Flot ® Selected fields 1 All flags itrue values)

Field:| #% PMT_METH -5
Owverlay

Caolar: |

] Hormalize by color

Sort: @ Alphabetic ' By count

[_] Proportional scale

Plot

] B Execute Cancel Apply Reset

Figure 32 PMI_METH Distribution Node D al og Box

Distribution of PMT_METH - x
b f m|
Bl File ~ Edit ) Generate |&)| o @

Wal... | FPropartion | % | Count
Blank 0.2% a8
D 16.06 31844
E a3.7 166234

Figure 33 PMI_METH Distribution Pl ot
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4 Numeric Statistics x|
3x
n
Examine: y FMUMADR K - |'§
& MUMEFT_K =
& NUMADREE - X
Statistics:
[¥] Count [WIMean [ Sum
[¥] Min vl Max [_| Range
[ variance [v] Std Dev [v] Std Error of Mean
[ Median [_] Mode
Correlate: | & NUMADR_K - |v§
& MUMEFT_K B
& NUMADREE - e
Correlation Lahels...
0] I Execute Cancel Apply Reset

Figure 34 Nuneric Statistics Node D al og Box

As another check on quality of nunmeric (Range Type)
fields, the Nuneric Statistics Node (shown in Figure 34)
produces output as shown in Figure 35, show ng the nodeler
various statistics and correlation information about all

these fields.
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B8 statistics of [15 fields][15 fields] =10 x|
[E] File | Edit ¥} Generate @E @
& collapse Al o Expand Al
= 1 UMADR_K
= 1UMEFT_K
&= 1 UMADREE
&= 1 UMEFTEE
@= NUM_EE_K
@ MDELCKDT
@ Statistics
Count 198616
Mean a1.343
Min 1
Max 7314
Standard Deviation 101.009
Standard Error of Mean 0227
@ Pearson Correlations
HUMADR_K -0.026 Wieak
HUMEFT_K -0.024 Wieak
HUMADREE 0.040 Wieak
HUMEFTEE 0.041 Wieak
HUM_FE K -0.030 Wieak
MDELINDT 0.390| Medium
MDELIRDT 0.320( Strong
HUMCHEE -0.014 Wieak
INV_AMT -0.014 Wieak
INY_RECY_INV_DT 0.506| Medium
CHE_INY DT 0.7249) Strong
CHE_INY _RECY DT 0.4870 Medium
RHDM_HUM 0.004 Wieak
CHE_AMT -0.084 Wieak
@= MOELIMDT
@ MOELIFDT
&= NUMCHEE
B= |fy AMT
= Ny RECY_IMNY_ DT
= CHE_INY_DOT
= CHE_IMY_RECY DT
©= R DL
= CHE_AMT
| statistics | Annotations |

Figure 35 Nuneric Statistics Node Qut put

The two Derive Nodes, shown in Figure 36 and Figure
37, are used to add new fields to the data stream for nodel
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anal ysi s. The Val Set Derive Node assigns Validation Set
nmenbership of A or B depending on the value of RNDM NUM a
random nunber field generated in Access that cones fromthe
dat abase. Its purpose is to allow the nodeler to divide
the data set into two equally-sized random subsets for A/B
validation of K-Means and Two Step cluster nodels. The
Contract derive node creates a new field to identify
specific <contracts and enable analysis of clustering

results with regard to contract distributions.

@
Derive as: Flag

Mode: ® Single ' Multiple

Drerive field:
YalSet

Derive as: | Flag -

Field type: | O® Flag -

True value: |A Falze value: B |

True when:
REDR_MUM=99218 e

L Settings L Annotations

] Cancel Apply Reset

Figure 36 Val Set Derive Node D al og Box
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&
Derive as: Conditional

Mode: @ Single ) Multiple

Drerive field:

Contract

Derive as: | Conditional -

Field type: | < <Default>
If:

DEL_ORD="Enull§' I
Then:
Pk =
Elze:
PlIM =="_"== DEL_QRD i
L Settings L Annotations
(]34 Cancel Apply Reset

Figure 37 Contract Derive Node Di al og Box

2.  KMEANS UNSUP_POP_GWR MODELI NG STREAM

The purpose of this stream is to construct K-Mans
cluster nodels and produce output to be used to select the

appropriate nunber of clusters and validate generated
nodel s.

a. I nplenmentation

Al K-Means nodels are built using the K-Means Model
D al og Box, shown in Figure 38. No Expert Options were
sel ect ed. Figure 39 shows the PCA Mdeling D alog Box,
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which was used to create the Principal Conponents Analysis

nodel for the AB30 series clustering.

Ol 1x

®

Model name: ) Auto ) Custom  |K-Means0BAETD

Specified number of clusters: G :I

[¥] Generate distance field
[v| Show cluster proximity

Cluster label: @ String ! Number

Label prefi ||:Iuster |

kK B Execute Apply Reset

Figure 38 K-Means Mbdel Node Di al og Box

4 pCAzsimpleAB = |

)
Mode: Simple; Extraction Methad: Principal Components

Model name: () duto @ Custom |PCAZSimplesB

Extraction Method: | Principal Components -

] B Execute Cancel Apply Reset

Figure 39 PCA Mddel Node D al og Box
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Figure 40 shows the end result of <creating the
mul tiple K-Means nodels required to evaluate the optinmm
nunber of clusters wusing the Sum of Squares nethod
described in Chapter V. The AB20 Moddel s Supernode and the
AB30 PCA Mdels Supernode are both simlar to the one

shown.

K-means01AE10 k-Means02AB10 K-Means03, -Means04AB10 k-Means05AB10

From Stream

e —-@ —»@ —

K-Means0BAB10 K-Means07AET0 K-Means0BAB10 K-Means09AB10 K-Means10AET0 K-Means11AB K-Means12AB10

[

To Stream

Figure 40 AB10 Mddel s Super node

Figure 41 illustrates the use of the field Val Set to
select the validation subset which is used for nodeling.
Figure 42 shows how the data is passed through the two

val idation nodels built on validation sets A and B
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4 yalset select

x|
& .
Mode: ) Include (® Discard
alSet='a I
Condition:
0] Cancel Apply Reset
Figure 41 Val Set Sel ect Node (currently selects Val Set
[1] BH )
) —
S &
Frorn Stegam K-MeansBA20 K-MeansBB20
> &
@ 4 @ 4 Strearm
K-Means8A20  K-Means8B20
B
PCASIMpIALE (% “d (% y
K-heansdA30 K-Means4B30
& &
eansBA30 K-MeansGB
® &
K-means8A30 K-Means49E30
Figure 42

whi ch

Figure 43 is an exanple of

is

used

to

A/ B Val i dati on Mddel s Supernode

a Matrix Node D al og Box,

generate cross-tabul ation

of cluster

assignments for the A/B validation process.
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’ $KM-K-Means9A30 X $KM-K-Means9630 x|
Fields: ® Selected 1 Allflags {true values) ) All Humerics
Rows: & $KM-K-Means9430 i
Columns: | & $KM-K-Means9B30 -
Cell cantents; @ Cross-tabulations ' Function

-
L Settings L Appearance L Output Lnnnutatiuns |

]2 b Execute Cancel Apply Reset

Figure 43 K-Means A30/B30 Matrix Di al og Box

The Sum of Squares Supernode (Figure 44) produces a
table of wthin-cluster sum of squares of the distance
fields for each nodel contained in one of the AB Mdels
Super nodes.

The _Square Node (Figure 45) creates a field
containing the square of the distance field $KVD <Mbdel
Nane> for each record. The Wthin-Custer Sum of Squares
Set d obals Node (Figure 46) sunms these squared val ues for
each nodel and creates G obal fields for each value. This
is the desired result, and it would be possible to stop at
this point. However, the following sequence of nodes
produces data in a format that is nuch easier to use in

producing a W vs. k graph such as shown in Chapter V.
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P @@~ -G

Fram Stream _soyare _Sum_Souare Agoregate Type

®

Within-Cluster Sum of Squares

Tahle

Figure 44 Sum of Squares Supernode

@ Derive as: Formula

Mode: ) Single ) Multiple

Drerive fram:

& FKMD-K-Means01AB10
& FHMD-K-Means02AB10

A TR 1 RAomn eI A D

Field name extension: |_5quare

Derive as: | Formula - TIP: Refer to selected fields by using @FIELD

Field type: | &~ Range  +

Formula:

Add as: 8 Suffix ' Prefix

ito_number{gaF [ELDY*2

[ settings || Annotations |

(]34 Cancel Apply

Reset

Figure 45 _Square Derive Node D al og Box
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4 within-Cluster Sum of Squares x|

Glohals to be created:

