

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

AN IMPROVED UNSUPERVISED MODELING
METHODOLOGY FOR DETECTING FRAUD IN VENDOR

PAYMENT TRANSACTIONS

by

Gregory W. Rouillard

June 2003

 Thesis Advisor: Samuel E. Buttrey
 Second Reader: Lyn R. Whitaker

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: An Improved Unsupervised Modeling
Methodology For Detecting Fraud In Vendor Payment
Transactions

6. AUTHOR(S) Gregory W. Rouillard

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Finance and Accounting Service, Internal
Review Seaside (Operation Mongoose)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

In this thesis, we propose a standardized procedure for detecting fraud in Defense
Finance and Accounting Service (DFAS) vendor payment transactions through
Unsupervised Modeling (cluster analysis). Clementine Data Mining software is used to
construct unsupervised models of vendor payment data using the K-Means, Two Step, and
Kohonen algorithms. Cluster validation techniques are applied to select the most
useful model of each type, which are then combined to select candidate records for
physical examination by a DFAS auditor. Our unsupervised modeling technique utilizes
all the available valid transaction data, much of which is not admitted under the
current supervised modeling procedure. Our procedure standardizes and provides rigor
to the existing unsupervised modeling methodology at DFAS. Additionally, we
demonstrate a new clustering approach called Tree Clustering, which uses
Classification and Regression Trees to cluster data with automatic variable selection
and scaling. A Recommended SOP for Unsupervised Modeling, detailed explanation of
all Clementine procedures, and implementation of the Tree Clustering algorithm are
included as appendices.

15. NUMBER OF
PAGES

173

14. SUBJECT TERMS
Cluster Analysis, Cluster Validation, Data Mining, Fraud Detection,
K-Means, Kohonen, Tree Clustering, Two Step, Unsupervised Modeling.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

AN IMPROVED UNSUPERVISED MODELING METHODOLOGY FOR DETECTING
FRAUD IN VENDOR PAYMENT TRANSACTIONS

Gregory W. Rouillard
Major, United States Marine Corps

B.S., United States Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
JUNE 2003

Author: Gregory W. Rouillard

Approved by: Samuel E. Buttrey

Thesis Advisor

Lyn R. Whitaker
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 In this thesis, we propose a standardized procedure

for detecting fraud in Defense Finance and Accounting

Service (DFAS) vendor payment transactions through

Unsupervised Modeling (cluster analysis). Clementine Data

Mining software is used to construct unsupervised models of

vendor payment data using the K-Means, Two Step, and

Kohonen algorithms. Cluster validation techniques are

applied to select the most useful model of each type, which

are then combined to select candidate records for physical

examination by a DFAS auditor. Our unsupervised modeling

technique utilizes all the available valid transaction

data, much of which is not admitted under the current

supervised modeling procedure. Our procedure standardizes

and provides rigor to the existing unsupervised modeling

methodology at DFAS. Additionally, we demonstrate a new

clustering approach called Tree Clustering, which uses

Classification and Regression Trees to cluster data with

automatic variable selection and scaling. A standardized

procedure for Unsupervised Modeling, detailed explanation

of all Clementine procedures, and implementation of the

Tree Clustering algorithm are included as appendices.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. OPERATION MONGOOSE AND VENDOR PAYMENT AUDITING1
B. A NEW CLUSTERING METHODOLOGY WITH AUTOMATIC

VARIABLE SELECTION AND SCALING3
C. PURPOSE AND SCOPE OF THE THESIS4
D. OVERVIEW OF THESIS4

II. CLASSIFICATION AND DETECTION OF FRAUD7
A. CLASSIFYING FRAUD7
B. THE KNOWLEDGE BASE8
C. DETECTING FRAUD WITH SUPERVISED LEARNING9

1. Current Procedures9
2. Shortcomings of Supervised Modeling10
3. Potential Improvements With Unsupervised

Modeling11
III. UNSUPERVISED LEARNING13

A. DEFINITION ..13
B. TYPES OF VARIABLES13

1. Interval-Scaled Variables14
2. Binary Variables14

a. Definition of Symmetric and Asymmetric
Binary Variables14

b. Measuring dissimilarity in binary
variables15

3. Nominal Variables16
4. Mixed Variable Types17

C. UNSUPERVISED LEARNING METHODS19
1. Partitioning19
2. Hierarchical Methods20
3. Self-Organizing Maps22

D. EVALUATION OF CLUSTERING RESULTS24
1. Optimum Number of Clusters for K-Means24
2. Cluster Validation25

IV. CLEMENTINE DATA MINING SOFTWARE31
A. OVERVIEW ..31
B. UNSUPERVISED LEARNING MODEL TYPES31

1. K-Means31
2. Two Step35
3. Kohonen37

C. SHORTCOMINGS OF CLEMENTINE UNSUPERVISED MODELING ..40
V. FINDING CLUSTERS IN NO2 VENDOR PAYMENT DATA USING

CLEMENTINE UNSUPERVISED MODELS43
A. OVERVIEW OF THE PROCESS43

 viii

B. SOURCE DATA: THE NO2 POPULATION DATABASE43
C. DATA PRE-PROCESSING: THE BASIC FILTER & TYPE

SUPERNODE ...44
D. K-MEANS MODELING: KMEANS_UNSUP_POP_GWR.STR46

1. Methodology46
2. All Fields: AB10 Models49
3. Numeric Fields Only: AB20 Models51
4. Numeric Fields Only (Principal Components

Analysis): AB30 Models52
E. TWO STEP MODELING: TWOSTEP_UNSUP_POP_GWR.STR53
F. KOHONEN MODELING: KOHONEN_UNSUP_POP_GWR.STR54
G. MODEL ANALYSIS: ANALYSIS_UNSUP_POP_GWR.STR57

1. Overview57
2. K-Means and Two Step Models58
3. Kohonen Maps58
4. Implementation and Results60

VI. TREE CLUSTERING63
A. OVERVIEW ..63
B. CLASSIFICATION TREES63

1. Definition63
2. Construction64
3. Node Impurity and Deviance65

C. TREE CLUSTERING IMPLEMENTATION66
D. DEMONSTRATION OF THE TECHNIQUE68
E. APPLICATION TO VENDOR PAYMENT DATA70

VII. CONCLUSIONS AND RECOMMENDATIONS73
A. SUPERVISED LEARNING VS. UNSUPERVISED LEARNING73
B. RELATIVE COMPARISON OF K-MEANS, TWO STEP, AND

KOHONEN CLEMENTINE MODELS73
C. RECOMMENDATIONS FOR INTERNAL REVIEW SEASIDE75
D. TREE CLUSTERING WITH LARGE DATA SETS76

APPENDIX A. NO2 POPULATION DATABASE77
APPENDIX B. NO2 POPULATION UNSUPERVISED MODELING

IMPLEMENTATION AND DETAILED RESULTS83
1. BASIC FILTER & TYPE SUPERNODE83
2. KMEANS_UNSUP_POP_GWR MODELING STREAM91

a. Implementation91
b. Results ..99

3. TWOSTEP_UNSUP_POP_GWR MODELING STREAM103
4. KOHONEN_UNSUP_POP_GWR MODELING STREAM105
5. MODEL_ANALYSIS_POP_GWR ANALYSIS STREAM107

a. Implementation107
b. Results115

APPENDIX C. SPREADSHEET TOOLS FOR UNSUPERVISED MODELING117

 ix

1. SUM OF SQUARES117
2. CLUSTER CORRESPONDENCE ANALYSIS TEMPLATE117

APPENDIX D. TREE CLUSTERING SPLUS IMPLEMENTATION121
1. S-PLUS IRIS DATA121
2. S-PLUS IMPLEMENTATION122

a. Function tree.clust()122
b. Application to Iris Noise Data125
b. Application to Vendor Payment Data125

APPENDIX E. PROPOSED STANDARD OPERATING PROCEDURES FOR
UNSUPERVISED MODELING TO DETECT FRAUD IN VENDOR
PAYMENTS127

1. PURPOSE AND OVERVIEW127
2. DATA PRE-PROCESSING128

a. Source Data and SPSS Analysis128
b. The Basic Filter & Type Supernode128

3. MODEL BUILDING AND SELECTION130
a. K-Means Model Building130
b. Two Step Model Building139
c. Kohonen Model Building139

4. MODEL ANALYSIS AND RESULTS140
LIST OF REFERENCES ...147
INITIAL DISTRIBUTION LIST149

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1 Generated Data for Clustering by Partitioning

Methods ...19
Figure 2 A Hierarchical Clustering Dendrogram of U.S.

States from the S-PLUS [14] AGNES Clustering
Algorithm ...21

Figure 3 5x5 Kohonen Map of Generated Cluster Data24
Figure 4 Evaluation of Optimum Number of Clusters25
Figure 5 K-Means Node Model Options Dialog Box Model Tab ...32
Figure 6 K-Means Node Model Options Dialog Box Expert Tab

(Default Values)33
Figure 7 K-Means Generated Models Dialog Box Model Tab35
Figure 8 Two Step Node Model Options Dialog Box Model Tab ..36
Figure 9 Two Step Generated Models Dialog Box Model Tab37
Figure 10 Kohonen Node Model Options Dialog Box Model Tab ...38
Figure 11 Kohonen Node Model Options Dialog Box Expert Tab ..39
Figure 12 Kohonen Generated Models Dialog Box Summary Tab ...40
Figure 13 Basic Filter & Type Supernode45
Figure 14 Kmeans_unsup_pop_GWR Main Palette47
Figure 15 Model Building Script48
Figure 16 K-Means Models Built With All Fields50
Figure 17 K-Means Numeric Only Models52
Figure 18 K-Means PCA Numeric Only Models53
Figure 19 TwoStep_unsup_pop_GWR Main Palette54
Figure 20 Kohonen_unsup_GWR Main Palette55
Figure 21 5x5 Kohonen Map56
Figure 22 10x11 Kohonen Map56
Figure 23 Analysis_unsup_pop_GWR Main Palette57
Figure 24 Classification Tree of the S-PLUS Iris Data64
Figure 25 Classification Tree Illustrating Degrees of

Dissimilarity67
Figure 26 Comparison of Records Selected by Supervised and

Unsupervised Models73
Figure 27 SQL Node Dialog Box for NO2_STA_POP2000 Database ..81
Figure 28 Basic Filter Node Dialog Box83
Figure 29 To String Filler Node Dialog Box84
Figure 30 Basic Type Node Dialog Box85
Figure 31 Distributions and Statistics Supernode86
Figure 32 PMT_METH Distribution Node Dialog Box87
Figure 33 PMT_METH Distribution Plot87
Figure 34 Numeric Statistics Node Dialog Box88
Figure 35 Numeric Statistics Node Output89
Figure 36 ValSet Derive Node Dialog Box90
Figure 37 Contract Derive Node Dialog Box91

 xii

Figure 38 K-Means Model Node Dialog Box92
Figure 39 PCA Model Node Dialog Box92
Figure 40 AB10 Models Supernode93
Figure 41 ValSet Select Node (currently selects ValSet “B”) .94
Figure 42 A/B Validation Models Supernode94
Figure 43 K-Means A30/B30 Matrix Dialog Box95
Figure 44 Sum of Squares Supernode96
Figure 45 _Square Derive Node Dialog Box96
Figure 46 Within-Cluster Sum of Squares Set Globals Dialog