Field | MEAN | SUM | MIN | M
FEMD-K-Means01AB10_square
FEMD-K-Means02AB10_square
FEMD-K-Means03AB10_square
FEMD-K-Means04AB10_square
FEMD-K-Means05AB10_square
FEMD-K-Means06AB10_square

%=

¥

|

I =

I

R R =& =]
I

I

1]

Default operationis): [ MEAN [v/SUM [ MIN [ MAX [ SDEY |58

[¥| Clear all globals before executing

[_| Display preview of globals created after execution

LSettings L.ﬂ.nnntatiuns |

(0] 4 B Execute Cancel Apply Reset

Figure 46 Wthin-Custer Sum of Squares Set d obal s
D al og Box

The _Sum Square Derive Node (Figure 47) creates
another field and assigns it the dobal value that was
created by the Set G obals Node described above. These
suns of squares are then conpiled by the Aggregate Node
shown in Figure 48, and this aggregation is sent through a
Type Node to the Table Node which produces useabl e output.
This table can be copied and pasted into Excel for easy
production of a graph of Wthin-Custer Sum of Squares vs.
Nunmber of Clusters to be used to evaluate the proper nunber

of clusters for a particul ar nodel.
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4 Sum_Square x|

@
Derive as: Formula

Mode: ) Single ) Multiple

Derive from:

& BKMD-K-Means01AE10_square ﬂ,@
& BKMD-K-Means02AB10_styuare ~ |
.&@' Lol P 1 Pl Y PN S T B B s N TR T il Ii
Field name extension: |_5um_5quare Add as: 8 Suffix ' Prefix

Derive as: | Formula - TIP: Refer to selected fields by using @FIELD

Field type: | < <Default>

Formula:
|@GLOBAL_SUM{@FIELD} |
0] Cancel Apply Reset

Figure 47 _Sum Square Derive Node D al og Box

4 nggregate x|
€2
ey fields: [¥] Keys are contiguous
<7 KMD-K-Means01ABT0_square_Sum_Soguare - |'§
& FMD-K-Means02AB10_square_Sum_Square Iz
S lepiD-lhleansN38R1 0 cruare Sorm Sriare ol
Agoregate fields:

Field | Sum | Mean | hity | R | SDev "IE

x

Default mode: [[1Sum [¥I/Mean [ Min [_|Max [|SDev =
Mew field name extension: | |Add as: @ Suffix ) Prefix

[¥| Include record count in field |Recnrd_Cnunt

| settings || Annotations |

]2 Cancel Anply Reset

Figure 48 Sum of Squares Aggregate Node Di al og Box
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b. Results

Tabl e 13 shows the Principal

Conmponents extraction of

the nuneric data used for the AB30 series of cluster
nodel s.
Component Matrix(a)
Component
1 2 3 4 5
CHK_AMT -.169 -170 .329 -.370 710
-6.161E- -8.265E-
INV_AMT 02 02 170 -.140 535
INV_RECV_INV_DT 767 | 4.962E-02 -.299 =211 116
CHK_INV_DT .908| 6.193E-02 -.346 -.158 142
CHK_INV_RECV_DT .526| 3.950E-02 -.191 1'18952' 8.816E-02
4 190E-| 4.378E-
NUMADR_K -.101 943 02 02 171
-7.134E- 1.287E-| 1.214E-
NUMEFT_K 02 534 02 02 3.304E-02
NUMADREE 9.603E-02 -.129 -.101 .823 .323
NUMEFTEE 8.529E-02 -123 -.105 797 .396
3.900E-| 3.949E-
NUM_EE_K -.105 .951 02 02 .159
MDELCKDT 922/ 6.323E-02 334| 38:992E-| -3.029E-
02 02
MDELINDT 4 129E-02 | 3.345E-03 924 .262 -.233
MDELIRDT 755| 4.946E-02 540/ S3-944E-| -9.825E-
02 02
NUMCHEE '6'12052' -.186 .250 -.320 458

Extraction Method: Principal Component Analysis.

a 5 components extracted.

Tabl e 13

PCA Factor Anal ysis Conmponent Matrix
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The K-Means nodel selected for use in further analysis
was K- Means06AB20, built with six clusters on the numeric
fields only. Figure 50 and Figure 49 show the input fields
and cluster distribution, respectively, for this nodel.
Table 14 shows the co-clustering matrix for the A and B
validation nodels, resulting in Craner’s Coefficient =
83. 23%

& K-Means6AB20 X

File E @

Ol & collapse Al T Expand Al

®- ] Analysis
@ [ Fields
@ [ Inputs

& CHK_AMT
& INV_AMT
& INV_RECYV_INV_DT
& CHK_INY_DT
& CHK_INY_RECY_DT
& NUMADR_K
& NUMEFT_K
& NUMADREE
& NUMEFTEE
& NUM_EE_K
& MDELCKDT
& MDELINDT
& MDELIRDT
& NUMCHEE

@ [T Build Settings

©- [ Training Surmmary

[ Model l sSummary Lnnnntatiuns

] Cancel Apply Reset

Figure 49 K- MeansO06AB20 Generated Mbdel Node, Sunmary Tab
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& K-Means6AB20 x|

& File @
2 Collapse Al T Expand Al

cluster 1 129061 recards
cluster 2 2493 records
cluster 3. 2043 records
cluster 4 38829 recards
cluster 5. 580 records
cluster B 25610 recards

@@@@@@\E

Ll'u'ludel LSummary LAnnntatiuns |

(]34 Cancel Anply Reset
Figure 50 K-Means06AB20 CGenerated Mbdel Node, Model Tab

K-Means06B20

K-Means06A20 cluster-1 |cluster-2 |cluster-3 |cluster-4 |cluster-5 [cluster-6
cluster-1 63558 0 0 0 0 11292
cluster-2 957 1007 0 252 0 55
cluster-3 0 268 0 0 0 0
cluster-4 19 0 0 19166 0 1419
cluster-5 0 0 0 0 283 0
cluster-6 0 0 1032 0 0 0

Tabl e 14 A B Validation Matrix for K-Mans06AB20

The followng sequence of figures and tables
illustrates the effect of changing the order of data for a
K- Means clustering nodel, conparing the results of using
numeric fields only to using categorical fields only. The
nodel K- MeansO6AB50 was generated wusing nuneric fields
only, with the data sorted by RNDM NUM Figure 51 shows
the cluster distribution of this nodel, and Table 15 shows
the cross-tabulation of cluster assignments, resulting in
Craner’s Coefficient = 83.03% Figure 52, Figure 53, and
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Tabl e 16 show the same process for categorical fields only,
resulting in Craner’s Coefficient = 72.12%

4 K-Means06AB50 x|
File ||} @
O]l & collapse Al o Expand Al
Lo cluster 1: 149409 records
@ cluster 2: 598 records
Lo cluster 3: 4702 recards
@ cluster 4: 41184 records
o cluster &: 530 records
Lo cluster 6: 2043 records
]\I'u'lndel L Summary Lnnnmatinns |
| OF | ‘ Cancel ‘ | Apply | | Reset |

Figure 51 K- Means06AB50 Generated Model Node, Mdel Tab

cluster-1 | cluster-2 | cluster-3 | cluster-4 | cluster-5 | cluster-6
cluster-1 126885 0 2136 38 0 0
cluster-2 4 598 1890 3 0 0
cluster-3 0 0 0 0 0 2043
cluster-4 0 0 536 38293 0 0
cluster-5 0 0 0 0 580 0
cluster-6 22628 0 133 2849 0 0

Tabl e 15 Cross-Tabul ation of C uster Assignnment, K-
Means06AB20 vs. K- Means06AB50 Model s

4 K-Means06ABG0

B [l [
&

M| & Collapse Al || B Expand Al |

cluster 1: 48031 records
cluster 2: 567545 records
cluster 3: 18475 records
cluster 4: 33331 records
cluster 5: 24366 records
cluster 5: 17658 records

PPPPPP

Ll'u'ludel LSummanr Lnnmnatiuns |

| [8]4 || Cancel | | Apply H Reset |

Figure 52 K- MeansO6AB60 Cenerated Model Node, Mdel Tab
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4 K-Means06ABT0 |
B File |} ©)
Ol & collapse Al % Expand Al
&= cluster 1: 18544 records
@ cluster 2; 4047 3 records
oo cluster 3: 15897 records
@ cluster 4; 44625 records
o= cluster & 21438 records
&= cluster 6 57639 records
]\Mudel LSummaryr Lnnnntatiuns |
| Ok || Cancel | | Apply || Reset ‘

Figure 53 K-MeansO6AB70 Cenerated Model Node, Mdel Tab

cluster-1 | cluster-2 | cluster-3 | cluster-4 | cluster-5 | cluster-6
cluster-1 4 350 99 14147 6 31886
cluster-2 5 15552 12746 24739 4407 337
cluster-3 18404 31 9 32 0 0
cluster-4 124 24273 2799 5156 0 1771
cluster-5 1 224 112 5 272 23765
cluster-6 6 71 65 692 16526 0