Box ...97
Figure 47 _Sum_Square Derive Node Dialog Box98
Figure 48 Sum of Squares Aggregate Node Dialog Box98
Figure 49 K-Means06AB20 Generated Model Node, Summary Tab ..100
Figure 50 K-Means06AB20 Generated Model Node, Model Tab101
Figure 51 K-Means06AB50 Generated Model Node, Model Tab102
Figure 52 K-Means06AB60 Generated Model Node, Model Tab102
Figure 53 K-Means06AB70 Generated Model Node, Model Tab103
Figure 54 TwoStep Model Node Dialog Box104
Figure 55 TwoStep07AutoAB20 Generated Models Dialog Box,

Model Tab ..104
Figure 56 Kohonen Model Node Dialog Box, Model Tab105
Figure 57 Kohonen Model Node Dialog Box, Expert Tab106
Figure 58 Kohonen Model Plot Dialog Box106
Figure 59 Kohonen Generated Model Dialog Box, Summary Tab ..107
Figure 60 Sparse Prototypes Supernode108
Figure 61 Aggregate Node Settings108
Figure 62 Table of Kohonen Prototypes Sorted in Descending

Order by Number of Transactions109
Figure 63 KSOM_10 Derive Node Settings110
Figure 64 Contract Count Supernode111
Figure 65 Merge Node Dialog Box, Merge Tab111
Figure 66 Merge Node Dialog Box, Filter Tab112
Figure 67 Orphans Supernode113
Figure 68 Merge Node Filter Settings113
Figure 69 TS_Orphan Derive Node Settings114
Figure 70 Triple Orphans Select Node Settings114
Figure 71 Distribution of Orphan Transactions by K-Means

Cluster ..115
Figure 72 Distribution of Orphan Transactions by Two Step

Cluster ..115
Figure 73 Sum of Squares Spreadsheet Tool117
Figure 74 Cluster Correspondence Analysis Template Analysis

Worksheet ..118
Figure 75 Cluster Correspondence Analysis Template 6

Clusters Worksheet119
Figure 76 Basic Filter & Type Supernode128

 xiii

Figure 77 Distributions and Statistics Supernode129
Figure 78 Kmeans_NO2pop Stream131
Figure 79 ValSet Select Node132
Figure 80 K-Means Model Building Script (Script Tab of the

Stream Properties Dialog Box)133
Figure 81 Generated K-Means Models133
Figure 82 Sum of Squares Supernode134
Figure 83 _Square Derive Node Dialog Box135
Figure 84 Within-Cluster Sum of Squares Set Globals Dialog

Box ..135
Figure 85 _Sum_Square Derive Node Dialog Box136
Figure 86 Sum of Squares Aggregate Node Dialog Box136
Figure 87 Example of Sum of Squares Plot137
Figure 88 Matrix Node Settings Tab138
Figure 89 Kohonen Model Node Expert Tab140
Figure 90 Model_analysis_NO2pop141
Figure 91 Contract Count Supernode142
Figure 92 Merge Node Dialog Box, Merge Tab142
Figure 93 Merge Node Dialog Box, Filter Tab143
Figure 94 Orphans Supernode144
Figure 95 Merge Node Filter Settings144
Figure 96 TS_Orphan Derive Node Settings145
Figure 97 Triple Orphans Select Node Settings146

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1 Binary Variable Contingency Table (from [12])15
Table 2 A/B Validation Contingency Table for Generated

Cluster Data27
Table 3 A/B Validation Contingency Table for Generated

Cluster Data (Rearranged to Illustrate Cluster
Mapping on Main Diagonal)27

Table 4 Example of r c× Contingency Table..................28
Table 5 Effect of Reordering Data on K-Means Models Built

With Categorical Data51
Table 6 Sparse Prototype Transaction Counts59
Table 7 Orphan Transaction Distribution61
Table 8 Contingency Table for Tree Clustering Scaled Iris

Noise Data ..69
Table 9 Contingency Table for Clustering Scaled Iris

Noise Data with PAM (Standardized Variables)70
Table 10 Contingency Table for Tree Clustering Knowledge

Base ..71
Table 11 Comparison of Unsupervised Model Types74
Table 12 Modified Fields To Use Matrix (on four pages)77
Table 13 PCA Factor Analysis Component Matrix99
Table 14 A/B Validation Matrix for K-Means06AB20101
Table 15 Cross-Tabulation of Cluster Assignment, K-

Means06AB20 vs. K-Means06AB50 Models102
Table 16 Cross-Tabulation of Cluster Assignment, K-

Means06AB60 vs. K-Means06AB70 Models103
Table 17 A/B Validation Matrix for TwoStep07AutoAB20105
Table 18 Example of Original Iris Data121
Table 19 Example of Scaled Iris Data With Noise Variables .121

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the

support and assistance of many people. It is impossible to

thank everyone who has contributed, but I would like to

recognize the contributions of those who helped the most.

LTC Chris Nelson, Dave Riney, and Randy Faulkner from

Internal Review Seaside provided indispensable assistance

in everything from teaching me the basics of fraud

detection and data mining to helping me learn to use

Clementine effectively. Thanks also to all the other

personnel at IR Seaside for their unfailing courtesy and

assistance.

Professor Sam Buttrey is the local guru of S-PLUS and

has been a great source of guidance in my journey into the

world of unsupervised modeling. His patience and help with

the Tree Clustering concept and execution were admirable.

Professor Robert Koyak suggested using Cramer’s

Coefficient as a tool for cluster model validation, a

valuable piece of advice.

Finally, my heartfelt and sincerest thanks to my

beloved family, whose love, patience, and support are the

foundation of all my endeavors.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

The Defense Finance and Accounting Service (DFAS)

Internal Review Seaside (IR Seaside) office, also known as

Operation Mongoose, is responsible for identifying

potentially fraudulent transactions in vendor payment data.

Their primary tool is data mining of vendor payment data to

identify candidate transactions for manual audit by DFAS

accountants. The current procedure relies heavily on

supervised methods such as Classification and Regression

Trees and Neural Networks, which predict the fraud

classification of transactions in an audit population.

These supervised models are “trained” using a Knowledge

Base of transactions from 17 proven fraud cases.

Unfortunately, this data is outdated and incomplete, so

supervised models built with the Knowledge Base may not

effectively exploit all the characteristics of audit

population data.

Unsupervised modeling, or cluster analysis, is a data

mining technique that finds patterns or groupings in data

without the need for a response variable (such as fraud

classification). Unsupervised models are specific to a

particular data set, and independent of any external data

for model construction. The current unsupervised modeling

process is neither rigorous nor standardized. Of the total

number of transactions selected for manual audit,

supervised modeling is used to identify 80%, unsupervised

modeling accounts for 10%, and the remaining 10% are

selected at random. Supervised and unsupervised models are

trained using SPSS, Inc.’s data mining software Clementine,

Version 7.0.

 xx

The intent of this thesis is to develop a

standardized, rigorous unsupervised modeling methodology

that utilizes all available valid transaction data and

analyzes audit population transactions independent of the

Knowledge Base. Clementine’s K-Means, Two Step, and

Kohonen algorithms are used to construct unsupervised

models of audit population payment data, and then cluster

validation techniques are applied to select the most useful

model of each type. Finally, these three models are

combined to select candidate records for physical

examination by a DFAS auditor.

The selection of candidate records for audit is based

on the assumption that all the transactions belonging to

the same contract are somehow similar, and should be

grouped together. After clustering the data, any

transaction that does not fall within the “home” cluster of

its parent contract is considered an “orphan.”

Transactions that are identified as orphans under all three

clustering schemes are selected for audit.

This methodology is not intended to replace the

current system of supervised modeling; rather it should be

considered complementary. It is desirable to identify

different candidate transactions with each of the two

methods, producing a more robust collection of transactions

for manual audit.

This improved methodology was developed using a

previously audited population of vendor payment

transactions from the US Navy STARS system in Norfolk, VA.

A total of 155 transactions (out of over 198,000) were

identified as orphans by all three of the unsupervised

 xxi

models. The previously conducted supervised modeling

effort identified 243 potentially fraudulent transactions

in the Norfolk data; there were only two transactions

selected by both methods, illustrating the independence and

complementary nature of the two techniques.

Deliverables to IR Seaside include the Clementine

files used to develop the methodology, a Proposed Standard

Operating Procedure for Unsupervised Modeling, two

spreadsheet tools for cluster validation, and a two-hour

training presentation for all Operation Mongoose personnel.

This thesis additionally demonstrates a new clustering

approach called Tree Clustering, which uses Classification

and Regression Trees to cluster data with automatic

variable selection and scaling. This technique is

successfully demonstrated on a small set of simple data

using Insightful Corporation’s SPLUS statistics and data

analysis software. The technique is also applied to the

DFAS Knowledge Base, with mixed results.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OPERATION MONGOOSE AND VENDOR PAYMENT AUDITING

The Defense Finance and Accounting Service (DFAS) is

responsible for disbursing nearly all the funds expended by

the Department of Defense. Given the enormous number of

taxpayer dollars that are paid in the services’ Vendor

Payment systems, fraud is a major concern. In the mid-

1990’s, the Office of the Secretary of Defense (OSD)

sponsored a project to uncover fraudulent vendor payment

transactions called “Operation Mongoose.” This project was

subsequently undertaken by the DFAS Internal Review section

in Seaside, CA (IR Seaside). To identify fraudulent

payments, a DFAS examiner reviews the documentation on

hundreds of vendor payments, selected out of the hundreds

of thousands of total transactions. An effective and

efficient selection process is critical: auditing is very

time-consuming, there are a limited number of examiners,

and fraudulent payments are very rare in proportion to the

total number of transactions. Data mining was selected as

the principal tool to select candidate records for audit.

IR Seaside contracted Dr. Dean Abbott of Abbott

Consulting, Inc., to develop its data mining methodology.

Dr. Abbott et al. devised a data mining process [6] using

the popular data mining software Clementine [4]. Their

procedure combines a Knowledge Base (KB) of known

(successfully prosecuted) fraud transactions and samples of

transactions from the population being examined (presumably

not fraudulent) to “train” various classification tree,

rule-based, and neural network models to detect fraudulent

 2

payments. This technique is called “supervised modeling.”

The supervised models are evaluated, compared, and combined

in a weighted voting scheme, which results in the selection

of candidate records for audit (transactions that the

models predict are likely to be fraudulent). Under the

current DFAS system, the majority of transactions (80%)

selected for manual audit come from the combined supervised

model (or are related to those selected), with the

remainder selected randomly (10%) or through unsupervised

modeling (10%).