Table 16 Cross-Tabul ati on of Cluster Assignnent, K-
Means0O6AB60 vs. K-MeansO6AB70 Model s

3.  TWOSTEP_UNSUP_POP_GAR MODELI NG STREAM

Figure 54 shows the dialog used to create the Two Step
clustering nodel used for analysis. Figure 55 shows the
cluster distribution for the generated nodel, and Table 17
shows the co-clustering matrix for the A and B validation
nmodel s, resulting in Craner’s Coefficient = 91. 96%
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4 TwoStepAutoAB20

Model name:
[v| Standardize numeric fields [_| Exclude outliers
Cluster lahel:
Label prefix;
(@ Automatically calculate number of clusters
Maximum: |715:I finirmum: lizj

{1 Specify number of clusters

[ Fietas | Moder | Annotations |

Ol 1x

) Auto @ Custom  |TwoStepautoAB20

® String ' Number

||:Iuster |

Ok

P Execute Cancel

Reset

Fi gure 54

Fi gure 55

TwoSt ep Model

Node Di al og Box

4 TwoStep07AutoAB20 X|

File @

2 Collapse Al @ Expand Al

= cluster 114231 records
cluster 2: 41060 recaords
cluster 3: 39698 records
cluster 4: 43081 records
cluster 5: 29637 records
cluster 6: 18137 records
cluster 7: 11772 recaords

] Cancel

Apply Reset

TwoSt ep07Aut 0AB20 Gener at ed Model s Di al og Box,
Model Tab
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TwoStep07B20

TwoStep07A20 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6 cluster-7

cluster-1 7477 33 0 0 0 0 0
cluster-2 0 0 0 0 17 0 5022
cluster-3 0 139 990 504 11080 0 99
cluster-4 10 443 19686 1800 401 0 0
cluster-5 0 10 34 16987 5044 0 2
cluster-6 0 0 1 0 1 9058 0
cluster-7 190 20157 54 0 69 0 0

Table 17 A/ B Validation Matrix for TwoSt epO7Aut 0AB20
4. KOHONEN_UNSUP_POP_GAR MODELI NG STREAM

Figure 56 and Figure 57 show the Mdel Node settings
used in building the KSOMLOX11AB02 nodel used for analysis.
The only Expert settings used were to adjust the dinensions
of the Kohonen map. Figure 58 is used to create the two-
di rensional plot of the Kohonen prototypes and record
assignments for eval uation. Figure 59 shows the input and
out put layers for the generated nodel.

X
i
Model narme: ) Auto @ Custom  |KSOM10x11AB02
[_| Continue training existing model  [_| Show feedback graph
Stop an: i® Default
i1 Time {mins) :I
[_] Set random seed :I
Fields | Model | Expert | Annotations |
] b Execute Cancel Appl Reszet

Figure 56 Kohonen Model Node Di al og Box, Mdel Tab
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4 xohonen

Mode: ) Simple @ Expert

Wiclth: 10/= Length:

Learning rate decay; @ Linear

Phase 1

1)

) Exponential

Meighborhood: 2 nitial Eta: 0.3 Cycles: 20/

Phase 2

MNeighborhood: 1] nitial Eta: 0.1]= Cycles: 150/

| Fietds | Model | Expert | Annotations |

(0] 4 B Execute Cancel Appl Reset
Figure 57 Kohonen Mbdel Node Di al og Box, Expert Tab
4 $K%-KSOM10%11AB02 v. $KY-KSOM10x11AB02 x|
f
HOREX-EE0MT 0x1 1ABD 2 TRk -EES0OMT 0x1 1ABDZ
IT_,
Té’,lxﬂem: &7 $KX-KSOM10=11AB02 -8 | field: &7 $KY-KSOM10x11AB02 ~
Overlay
Colar; -5 | Size: »H | Shape: -
Panel: - | Animation: - | Transparency: -l
[_] Owverlay function | |
Plot
]2 b Execute Cancel Apply Reset
Fi gure 58 Kohonen Model Plot D al og Box
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4 KS0M10%11AB0Z

Ol 1x

File @

H

|| & collapse Al T Expand Al

@ [ Analysis
Fk¥-Kohonen: 10
FkY-Kohonen: 11
Input Layer: 98 neurans
Cutput Layer: 110 neurans
& T Fields
& [ Inputs
@ 7 Build Settings
@ [ Training Sumrmary

L Summary L Annotations

] Cancel Apply Reszet

Figure 59 Kohonen Cenerated Mdel Dialog Box, Sunmary Tab
5. MODEL_ANALYSI S POP_GAR ANALYSI S STREAM

a. |Inplenmentation

The nodel analysis stream produces a table of
transactions that have been identified as orphans in all
three of the generated nodels. There is also the option to
identify sparse prototypes in the Kohonen map, acconplished
by the Sparse Prototypes Supernode (Figure 60). Figure 61
shows the aggregation on Kohonen prototype fields, which
after sorting produces a table showi ng each prototype and
the nunber of records it contains (Figure 62 is an
exanpl e). This table is used to identify the sparse
pr ot ot ypes.
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2x
T

A\ S
@ — G» — B

Aggregate Sort Table

®

From Stream

@ @ @

KSOM_10 KSOM_15 K30M =500

Figure 60 Sparse Prototypes Supernode

"Aggregate El
€2 .
key fields: [_| Keys are contiguous
ﬁ FHH-KSOMT 01 1.,8B02 -
&7 BKY-KSOM1 01 1ABD2 X
Aggregate fields:
Field | SUMm | Mean | i | [ E=X | S0ey "IE
x,
Default mode: vl Sum [viMean [|Min [Max []SDev |

Mew field name extension: Add as: ™ Suffix 0 Prefix

[v| Include record count in field |Recnrd_Cnunt

(0]14 Cancel Apply Reset

Figure 61 Aggregate Node Settings
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@Tahle {3 fields, 110 records) #1 -||:||£|
Bl File ~ Edit ) Generate |2} o | B @
BIGCKSOMIOxT 1AB02 | BKY-KSOM10x11AB02 | Record_Count
2 3 B 730 =
3 b 1 1898
100 5 : =
101 1 ; e
102 1 : o
103 1 4 156
104 1 g 139
105 g 1 131
106 5 0 116
107 i B 114
108 7 1 102
109 g 1 =

110 g 3 a1 -

Figure 62 Table of Kohonen Prototypes Sorted in Descendi ng
Order by Number of Transactions

After selection of the appropriate netric for
determining a sparse prototype, a Derive Node can be
generated fromthe generated table. An exanple is shown in
Figure 63, which identifies records belonging to one of the
ten sparsest nodes. The other two Derive Nodes in the

Supernode performthe sanme function.
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&
Derive as: Flag

Mode: @ Single ) Multiple
Derive field:
ES0amM_10
Derive as: | Flag -
Field type: | @ Flag -
True value: |T | False value: |F |
True when:
FHH-ESOM 01 1ABDZ = 1 and "BEY-KSOMT 061 1ABD2 = 3 ar =
FHH-ESOM 01 1ABDZ = 1 and "BEY-KSOMT 061 1ABD2 = 5 ar
FH-ES0OM 01 1ABDZ = 1 and "BEY-KSOMT 061 1ABD2 = 4 ar
S 0OMY 01 1ABDZ = 1 and "FEY-KSOMT 01 1ABO2 = 9 ar =

L Settings L Annotations

] Cancel Apply Reszet

Figure 63 KSOM 10 Derive Node Settings

The Contract Count Supernode (Figure 64) produces a
field containing the nunber of transactions in the contract
to which each record belongs, which is essential to
identifying orphan transactions.
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/Cun acts

-a>
) > m>
-A>
Frarn Stream Type \
Merge To Stream

Figure 64 Contract Count Supernode

The data is first aggregated by contract, and then the
Merge Node (Figure 65 and Figure 66) creates a new field
wi th the nunber of contracts for each transaction.

x|
&)
Merge 2 datasets. Merge method: Keys
Merge Method: ) Order @ Keys
Fossihle keys: keys for merge:
= |Contract
=

[v] Combine duplicate key fields
i Include onhy matching records (inner join)

i Include matching and non-matching records (full outer join)
[ Inputs l Merge L Filter L Annotations |

(] Cancel Apply Reset

Figure 65 Merge Node Dial og Box, Merge Tab
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@ ©)

herge 2 datasets. Merge method: Keys

7| ] ] Fields: 80 in, 0 filtered, 1 renamed, 80 out
Field | Tag | Source Mode [Connected Model Filter | Field |