Since March 2000, the IR Seaside team has conducted

audits at thirteen vendor payment system sites using the

methodology described above. Although many of the payments

audited after having been selected by data mining have one

or more Conditions Needing Improvement (CNI; some

deficiency or error which might indicate potential fraud),

there has only been one case discovered with evidence of

fraud strong enough to warrant prosecution.

The Knowledge Base (KB) of fraudulent transactions

that is used to “train” the supervised models used in the

current data mining process is small and outdated. There

are many data fields in the populations to be investigated

that are not populated in the KB, and thus are not used in

the current supervised modeling process. These fields

contain information which if included could presumably

enhance the detection of fraudulent payments. Although Dr.

Abbott et al. used unsupervised learning (cluster analysis)

in their initial classification of the fraud transactions

in the KB, the unsupervised modeling conducted in the

current data mining process is neither rigorous nor

 3

standardized. Unsupervised learning should be used more

extensively to exploit the many data fields that are not

populated in the KB, which thus go unused in supervised

modeling. Exploration of this otherwise “wasted

information” could potentially enhance the detection of

data patterns that might indicate fraudulent activity.

B. A NEW CLUSTERING METHODOLOGY WITH AUTOMATIC VARIABLE
SELECTION AND SCALING

When finding clusters in data, the choice of variables

included for modeling can have an impact on the results.

There may be one or more fields whose values are unrelated

to anything of interest, whose inclusion as variables for

modeling might produce incorrect or misleading results. A

useful clustering methodology must be able to detect and

eliminate such “noise” variables.

Another challenge when clustering data with continuous

variables is the choice of scale. Different scale choices

can produce wildly different, and possibly misleading,

clustering results. Thus, an effective means of scaling is

desirable for a clustering methodology, as discussed in

[12].

Buttrey has proposed a new method called “Tree

Clustering” in [2]. This technique uses a set of

regression or classification trees (one for each original

variable) to find similarities among observations

(observations which tend to fall into the same leaves being

similar). This approach automatically selects the most

important variables for clustering and is scale-

 4

independent. The Tree Clustering method is described in

detail in Chapter VI.

C. PURPOSE AND SCOPE OF THE THESIS

The purpose of this thesis is twofold: first, to

develop a useful, rigorous, standardized cluster analysis

methodology for IR Seaside using the Clementine data mining

software; second, to demonstrate the tree clustering

methodology on vendor payment data.

This thesis will be limited in scope to analyzing DoD

vendor payment data using unsupervised modeling (cluster

analysis). It will not address any issues involving

supervised modeling other than to point out shortcomings of

the current procedures. The specific data used to develop

the unsupervised modeling methodology is the

NO2_STA_POP_2000 database of US Navy STARS transactions

conducted in Norfolk, VA, from October 2000 to March 2002.

D. OVERVIEW OF THESIS

This thesis is organized into four general areas:

background information, implementation and results,

conclusions and recommendations, and appendices.

Chapters II, III, and IV contain the background

information from which the methodology is developed.

Chapter II describes the current state of classification

and detection of fraud in vendor pay transactions, the

Knowledge Base and supervised modeling, and potential

improvements available with unsupervised modeling. Chapter

III is a primer on the basics of unsupervised learning,

 5

including data types, modeling methods, and validation

methods. Chapter IV presents an introduction to the

Clementine Data Mining software’s basic terminology,

functions, and unsupervised model types.

Chapter V presents the implementation and results of

unsupervised modeling on the Norfolk vendor pay data. Each

of the four Clementine streams is discussed in detail, as

well as the final clustering results. Chapter VI contains

a thorough discussion of the Tree Clustering methodology’s

theory, implementation, and results.

Chapter VII presents the conclusions drawn from

analysis of the results obtained from Clementine

unsupervised modeling and application of the Tree

Clustering algorithm. Appendix A displays a detailed

description of the four Clementine streams discussed in

Chapter V, as well as supporting results. Appendix B is a

proposed Standard Operating Procedure (SOP) for

Unsupervised Modeling for Operation Mongoose. Appendix C

contains the code for S-PLUS implementation of the Tree

Clustering methodology.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. CLASSIFICATION AND DETECTION OF FRAUD

A. CLASSIFYING FRAUD

 Dr. Dean Abbott et al. extensively examined the

Knowledge Base of historical fraud cases and consulted at

length with the accounting experts in DFAS to develop a

classification scheme for vendor pay fraud. This process

is exhaustively detailed in Abbott’s Final Report [6]. The

end result was four classes of fraud: Big Systematic,

Small Systematic, Piggyback, and Opportunistic.

 Big Systematic and Small Systematic fraud are

characterized by a long-term process of well planned

actions designed to defraud the government. The primary

difference is one of scale of money stolen. Piggyback

fraud occurs when the criminal “piggybacks” a fraudulent

payment onto other, legitimate ones. Finally,

opportunistic fraud is just what it seems: a relatively

small-scale theft of opportunity.

 The class of fraud assigned to a transaction is used

as the output or response variable in supervised modeling.

When a vendor pay site’s population of transactions is used

as training, testing, and validation data to build

supervised models, each transaction is assigned the class

of “NF” for “not fraud,” on the assumption that all

transactions in the population are legitimate. Thus the

combined supervised models used by Operation Mongoose are

designed to select potentially fraudulent payments based on

the fraud class predicted by the model trained on the KB

data.