Contract —+ | Contract -

Fecord_Count |1 Contracts — Contract_Count

Pk 3 Type —  PIN

DEL_ORD 3 Type — |DEL_ORD

CHK_DT 3 Type — [CHK_DT

CHE_AMT 3 Type —  |CHK_AMT -

) View current fields ) View unused field settings

Llnputs LMerge LFiIter Lnnnutatiuns

0] Cancel Apply Reset

Figure 66 Merge Node Dial og Box, Filter Tab

The O phans Supernode (Figure 67) acconplishes the
inmportant task of creating fields identifying records as
orphans for one or nore of the generated nodels. For each
type of nodel, Two Step, K-Means, and Kohonen, the data is
first merged on contract and cluster nunber (prototype
nunber in the Kohonen case), then nmerged back to create a
field identifying the nunber of transactions in each
cluster from each contract. Figure 68 shows an exanple
Merge Node Filter Tab, with the new field TS C uster_Count.
The other two nerge nodes are very simlar and produce the
new fields KM O uster_ Count and KSOM Prot ot ype_Count.
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®—® & & @ @A

Tye TS Contralt Clusters K] Dntraltolusters K3, UntnlctPrototypes _£1phan Irphan KSOM_Orphan
-8
e — e — _E> — C..
) -A>

Merge Merge herge KM_Orphan Type To Stream
Fram Stream

Figure 67 O phans Supernode

X
o 2
Merge 2 datasets. Merge method: Keys
v~ B Fislds: 84 in, 0 fitered, 1 renamead, 84 out
Field \TagSou.|Connected M..]  Filter | Field |
Contract — |Contract -
FT-TwoStepOTAUtD... — |FT-TwoStep07AUt0ABZ0
5 Fecord Count |1 TS Contract... =——#  T5_Cluster_Count
Contract_Count 2 Type — |Contract_Count
P 2 Type — |PIIN
CEL_ORD 2 Type —= |DEL_ORD
CHE_DT 2 Type —» |[CHE_DT
CHE_AMT 2 Type —+  [CHE_AMT
PMT_METH 2 Type — |FMT_METH
PMT_TYFE 2 Type — |PMT_TYPE |
I AMT 2 Type — [NV AMT -
@ View current fields ) View unused field settings
|\ Inputs L Merge L Filter L Annotations
(] 54 Cancel Apply Reset

Figure 68 Merge Node Filter Settings

The three Derive Nodes create new Flag fields to
identify orphan transactions. Figure 69 shows an exanple
for the Two Step orphans; the other two derive nodes are

very simlar.
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4 15_0rphan x|
&
Derive as: Flag
Mode: @ Single ) Multiple
Derive field:
TS_Orphan
Derive as: | Flag -
Field type: | O® Flag -
True ualue:|T False value: [F |
True when:
TS_Cluster_CountContract_Count == 0.30 =
] Cancel Apply Reset

Figure 69 TS Orphan Derive Node Settings

The final step in this stream is to select the
“mul tiple orphans,” which is acconplished by the Triple
Orphans Sel ect Node (Figure 70). A table of these records
is then produced that identifies transactions for audit.

Mode:  (® Include O Discard

EanTT kM_Orphan and TS_Orphan and KS0OM_Crphan i
(0] 4 Cancel Anply Reset

Figure 70 Triple O phans Sel ect Node Settings
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b. Resul ts

In addition to identifying the transactions that are
“triple orphans,” analysis of the distribution of orphan
transactions by cluster can give sone insight into the
structure of the data. The orphan distribution by cluster
for the K-Means and Two Step nodels are shown in Figure 71
and Figure 72 respectively.

B3 Distribution of KM_Orphan #2 10| x|
File | Edit %) Generate E @
Walue Froporion % | Count
F 95 24| 195122
T 1.76 34494

FkM-K-MeansBAB20

[ cluster-1 M cluster-2 M cluster-3 B cluster-4 [ cluster-5 [ cluster-6
Figure 71 Distribution of Orphan Transactions by K-Mans
Cluster

B pistribution of TS_Orphan 1Ol =l
Bl File | Edit ¥} Generate E @
Value Fropotion % | Count
F B G015 194951
T | | 1.85 3665
$T-TwoStep0rAutoAB20
& cluster-1 M cluster-2 M cluster-3 B cluster-4 [ cluster-5 O cluster-6 M cluster-7
Figure 72 Distribution of O phan Transactions by Two Step
Cl uster
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APPENDI X C. SPREADSHEET TOOLS FOR UNSUPERVI SED

MODELI NG

1. SUM OF SQUARES

The spreadsheet tool shown in Figure 73 is used to

construct

for determ nation of the appropriate nunber

the Sum of Squares vs. Nunber of

Clusters plot

of clusters for

K- Means nodeling. It is self-explanatory and automatically

produces the plot.

=8l

-

J@ Eile Edit Yiew Insert Format Tools Chart “Window Help Acrobat
B [ ¢ [ o [ E [ F [ &6 | H [ 1 | 4 W] L [ M [ N | o |
1
Within-Cluster Sum of Number of
| 2 |Background: Squares Clusters
| 3 | BEMD-K-h 11745.39944 1
| 4 |One way to select the correct number of clusters for a lk-Means madel is to use the Sum of Squares ws. BIMD- I, 126393173 2
| 5 |Mumber of Clusters plot. Thearetically, the dissimilarity of the records within clusters will decrease BEMD-I-h 8534270401 E
| B |rapidly as the number of clusters increases until the correct number of clusters is reached, then it will FRMD-K-h 7325 1585952 4
| 7 |level off. This workbook facilitates creating plots of Within-cluster Sum of Squares (generated in a FRMD-K-N B175.757821 5
| 8 |Clementine stream by the Sum of Squares Supernode) vs. Number of Clusters. FlMD-I-h 4461.767102 B
g BlMD-I-h 4301.36448 7
| 10 | BEMD-K-h 3108.613252 8
| 11 |Instructions HRMD-K-h 2764 245495 9
12 BEMD-K-h 2667242124 10
| 13 |To produce the Sum of Squares vs. Number of Clusters plot used to select the correct number of clusters, the first step |§khAD-K:h 2589207771 1
| 14 |is to execute the Table Mode in the Sum of Sgquares Supemode. Following the directions in the Recommended BIMAD-I-h 2574.004857 12
| 15 |Unsuperised Maodeling SOF, copy and paste this table into the green highlighted cell below. Then copy the BEMAD-I-h 2387315614 13
| 16 |pasted range again, and Paste-Special-Transpose inta the yellow highlighted cell to the right. This should automatically| SkhD-k-h 2343 26753 14
| 17 |produce a plot in the box below. If it does not, check that you are plotting the whole range of numeric data which FRMD-K-N 2315.392051 15
| 18 |you just pasted, or start from scratch and create a new plot of the data. Column "0" contains Number of Clusters. Record_Cr 198616 16
| 19 |Once you have produced the graph, look for a "kink" or flat spat in the curve - that is (thearetically) the correct 17
20 |number of clusters for 3 K-Means model of your data. 18
21 " 19
| 22 | Within-Cluster Sum of Squares vs. Number of Clusters 20
23]
24 12000
125 | 11000 T
| 26 | §MD-K-Me § 10000 WAD-e- ez BlMD-1- b BKMD- - Means13AB2 $KMD- - §l<h
| 27 | 11745359 1 559.20777 | 2574.005 2387315614 2343.288 23
28 000
|29 g 000 \\
130 g' 7000 = -
3
Foe i E000
i 5 5000
5]
E 4000 L‘\
135 3000 ~ =, ]
1 36| 2000 ! ! ! ! ! ' i
% o 2 4 6 B 10 12 14

139 |
;ﬂstart”j G - el ”“ In...| A...l@nr...l _\jT...|
Figure 73

Humber of Clusters

Close Full Screen

2. CLUSTER CORRESPONDENCE ANALYSI S TEMPLATE

Sum of Squar es Spreadsheet Tool

| @5 | & | B | s | B | Bl |[Sisu. s | [SEAEE  ssen

The spreadsheet tool shown in Figure 74 and Figure 75

is used

to

calculate Cramer’'s Coefficient
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nodel s. It accepts nodels with up to ten clusters, and
automatically calculates Craner’s Coefficient and displays
results for nmultiple nodels on the Analysis page. It is

sel f-expl anatory, automatic, and easy to use.

@J Eile Edit Yiew Insert Format Tools Data Window Help Acrobat ;@ﬂ
A B © D E F G H J K L i} i (O

1 =

Cramer's

2 Model Name Coefficient Background

g

4 FkM-K-Means4430 52.38% Cramer's Coefficient is a measure of the correspondence between the rows and columns of a matrix

5 or contingency table. Its value can range from 0.0 (ho correspondence) to 1.0 (perfect correspondence).