 8

B. THE KNOWLEDGE BASE

Operation Mongoose’s Data Mining Knowledge Base (KB)

is an historical repository of 17 successfully prosecuted

fraud cases consisting of 442 total transactions, conducted

from February 1989 to June 1997. Each case is classified

according to one of the four classes of fraud described in

the previous paragraph. Each transaction contains 59

fields of original, transformed, and derived data. The KB

has several shortcomings, which brings into question its

utility in predicting future fraud cases: first, it is

outdated; second, many of the fields found in the

populations are not populated in the KB; and finally, there

is missing data.

The age of the KB is problematic for two reasons.

First and foremost, all of the KB transactions were

conducted before the advent of electronic payments, so the

characteristics of these transactions can be expected to

differ substantially from current EFT-type payments. This

contributes to the problem illustrated in the next

paragraph as well. Second, the fraudulent payments in the

KB represent the “state of fraud” at the time. It is not

reasonable to presume that fraudulent practices have not

evolved over time; presumably modern fraudsters would use

different methods from their predecessors.

The problem of unpopulated fields in the KB relative

to the populations being examined relates to the age of the

Knowledge Base, the evolution of data collection practices,

and the different types of vendor pay accounting systems in

use today. As mentioned in the previous paragraph, one of

the most significant deficiencies of the KB is the lack of

 9

any electronic payment information. Of course this is

unavoidable given the age of the KB, but it greatly reduces

the utility of models built using KB data to predict fraud

in populations where electronic payments exist. Besides

EFT information, there are other data that is captured

today whose capture was infeasible prior to the advent of

modern computers and relational databases. These types of

fields are unpopulated in the KB, of course. Finally,

there are four different types of vendor payment systems in

use in the DOD today, each of which has unique fields for

data entry as well as more common ones. These unique

fields are not populated in the Knowledge Base.

Of the 26,078 possible data entries in the KB, 596 of

them are missing, primarily in two fields. Monteiro in

[13] conducted an analysis of the Knowledge Base and

concluded that the pattern of missing values is nonrandom.

This nonrandom pattern results in conditional dependence

among the four fraud classes, increasing the likelihood of

misclassification. Combined with the fact that current

business practices may differ among audit sites, it is

possible that supervised models trained on the KB are

predicting either the wrong type of fraud, or predicting

something other than fraud altogether. These concerns

highlight the need to update, expand, and improve the KB

for successful supervised modeling.

C. DETECTING FRAUD WITH SUPERVISED LEARNING

1. Current Procedures

The current DFAS Standard Operating Procedure for Data

Mining [7] is extensively detailed in its discussion of

 10

supervised modeling. The process begins with random

division of the population into eight “splits,” each of

which is further subdivided into training, testing, and

validation sets. Transactions from the KB are then

assigned to each of the 24 sets in a sequential, orderly

manner, resulting in eight sets of Training, Testing, and

Validation data containing both known fraud cases and

records from the population being examined.

Next, several different modelers independently build a

model (or set of models) on a different split or set of

splits, using Clementine supervised models such as

Classification & Regression Trees, C5.0 Decision Trees, and

Neural Networks. The “best” of these models (in terms of

correctly predicting the fraud class of the KB transactions

in their data splits) are combined in a complex weighted

voting scheme, which iteratively produces a list of

candidate records for further investigation. These

candidate records and all related records from the

population are then selected for manual audit. [7]

2. Shortcomings of Supervised Modeling

The primary shortcoming of the supervised modeling

methodology currently in place is its reliance on the

outdated, incomplete, and potentially misclassified

Knowledge Base, as detailed in Section B of this Chapter.

Additionally, the supervised modelers at Operation Mongoose

work very hard to create complex models and combinations of

models that consistently “nail” all the KB transactions of

a particular type, which is overfitting the data.

Although the population data is randomly divided, the

assignment of KB transactions to the data splits is

 11

predetermined, not random, which brings into question the

validity of the predictions made by the resulting models.

Finally, the supervised models do not use many of the data

fields that are available in the population because they

are not populated in the KB.

3. Potential Improvements With Unsupervised Modeling

The primary potential improvement with unsupervised

modeling is the ability to exploit all the data in the

population without regard to the Knowledge Base.

Additionally, an unsupervised model will reveal actual

patterns in the population data, independent of the

preconceived (and potentially incorrect) fraud

classifications in the KB. There are, of course,

deficiencies and challenges associated with unsupervised

learning; these are addressed in Chapter IV.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. UNSUPERVISED LEARNING

A. DEFINITION

Unsupervised learning, also known as cluster analysis

or data segmentation, can be defined as the field of

statistical modeling that does not predict the value of a

response variable as a function of one or more factors.

Rather, an unsupervised model is used to describe a data

set in its entirety, grouping together similar observations

into distinct clusters. The “distance” between clusters

depends on their degree of dissimilarity; observations that

fall into two clusters that are “close together” are more

similar to each other than observations from clusters that

are “far apart.”

Some measure of the similarity between observations

must be calculated in order to find clusters in the data

set. Most clustering algorithms utilize a numeric matrix

(called a similarity or dissimilarity matrix) to represent

the distances between observations. Thus any non-numeric

variables must be coded numerically in terms of similarity

or dissimilarity. For consistency, I will discuss

similarity between observations in terms of distance or

dissimilarity.

B. TYPES OF VARIABLES

The measure of similarity between observations depends

primarily on the type of data that makes up the

observation. I will consider only the three data types

found in the vendor payment data: interval-scaled, binary,

and nominal variables, as well as mixed variables. This

 14

discussion of variable types and dissimilarity measures

follows Kauffman and Rousseau in [12]. Note that there are

other dissimilarity measures possible than those described

in the following sections.

1. Interval-Scaled Variables

An interval-scaled variable takes on negative or

positive real values on a linear scale. The most common

measure of dissimilarity, or distance, for this data type

is Euclidean distance. For a pair of observations i and j

with p interval-scaled variables per observation, denoted

by 1,...i ipx x and 1,...j jpx x respectively, the distance

(dissimilarity) is () () ()2 2 2

1 1 2 2(,) i j i j ip jpd i j x x x x x x= − + − + ⋅⋅⋅+ − .

2. Binary Variables

A binary variable takes on only one of two values or

states, such as one and zero, on and off, or true and

false. In data applications, binary variables are usually

coded using one and zero. There are two types of binary

variables, symmetric and asymmetric.

a. Definition of Symmetric and Asymmetric
Binary Variables

A symmetric variable, the most common type, is

one where each state is equally informative, and it does

not matter which state is coded as a one. For example, the

variable “sex” has possible states “male” and “female.” It

can be stated with confidence that two observations which

are both “female” both have the same sex. An asymmetric

binary variable, however, possesses states that are not

equally informative, such as the “presence or absence of a

 15

relatively rare attribute.”[12] The convention is to code

the most important, or rarest, outcome, with a one. For

example, consider the variable “hair color” with states

“red” and “not red.” In this case, two observations with

“hair color” of “not red” cannot reasonably be assumed to

have the same color. Asymmetric binary variables are not

as common as symmetric binary variables.

b. Measuring dissimilarity in binary variables

Consider two observations i and j , each

consisting of p binary variables. The first step in

calculating their dissimilarity is to consider a 2-by-2

contingency table for them, such as shown in Table 1. In

this table, a is the number of data elements (binary

variables) that equals one for both observations, b and c

represent the number of variables that are different

between the two observations, and d is the number of data

elements that equals zero for both observations. The sum

a b c d+ + + equals the total number of variables, p . The

case where both observations have ones (a in Table 1) is

also called a positive match, whereas observing two zeros

(d in Table 1) is likewise called a negative match.

 1 0

1 a b a b+

0 c d c d+

 a c+ b d+ p

Table 1 Binary Variable Contingency Table (from [12])

observation j

observation i

 16

The distinction between the two kinds of binary

variables is important when considering the dissimilarity

measure to be used for clustering in a particular

application. When considering symmetric binary variables,

positive and negative matches are equally important, so

invariant dissimilarity coefficients, in which a and d

carry equal weight, are appropriate. The most common

invariant coefficient (which is also the simplest and most

intuitive) is called the simple matching coefficient, and

is also known as the M-coefficient or affinity index. It

is defined as the proportion of disagreements between the

two observations i and j :

(,) b cd i j
a b c d

+=
+ + +

.

When considering an asymmetric binary variable,

however, the most important (and rarest) outcome is

typically coded as a one, so a positive match is more

significant than a negative match. Thus a noninvariant

coefficient is required, one that gives more weight to a

than d . The most popular noninvariant coefficient, the

Jaccard coefficient, looks remarkably similar to the simple

matching coefficient except that d is left out of the

equation entirely:

(,) b cd i j
a b c

+=
+ +

.

3. Nominal Variables

A nominal variable is one that takes on one of a

finite set of values, such as a field containing hair

color, with possible values brown, blond, black, red, and

other. Generally speaking, these states or values are

 17

coded as integers 1,2,3,..., ,M where M is of course the total

number of possible values, and each integer corresponds to

one of the actual values (brown = 1, blond = 2, etc.).

These states are unordered, and each one is equally

important, so the coding can be done in any order.

Returning to the example of observations i and j , we

now consider each one to consist of p nominal variables.

The most common measure of dissimilarity between them is

the simple matching approach:

(,) p ud i j
p
−= ,

where u is the total number of matches (the number of

variables out of p that have the same value for both

observations). Because the coding of possible states is

unordered, this dissimilarity measure is invariant.

4. Mixed Variable Types

In the event that all of the variables in a data set

are of the same type (interval scaled, binary, or nominal),

a dissimilarity matrix can be constructed using the

dissimilarity measures described in the previous three

subsections. However, in many real-world data sets, there

are variables of more than one type. Therefore, to cluster

mixed variable type observations, some combined

dissimilarity measure must be used.

Kaufman and Rousseeuw in [12] describe a

generalization of the method of Gower [9], which applies to

all of the variable types previously discussed. Consider a

data set of n observations each with p variables of mixed

types, with the following definitions:

 18

¾ ifx is the thf variable of observation i

¾ ()f
ijδ is an indicator variable

()f
ijδ = 1 if both ifx and jfx are nonmissing

 = 0 if either ifx or jfx is missing or if

variable f is an asymmetric binary variable and
observations i and j constitute a 0-0 match

¾ fR is the range of an interval-scaled variable f

¾ ()f
ijd is the contribution of the thf variable to the

dissimilarity between observations i and j

o for a binary or nominal variable f

()f
ijd = 1 if if jfx x≠

 = 0 otherwise

o for an interval-scaled variable f

() if jff
ij

f

x x
d

R
−

= ; ()0 1f
ijd≤ ≤

Note that Euclidean distance is not used in this case.

Using the preceding definitions, the overall

dissimilarity between observations i and j is defined as:

() ()

1

()

1

(,)

p
f f

ij ij
f

p
f

ij
f

d
d i j

δ

δ

=

=

=
∑

∑

Because () {0,1}f
ijδ ∈ and ()0 1f

ijd≤ ≤ , 0 (,) 1d i j≤ ≤ and it can be

entered directly into an n n× dissimilarity matrix for use

in a clustering algorithm.