B FHM-K-MeansbA20 53.23% WWhen evaluating a clustering model using A/B validation, this is a scale-independent measure of cluster

7 cortespondence between the A model and B model. When comparing two potential clustering

8 rnodels, the one with the higher value of Cramer's Coefiicient is preferable.

g

10 Instructions:

11

12 To evaluate a clustering model using A/B validation, first you need to produce a matrix ar

13 contingency table of the A clustering vs. the B clustering. Once that is accomplished, select

14 the waorksheet in this workbook corresponding to the number of clusters in your models, then

15 follow the directions given there

16

17 Tao campare two or more clustering models, follow the same directions given above far each

18 maodel, then return to this worksheet to analyze the results. NOTE: If you are comparing two or mare

18 rodels with the same number of clusters, you will need to make a copy (copies) of the appropriate

20 worksheet, then manually adjust the "Model Mame" fields on this worksheet. See the detailed

21 directions below.

22

23 To copy a worksheet: 1) right-click on the tab of the worksheet to be copied

24 2 select "Move or Copy..."

25 3) select desired position for new worksheet and click "Create a copy".

26 4) click OK

27 To enter the new maodel infarmation on this worksheet:

28 1) select the next open cell in colurn A of this worksheet

129 [~ Full Screen F| 2y type "="then select the new waorksheet

30 Close Full Screen 3) on the new worksheet, select the cell highlighted green ("Cluster Field Marme")

31 4 press the enter key

32 &) select the next open cell in column B of this worksheet

33 ) type "="then select the new warksheet

34 7) on the new warksheet, select the cell highlighted yellow ["NA")

35 8) press the enter key

36 9) repeat as needed

37

38

B
i#start|(| T @ <A > || @] Ea Eo. | ST | @s..| @H.| Zw.| ®@ls, | Bs..||@)c.. Es. | s Ek | Ea | (SG @ EE szemm

Figure 74 Custer Correspondence Anal ysis Tenpl ate
Anal ysi s Wor ksheet
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E3 Microsoft Excel - Cluster Correspondence Analysis Template
&

DCzdalelky|samd<|
L & i‘\@f ¢ ERER A & 2

[ 2 ol
=T S

PEM-K-Means6AZ0 [cluster-1 |cluster2 |cluster-3 |cluster4 cluster
cluster-1 53555 i} i 0 11292
cluster-2 1007 1] 2652 a5
cluster-3 268 1] 0 0

1]

i]

2

cluster-4 19166 1418
cluster5 0 0
clusterf 103 0 0

'7_’7
l

S T B

Figure 75 Cluster Correspondence Analysis Tenplate 6
G usters Worksheet
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APPENDI X D. TREE CLUSTERI NG SPLUS | MPLEMENTATI ON

1. S-PLUS I RIS DATA

The S-PLUS Iris data set consists of fifty sanples
each of three Iris species, Setosa, Versicolor, and
Virginica, with neasurenents of sepal length and w dth and
petal |ength and w dth. A sanple of this data is show in
Tabl e 18. To evaluate the automatic variable selection
capability of the Tree Custering nethod, we add five
random or “noise” variables, and multiply the values of
Sepal Wdth and the first noise variable by ten, as shown
in Table 19.

Speci es Sepal . L Sepal . WPetal.L Petal . W

1 Set osa 51 3.5 1.4 0.2
2 Set osa 4.9 3.0 1.4 0.2
3 Set osa 4.7 3.2 1.3 0.2
51 Versi col or 7.0 3.2 4.7 1.4
52 Versi col or 6.4 3.2 4.5 1.5
53 Versi col or 6.9 3.1 4.9 1.5
101 Virginica 6.3 3.3 6.0 2.5
102 Virginica 5.8 2.7 5.1 1.9
103 Virginica 7.1 3.0 5.9 2.1

Table 18 Exanple of Original Iris Data

Species Sepal.L Sepal.WPetal.L Petal . WNL N2 N3 N4 N5
1 Setosa 5.1 35 1.4 0.2 64 4.8 6.8 5.5 5.4
2 Setosa 4.9 30 1.4 0.2 49 4.9 5.9 4.9 6.0
3 Setosa 4.7 32 1.3 0.2 72 4.9 4.3 5.5 6.3

Table 19 Exanple of Scaled Iris Data Wth Noi se Vari abl es
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2.  S-PLUS | MPLEMENTATI ON
a. Function tree.clust()

The followng S-PLUS function takes as input a data
frame with the observations as rows and the variables as
colums, and returns a list containing a |list of variables
retained, the size and deviance of the tree for each of
those variables, and a dissimlarity matrix suitable for
clustering by any S PLUS clustering algorithm The
argunent s are structured to allow flexibility in
application and debuggi ng of the function.

> tree. clust
function(df, fancy.dist = T, rank.y = F, verbose = F, debug = F)

if(!is.data.franme(df))
stop("This function requires a data franme")
i f(version$mjor < 6)
ol dC ass <- cl ass
out <- as.data.frame(matrix(0, nrowmdf), ncol (df))) # Deal with
col ums whose names have enbedded spaces. They suck, by the way.
#
di manes(out) <- di manes(df)
nm <- nanes(df)
first.space <- first.occurrence(nm " ")
which <- first.space != nchar(nm
i f(any(which)) {
nni whi ch] <- substring(nnfwhich], 1, first.space[which] -
1)
if(length(nm != length(unique(nm))
stop("Truncati ng enmbedded spaces in nanmes |eads to
anbiguity. | give up.")
nanmes(df)[whi ch] <- nniwhich]
}
#

# Handy function to convert "where" entries to | eaf nunbers
#
| eaf . nunbers <- function(tree)

{
where <- tree$where
| eaves <- as.nuneric(di manes(tree$frame)[[1]])
| eaves[ wher €]

}
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assign("df", df, frane = 1)
df . name <- deparse(substitute(df))
results <- matrix(0, nrow = ncol (df), ncol = 2)
di mames(results) <- list(dimanmes(df)[[2]], c("Dev", "Size"))
big.list <- vector("list", ncol (df))
i f(fancy.dist) {
big.dist.mat <- matrix(0, nrowmdf), nrow(df))

}
for(i in 1:ncol (df)) {
i f(verbose > 0)
cat("Creating tree with colum", i, "\n")
i f(rank.y)
str <- paste("tree (rank(", names(df)[i], ") ~ .,
data = df)", sep = "")

el se str <- paste("tree (", nanes(df)[i], " ~ ., data =
df)", sep ="")
nytree <- eval (parse(text = str))
i f(ol dd ass(nmytree) == "singl enode")
next

ny.cv <- cv.tree(mytree, FUN = prune.tree)
ny.size <- ny.cv$size[ny.cvédev == nmin(ny.cv$dev)][1]
if(my.size == 1) {

results[i, "Dev"] <- O
results[i, "Size"] < 1
next

}

nytree <- prune.tree(nytree, best = ny.size)
big.list[[i]] < mytree #
# When "fancydist” is FALSE, we sinply use the |leaf identifier for each
# observations. By our making it factor, daisy() will compute the
di st ance
# as a 0 or 1. When fancydist is TRUE, we conpute the distance from
each
# observation to all the others in terms of...
#
i f(fancy.dist) {
| eaves <- | eaf. nunbers(nytree)
node. nunbers <-
as. nuneri c(di manes(nytree$frame)[[1]])
non. | eaves <- node. nunbers[!is. el enment (node. nunbers,

| eaves) ]
i f(length(non.leaves) == 1) {
dev. at.node <- nytree$frane["1", "dev"]
nanes(dev. at. node) <- "1"
subtree. dev <- devi ance(nytree)
nanes(subtree. dev) < "1"
}
el se {
dev. at. node <- nytree$franme[ mytree$franmedvar !=
"<l eaf>", "dev", drop = F]
nm <- di manes(dev. at.node)[[1]]
dev. at. node <- as.vector(dev.at.node[, 1, drop
=T

nanmes(dev. at.node) <- nm
subtree. dev <- sappl y(select.tree(nytree,
non. | eaves), devi ance)
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}

u. |l eaves <- uni que(l eaves)
lul <- length(u.leaves)

dmat <- matrix(0, lul, lul)
di manmes(dmat) <- list(u.leaves, u.leaves)
for(uin 1:(lul - 1)) {
this <- u.leaves[u] # | eaf nunber
ind <- leaves == this # |1 ogi ca
for(other in (u + 1):1ul) {
that <- u.leaves[other] # | eaf nunber
0.ind <- |eaves == that
parent <- as.character(nmax(leaf.paths[this,
][match(l eaf.paths[that, ], leaf.paths[this, ], 0)])) #
##cat ("Di stance between", this, " and ", that,
## "is ", subtree.dev[parent],
## ", since parent is", parent, "\n")
dmat [u, other] <- subtree.dev[parent] #
#
# A d egad: egad <- try(big.dist.mat[o.ind, ind] <-
# big.dist.mat[o.ind, other] + subtree.dev]|
# parent]/subtree.dev["1"])
#

egad <- try(big.dist.mat[o.ind, ind] <-
big.dist.mat[o.ind, other] + 1 - (subtree.dev[parent]/dev. at.node[
parent]))
i f(any(is.na(big.dist.mat)))
i f(debug)
br owser ()
el se stop("NA's are gonna get you")
if(length(class(egad)) > 0 && cl ass(egad) ==
"Error") {
i f(debug)
br owser ()
el se stop("Dammit, | don't know what to do,

}
}

dmat <- dmat + t(dmat)

and debug is FALSE.")

}

out[, i] <- factor(nmytree$where)
orig.dev <- dev(df[, i])

new. dev <- sunmary(nytree) $dev

results[i, "Dev"] <- orig.dev - new. dev
results[i, "Size"] <- ny.size
if(lis.factor(df[, i]))
results[i, "Dev"] <- results[i, "Dev"]/var(df[, i])

}
if(lany(results[, "Size"] > 1))

stop("Egad! No tree produced anything!")
out <- out[, results[, "Size"] > 1]
big.list <- big.list[results[, "Size"] > 1]
results <- results[results[, "Size"] > 1, ]
if(fancy.dist) {

dists <- big.dist.mat[rowm big.dist.mt) >

col (big.dist.mt)]
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attr(dists, "Size") <- nrowdf)

attr(dists, "Labels") <- as.character(1: nrow(df))
attr(dists, "Metric") <- "euclidean”

ol dC ass(dists) <- "dissimlarity"

}
el se dists <- daisy(out)
out <- list(mat = out, call = match.call (), thl = results, trees

= big.list, dists = dists)
ol dC ass(out) <- "treeclust"
return(out)

b. Application to Iris Noise Data

The following S-PLUS code was executed to produce the

results shown in Chapter VI, Section D

> iris.noise.scale. pampan(iris.noise.scale[,-1], 3, di ss=F, stand=T)
> tabl e(iris.noise[,1],iris.noise.scale.pantcl ustering)
1 2 3
Setosa 48 2 O
Versicolor 0 17 33
Virginica 0 7 43
> iris.noise.scale.tc_tree.clust(df=iris.noise.scale[,-1])
> iris.noise.scale.tc
Dev Size
Sepal . L 132.69178 10
Sepal . W 85. 93450
Petal . L 144.87745
Petal . W 141. 61504
Noi se 1 40.08875
Noi se 2 13.74929
> iris.noise.scale.tc. pampan(iris.noise.scale.tc$dists, 3, diss=T)
> table (iris.noise[,1], iris.noise.scale.tc.pancluster)
1 2 3
Setosa 50 0 O
Versicolor 3 47 O
Virginica 2 3 45

NO OO M

b. Application to Vendor Paynent Data

The following S-PLUS code was executed to produce the

results shown in Chapter VI, Section E

> KB.tc_tree.clust(df=KBData[, -5])
> KB.tc
Dev Size
CHK. AMT 321. 42728 4
PMI. METH 146. 32514 7
PMTI. TYPE 704. 36352 14
I NV. AMI 372. 58038 6
I NV. RECV. | NV. DT 410. 56259 7
CHK. | NV. DT 421. 59578 10
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CHK. | NV. RECV. DT
| NTEREST
DBOF

OTHERX

ALLX

Y1. PRI OR

Y1. CUR

Y2. CUR 2ND
Y3. PLUS
ENHANCE. PAYEE
STE

POBOX

| NV. PAYEE

| NV. CNT
DOVAMT. 2K
DOVAMT. 1K
AVG. 5K
PAYEE. 4. PYMI
| NV. SEQ

PMT. FREQ. HI
PMT. FREQ. LO
TINS
MULTI . TI NS
MULTI . PAYEE. K
MULTI . ADDR. K
DI SCOUNT

M PYMT

M SC. OBLI G
NOT. DFAR
NUMADR. K
NUMADREE
NUM EE. K
DP109

DP111

MDEL CKDT
MDELI NDT
MDELI RDT

415.
269.
436.
436.
408.
366.
389.
305.
204.
375.
382.
412.
220.
332.

441

441.
385.
355.

67.
434.
392.
360.
433.
441.
441.
269.
428.
315.
350.
439.
378.
441.
358.
214.
379.
400.
378.

87393
51651
75056
47283
59796
13269
61332
11099
30980
51852
90927
31105
28978
77792
. 00000
00000
83321
60706
82436
38967
99234
78780
48543
00000
00000
79951
76615
41648
46514
12694
58206
00000
23176
10555
81641
30045
21893

=

=

=

=

N
COORFRPROWPRARWNUOOPRARNNUINOOWOWNNNOOUUIOOOR,WRARPOWWSAO

=

B

> KB.tc. pam pan{KB. t c$di st s, 4, di ss=T)
> tabl e(KBDat a[ , 5], KB. tc.

Bi gsys 144
40

Qpportunistic

Pi ggy
Smal | sys

1
1

9

46

2 3
07 29
3 1
2 20
17 20

pantcl ust eri ng)
4

2
1
0
1
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APPENDI X E. PROPOSED STANDARD OPERATI NG PROCEDURES
FOR UNSUPERVI SED MODELI NG TO DETECT FRAUD | N VENDOR
PAYMENTS

1. PURPGCSE AND OVERVI EW

This is a recommended Standard Operating Procedure
(SOP) for Unsupervised Mdeling, designed as a supplenment
to the Internal Review Seaside Datam ning SOP. The i ntent
of this SOP is to provide a nore rigorous and standardi zed
process for selection of wunsupervised candidates in the
I nternal Review Datam ning process. It is based on the
i dea that transactions that belong to the sane contract are
sonmehow simlar, and thus should fall into the sane cluster
of a clustering nodel. Transactions that fall into
clusters other than the one containing the majority of
transactions for their contract are considered *“orphans.”
Sel ection of orphan transactions is the ultimte result of
this procedure.

This Recormended SOP is organized into three sections:
Data Pre-Processing, Mdel Building and Selection, and
Model Analysis. Famliarity with Cenentine on the part of
the reader is assunmed, so sone of the specific details of
Clenmentine inplenentation are onmtted. For nore detail on
any area of this SOP, refer to the Naval Postgraduate
School Master’s Thesis “An Inproved Unsupervised Mbddeling
Met hodol ogy  for Det ecti ng Fraud in Vendor Payment
Transactions,” June 2003, by Mjor Gegory W Rouillard.
Q \ Mongoose\ Unsuper vi sed_Mdel i ng cont ai ns t he exanpl e
streans, supernodes, and spreadsheet tools referred to in
this SOP.
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2. DATA PRE- PROCESSI NG
a. Source Data and SPSS Anal ysis

ot ai ning and opening the popul ati on database and SPSS
anal ysis should be conducted as always, as detailed in the
Dat am ni ng SOP. The procedures described in this docunent
assune that the popul ation database and an ODBC connecti on
have been established, and that the Fields to Use
spreadsheet has been conpl et ed.

b. The Basic Filter & Type Supernode

The Basic Filter & Type Supernode, shown in Figure 76,
can be used for additional data pre-processing if desired.
Note that Two Step cluster nodels do not admt fields with
m ssing values, so sone consideration mght be given to
conducting this analysis and either using filler nodes to
correct mssing values, or elimnating fields with a high

per cent age of m ssing val ues.

¥

i

¢ =@ —=@ =@ —@—

From Stream Basic Filter To String Filler Basic Type Filter Bad Fields PMTMI’H Filler

c — @ B @ @— @

To Stream /inallFilter Fields to Use Contract ValSet F'MT_T‘IE Filler

A (@ " ¢

Distribution Tahle Distributions and Statistics

Figure 76 Basic Filter & Type Supernode
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The To String Filler node is necessary to be able to
browse constructed K-Means nodels (this is a quirk of
Cl enentine’s). The Quality node, as well as the
Distributions and Statistics Supernode (Figure 77), are
used to analyze fields for inclusion or filtering. The
Val Set Derive Node assigns Validation Set menbership of A
or B depending on the value of RNDMNUM Its purpose is to
allow the nodeler to divide the data set into tw equally-
sized random subsets for A/B validation of K-Means and Two
Step cluster nodels. The Contract derive node creates a
new field to identify specific <contracts and enable
analysis of clustering results wth regard to contract
di stri butions.

B A

Flags stribution
E4_CD
2x
= VEZ_CD
Murneric Statisli WE1_CD
/Vou_STAT
.

® a3 A
-A>
tom Sl! it — \ ——
PMT_METH A
A M_AGG_PAYEE_RG

M_CHK_AWARD_RG f
A f M_AGG_ADR_RG

M_INV_AWARD_RG
i E
M_INY_RECY_AWARD_RG A A

M_CHK_INYV_RG

M_CHK_INY_RECY_RG

M_INY_RECY_INV_RG

Figure 77 Distributions and Statistics Supernode
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The Final Type Node is used to assign the Direction to
each unfiltered field.
3. MODEL BUI LDI NG AND SELECTI ON

Clenentine’s unsupervised nodeling choices are K-
Means, Two Step, and Kohonen. Refer to the Clenentine 7.0
User's @Quide or online Help for nore details on the basic
functioning and uses of these nodels.

a. K-Means Model Buil ding

K- Means nodel building and selection is the nost
conplicated part of the unsupervised nodeling process,
primarily because the nodeler nust select the nunber of
clusters for nodel building. The procedure outlined here
provides a rigorous nmethod for selecting the correct nunber
of clusters and validating constructed nodels. The stream
KMeans_NO2pop, shown in Figure 78, <can be wused as a

reference for this section.

The procedures outlined here are based on theory that
is fully detailed and explained in Chapter I1l of Mjor
Rouillard’ s thesis. It is not necessary to understand this

theory to successfully apply these procedures.

Note: al though C enmentine’s K-Means nodeling algorithm
will accept categorical (Set and Flag Type) fields, it is
not recommended. Clustering results on categorical fields
tend to be arbitrary and are very sensitive to the order of
the data. Always filter non-nuneric fields or set their
direction to “none” for K-Means clustering.
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-
=p &
NOZ_STA TPEDDD P.. KN* ns
_ [
-A-P i \ \
Basic Filter & Type Numelc Type WalSet select KMeansﬁAED k-MeansEB20  FkM-k-Means9A30 x §i.
ABZ0 Models Sum of Squares

Figure 78 Kneans_NO2pop Stream

Build a streamwith an SQ. node for the source data,
the Basic Filter & Type Supernode, and a Type Node
setting only the nuneric fields as “In.” Al others

shoul d be set to “None.”

Add a K-Means nodeling node downstream of the
Nurmeric Type Node. This nodeling node should only
require the Sinple settings, and wll be used to
generate all of the K-Means nodel s.

Add a Sel ect Node, shown in Figure 79, to select the
appropriate Validation Set for nodel wvalidation,
detailed in Step 10.

131



4 valset select X
@

Z

Mode: ) Include (® Discard

alSet="4' I

Condition:

LSettings Lnnnutatiuns |

0] Cancel Apply Reset

Figure 79 Val Set Sel ect Node

Buil d nodels with nunmber of clusters k =1, 2, 3, .,
15. Stopping at k = 10 is usually acceptable. | f
you are famliar with Cenentine scripting, a script
such as shown in Figure 80 can be used to streaniine
this process. O herw se, the nodels nust be built
by hand, changing the nunber of clusters and the

name for each nodel.

Once all of the nodels have been built, connect them
to the stream between the Nuneric Type Node and the
Sum of Squares Supernode. Figure 81 shows an
exanple, wth the nodels organized in a Supernode.
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A KMeans_MNOZpop

8] [18][= ][] ] [m]|w

get model series = "107
forkinl 23456748910
et 'K-Means' !
nun_clusters=k
model name="K-Means0"»>{k={"AR"»model_series
'
if k »= 10 then
get 'K-Means'.wodel name="E-Meanz0">=<{k-<"AE"=<{nodel series
endif
execute 'E-Means'

endfor -
T M|
Lime 1:0 |
1 | ]
0n stream execution: ' Run this script i® |gnore this script
Script
(] 54 Cancel Apply Reset

Figure 80 K-Means Model Building Script (Script Tab of the

Stream Properties D al og Box)

-MeansO4AE10 K-Means05AE10

k-Means0,

From Stream K-Means01AB10 K-Means02AB10

& & & T & e & &

K-Means0BAB10 K-MeansO7AB1D K-Means08AB10 k-Means09AE1D K-Means10AB10 K-Means11AB K-Means12AB10

Figure 81 Cenerated K-Means Model s
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The Sum of Squares Supernode (Figure 82) produces a
table of values that is used in the spreadsheet Sum
O Squares to help determne the correct nunber of
clusters for K-Means nodel i ng.

» -—r@ —r@ —r@ > (a2 —» |
-

Frarn Strearm Sclare _Sum_Square Agaregatel Type Tahle

®

Within-Cluster Sum of Squares

Figure 82 Sum of Squares Supernode

The four nodes boxed in the above figure must be
edited to select the correct fields. Figure 83,

Figure 84, Figure 85, and Figure 86 show exanpl es of
this step.
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Figure 84

@
Derive as: Formula

Mode: ) Single ) Multiple

Derive from:

& $KMD-K-Means01AB10 ﬂ,@
& FKMD-K-Means02AB10 ~ |
j Lol P2 X 1 Pl Y PN S T B B N = W il Ii
Field name extension: |_5quare Add as: 8 Suffix ' Prefix
Derive as: | Formula - TIP: Refer to selected fields by using @FIELD

Field type: | &~ Range

Formula:
ito_number{gF [ELDY*2 |
0] Cancel Apply Reset

Figure 83 _Square Derive Node D al og Box

4 within-Cluster Sum of Squares x|

@)
Glohals ta be created:

Field | MEAN | sum | min | max | SDEV| |
FKMD-K-Means01AB10_square | [ vl [ ] ] |=
SKMD-K-Means02AB10_square | 1 | M | | 0 | [ |@ -~
FKMD-K-Means03AB10_square | [ vl [ ] [
FKMD-K-Means04AB10_square | [ vl [ ] [
FKMD-K-Means05AB10_square | [ vl [ ] [
FKMD-K-Means0BAB10_square | [ vl [ ] [+
Default operationis): [ MEAN [v/SUM [ MIN [ MAX [ SDEY |58
[¥l Clear all globals before executing
[_| Display preview of globals created after execution

(0] 4 B Execute Cancel Apply Reset

D al og Box
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A _Sum_Square il

&)
Derive as: Formula

Maode: () Single @ Multiple

Derive frarm:

& BKMD-K-Means01AB10_sguare = i
& FKMD-k-Means02AB10_square B2
»@‘ TlARAC L bdomm e O200D41 0 ~riar; - |§

Field name extensian: |_Eum_5quare Add a5 @ Suffix O Prefiz

Derive as: | Formula - TIP: Refer to selected fields by using @FIELD

Field tg.fpe:| & <Default=> v|

Formula:
‘@GLOBAL_SUM{@FIELD} -~ ||
| (0] 4 || Cancel | | Anply || Reset |

Figure 85 _Sum Square Derive Node D al og Box

"Aggregate ﬂ
€2
ey fields: [¥] Keys are contiguous
<7 KMD-K-Means01ABT0_square_Sum_Soguare - |'§
& FMD-K-Means02AB10_square_Sum_Square Iz
S lepiD-lhleansN38R1 0 cruare Sorm Sriare ol
Agoregate fields:

Field | Sum | Mean | hity | R | SDev "IE

X

Default mode: [[1Sum [¥I/Mean [ Min [_|Max [|SDev =
Mew field name extension: | |Add as: @ Suffix ) Prefix

[¥| Include record count in field |Recnrd_Cnunt

]2 Cancel Anply Reset

Figure 86 Sum of Squares Aggregate Node Di al og Box
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10.

When the Table Node is executed, it produces a table

containing a field for each nodel that is its

Wthin-Cluster Sum of Squares. In this table,
select Edit-Select AIl, then Edit-Copy (inc. field
nanes) . Open the Sum of Squares spreadsheet, and
then follow the directions given therein. The end

result is a graph simlar to the one shown in Figure
87, and the correct nunber of clusters is at the

“kink” or flat spot in the curve.

Within-Cluster Sum of Squares vs. Number of Clusters
AB20 Numeric Models, Entire Data Set
12000

11000 - ‘\’\
10000 \ 6 clusters —
9000 /

8000 - \ /
7000

6000 - /
5000 -

4000 -

3000
\’\Oﬂ—o\,__‘__o

2000 T T T T T T T T T T
3 14 15

Sum of Squares
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Number of Clusters

Figure 87 Exanple of Sum of Squares Pl ot

After selecting the correct nunber of clusters for
K- Means nodeling, the next step is to validate that
nodel for conparison with other generated nodels.

Connect the K-Means Mdel Node to the Val Set Sel ect
Node, and build a nmodel on the “A” Validation Set
with the nunber of <clusters selected in Step 8.

Next, build a mbdel with the sane nunber of clusters
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on the “B” Validation Set. Finally, connect both

nodels to the ValSet Node (still set to select

Validation Set “B’) and connect a Mtrix to conpare

the cluster fields $KM <nodel name> as shown in
Fi gure 88.
’ $KM-K-Means6A20 X $KM-K-Means6B20 x|
@
Fields: ® Selected 1 Allflags {true values) ) All Humerics
Rows: & $KM-K-Means6420 i
Columns: & $KM-K-Means6B20 <8
Cell contents: ‘! Cross-tabulations ) Function
w8
LSeﬁings anpearance LOutput Lnnnntatiuns |
Ok, B Eiecute Cancel Reset
Figure 88 Matrix Node Settings Tab
11. This matrix wll show the cross-tabulation (co-
clustering) of the two nodels. Sel ect Edit- Sel ect

All and Edit-Copy (inc. field nanes), then paste

into the appropriate workbook in the spreadsheet

Cluster Correspondence Analysis Tenpl ate. Be sure

to save your workbook under another nane to keep the

tenpl ate clear. Follow the instructions in that
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spreadsheet, and you wll have a single nunber
(Cramer’s Coefficient, a nmeasure of how good your
clustering nodel is) to conpare with other nodels.

b. Two Step Model Buil ding

Building a Two Step nodel is nuch easier than building
the “right” K-Means nodel. Two Step nodels are designed to
work with all data types, so the Two Step nodeling node may
be connected directly to the Basic Filter & Type Node.
Build a Two Step nodel with the sinple (default) settings,
then renane it to incorporate the nunber of clusters
(automatically chosen by Two Step). The validation
procedure is the sane as described in Steps 9, 10, and 11
of the preceding section.

c. Kohonen Moddel Buil ding

Bui |l ding a Kohonen nodel is not difficult, but it can
be very tine- and nenory- intensive, and there are nmany
expert options which can affect the results. It is
recommended to use the default settings of the Expert Model
Tab, changing only the dinensions of the generated map
(Figure 89).

Trial and error may be required to determne
appropriate dinensions for the Kohonen map. CGenerally
speaking, for a data set the size of the audit popul ations,
a map of size 10x10 or larger should be considered for
interpretability.
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@

Mode: 0 Simple ® Expert]
Wicith: 10/=  Length: =

Learning rate decay. @ Linear 1 Exponential
Phase 1

MNeighborhood: 2]~ Initial Eta: 0.3} Cyeles: 20/
Phase 2

Meighborhood: 1] nitial Eta: 0.1]= Cycles: 150/

| Fields | Model | Expert | Annotations |

] b Execute Cancel Apply Reszet

Figure 89 Kohonen Mbdel Node Expert Tab

4. MODEL ANALYSI S AND RESULTS

The stream Model anal ysi s_NO2pop (Figure 90)
denonstrates the nethod described in this section. 1In this
stream each generated nodel selects its own orphan
transactions, and the transactions that are selected by all

three nodels are forwarded for audit.

The selection of orphans 1is highly dependent on
determnation of the threshold for contract concentration.
For exanple, a nodel that selects as orphans only
transactions falling in clusters containing 30% or fewer of
the transactions in a contract will identify nore orphans
t han one whose threshold is 10% This threshold is set in
the Derive Nodes of the O phans Supernode (Figure 94),
di scussed in detail bel ow

The concept of orphan transactions in a Kohonen
mapping is not as sinple as for a K-Means or Two Step
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cluster nodel, because by the nature of a Kohonen map there
is not necessarily a “honme” node for each contract.
Therefore it mght be desirable to evaluate a Kohonen map
based on the concept of “sparse” nodes (ones wth few
records): perhaps the transactions that occupy sparse
nodes are nore interesting than those in dense nodes. The

Sparse Prototypes Supernode facilitates this type of

anal ysi s.
—
NOQ_STA_iprDDD CPL Sparse intnh.rpes
Basic Filter & Type KSOM10x11ABD2 Kohonen Labels CuntraltCnunt
i? S @ — o —
Crplyans Cluster Labels k-MeansBAEZ0 TwoStepOvAutoAB20

Gy~ - B

Triple Orphans Filter Tahle

Figure 90 Mbdel _anal ysis_NO2pop

The Contract Count Supernode (Figure 91) produces a
field containing the nunber of transactions in the contract
to which each record belongs, which is essential to

i dentifying orphan transactions.
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/Cun acts

-a>
) > m>
-A>
Frarn Stream Type \
Merge To Stream

Figure 91 Contract Count Supernode

The data is first aggregated by contract, and then the
Merge Node (Figure 92 and Figure 93) creates a new field
wi th the nunber of contracts for each transaction.

x|
&)
Merge 2 datasets. Merge method: Keys
Merge Method: ) Order @ Keys
Fossihle keys: keys for merge:
= |Contract
=

[v] Combine duplicate key fields
i Include onhy matching records (inner join)

i Include matching and non-matching records (full outer join)
[ Inputs l Merge L Filter L Annotations |

(] Cancel Apply Reset

Figure 92 Merge Node Dial og Box, Merge Tab
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@ ©)

herge 2 datasets. Merge method: Keys

7| ] ] Fields: 80 in, 0 filtered, 1 renamed, 80 out
Field | Tag | Source Mode [Connected Model Filter | Field |

Contract —+ | Contract -

Fecord_Count |1 Contracts — Contract_Count

Pk 3 Type —  PIN

DEL_ORD 3 Type — |DEL_ORD

CHK_DT 3 Type — [CHK_DT

CHE_AMT 3 Type —  |CHK_AMT -

) View current fields ) View unused field settings

Llnputs LMerge LFiIter Lnnnutatiuns

0] Cancel Apply Reset

Figure 93 Merge Node Dial og Box, Filter Tab

The O phans Supernode (Figure 94) acconplishes the
inmportant task of creating fields identifying records as
orphans for one or nore of the generated nodels. For each
type of nodel, Two Step, K-Means, and Kohonen, the data is
first merged on contract and cluster nunber (prototype
nunber in the Kohonen case), then nmerged back to create a
field identifying the nunber of transactions in each
cluster from each contract. Figure 95 shows an exanple
Merge Node Filter Tab, with the new field TS C uster_Count.
The other two nerge nodes are very simlar and produce the
new fields KM O uster_ Count and KSOM Prot ot ype_Count.
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®—® & & @ @A

Tye TS Contralt Clusters K] Dntraltolusters K3, UntnlctPrototypes _£1phan Irphan KSOM_Orphan
-8
e — e — _E> — C..
) -A>

Merge Merge herge KM_Orphan Type To Stream
Fram Stream

Figure 94 O phans Supernode

X
o 2
Merge 2 datasets. Merge method: Keys
v~ B Fislds: 84 in, 0 fitered, 1 renamead, 84 out
Field \TagSou.|Connected M..]  Filter | Field |
Contract — |Contract -
FT-TwoStepOTAUtD... — |FT-TwoStep07AUt0ABZ0
5 Fecord Count |1 TS Contract... =——#  T5_Cluster_Count
Contract_Count 2 Type — |Contract_Count
P 2 Type — |PIIN
CEL_ORD 2 Type —= |DEL_ORD
CHE_DT 2 Type —» |[CHE_DT
CHE_AMT 2 Type —+  [CHE_AMT
PMT_METH 2 Type — |FMT_METH
PMT_TYFE 2 Type — |PMT_TYPE |
I AMT 2 Type — [NV AMT -
@ View current fields ) View unused field settings
|\ Inputs L Merge L Filter L Annotations
(] 54 Cancel Apply Reset

Figure 95 Merge Node Filter Settings

The three Derive Nodes create new Flag fields to
identify orphan transactions. Figure 96 shows an exanple
for the Two Step orphans; the other two derive nodes are

very simlar. As discussed at the beginning of this
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section, selection of the orphan threshold (30% shown here)

has a |l arge inmpact on the nunber of orphans identified.

&
Derive as: Flag

Mode: @ Single ) Multiple

Derive field:
TS_Orphan

Derive as: | Flag -

Field type: | O® Flag -

True ualue:|T False value: [F |

True when:
TS_Cluster_CountContract_Count == 0.30 o

L Settings L Annotations

] Cancel Apply Reset

Figure 96 TS Orphan Derive Node Settings

The final step in this stream is to select the
“mul tiple orphans,” which is acconplished by the Triple
Orphans Sel ect Node (Figure 97). A table of these records

is then produced that identifies transactions for audit.

145



o Triple Orphans

@

Mode:  (® Include O Discard

EanTT kM_Orphan and TS_Orphan and KS0OM_Crphan i
| (0] 4 | | Cancel | | Anply | | Reset |

Figure 97 Triple O phans Sel ect Node Settings

The final step is to generate a table of the selected

transacti ons. Alternatively, a Derive or Select Node can

be generated from this table to select

t hese transactions
based on SEQ ID or sone other field.
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