 19

C. UNSUPERVISED LEARNING METHODS

1. Partitioning

A partitioning method groups a data set of n

observations into k distinct clusters. This grouping must

satisfy the requirements of a partition: each group must

contain at least one observation, and each observation must

fall in exactly one group. The user must specify the

value of k before commencing clustering. A partitioning

algorithm can construct any specified number of clusters,

but not all such groupings will be natural or useful for

the given data. Therefore final selection of k is

dependent on trial and error, expert opinion, or other

methods. This problem is discussed more fully in section D

of this chapter. Figure 1 shows a data set generated to

illustrate partitioning clustering.

Figure 1 Generated Data for Clustering by Partitioning
Methods

Generated Cluster Data

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

X Value

Y
Va

lu
e

Group 1
Group 2
Group 3
Group 4
Group 5

 20

A popular partitioning method for data clustering

discussed in [12] is called K-Means. This technique uses

Euclidean distance between observations and cluster centers

as its dissimilarity measure, so it is most applicable to

interval-scaled data. Some software (including Clementine)

transforms categorical data for clustering by this method;

see Chapter IV, Section B for a detailed discussion.

The basic K-Means algorithm uses three steps to

cluster data:

1. During an initial pass through the data, k initial
cluster centers are selected.

2. In the second pass, the Euclidean distance from each
observation to the nearest center is calculated, and
the observation is initially assigned to that cluster.

3. During the third data pass, the cluster centers are
updated based on the mean distance between all
observations within it.

Steps two and three are iterated until the decrease in

mean distance achieved by changing the cluster assignment

of any observation is below some specified threshold, or a

specified maximum number of iterations is reached. Each

observation is ultimately assigned a cluster number label

and (Euclidean) distance from its cluster center.

2. Hierarchical Methods

While a partitioning method seeks to create a

predetermined number of groups of observations,

hierarchical clustering results in every possible number of

clusters from 1 (all observations in the same cluster) to n

(one observation per cluster). As the name implies, as k

increases from 1 to n , clusters on each “level” of the

hierarchy consist of subsets of the clusters on the level

above (smaller k). For example, if k increases from five

to six, the sixth cluster is a subset of one of the other

 21

five; conversely, if k decreases from four to three, one of

those three clusters will contain all the observations

found in some pair of the original four clusters. This

type of clustering is best visualized as a dendrogram or

tree (see Figure 2).
Al

ab
am

a

Al
as

ka

Ar
iz

on
a

Ar
ka

ns
as

C
al

ifo
rn

ia
C

ol
or

ad
o

C
on

ne
ct

ic
ut

D
el

aw
ar

e

Fl
or

id
a

G
eo

rg
ia

H
aw

ai
i

Id
ah

o

Ill
in

oi
s

In
di

an
a

Io
w

a

Ka
ns

asKe
nt

uc
ky

Lo
ui

si
an

a

M
ai

ne

M
ar

yl
an

d

M
as

sa
ch

us
et

ts

M
ic

hi
ga

n

M
in

ne
so

ta

M
is

si
ss

ip
pi

M
is

so
ur

i

M
on

ta
na

N
eb

ra
sk

a

N
ev

ad
a

N
ew

 H
am

ps
hi

re

N
ew

 J
er

se
y

N
ew

 M
ex

ic
o

N
ew

 Y
or

kN
or

th
 C

ar
ol

in
a

N
or

th
 D

ak
ot

a

O
hi

o

O
kl

ah
om

a

O
re

go
nPe

nn
sy

lv
an

ia

R
ho

de
 Is

la
nd

So
ut

h
C

ar
ol

in
a So

ut
h

D
ak

ot
a

Te
nn

es
se

e

Te
xa

s U
ta

h

Ve
rm

on
t

Vi
rg

in
ia

W
as

hi
ng

to
n

W
es

t V
irg

in
ia

W
is

co
ns

in

W
yo

m
in

g

0.
0

0.
2

0.
4

0.
6

0.
8

H
ei

gh
t

Figure 2 A Hierarchical Clustering Dendrogram of U.S.
States from the S-PLUS [14] AGNES Clustering

Algorithm

There are two ways to conduct hierarchical clustering:

top down (divisive), and bottom up (agglomerative). A

divisive clustering algorithm begins with k =1, with all n

observations in one cluster. The clustering consists of

splitting the data into smaller and smaller groups based on

some similarity (or dissimilarity) measure, until k = n . An

agglomerative clustering algorithm works the opposite way,

 22

beginning with n clusters containing one observation each,

then repeatedly combining similar clusters until k =1.

A clustering scheme with either k = n or k =1 is not

very useful in most cases, so the user must select the

appropriate number of clusters by “pruning” the hierarchy

to a meaningful size. This has traditionally been

considered a separate problem, distinct from clustering

itself. As will be shown later, Clementine’s Two Step

hierarchical clustering algorithm automatically selects the

appropriate number of clusters.

3. Self-Organizing Maps

A self-organizing map, or SOM, is described in [10] as

“a constrained version of K-Means clustering.” This method

is closely related to principal curves and surfaces, and

has the similar benefit of reducing high-dimensional data

to one- or two-dimensional space for data visualization.

Teuvo Kohonen, a Finnish mathematician, developed a

popular algorithm to construct a SOM, fittingly called a

Kohonen map. A Kohonen SOM builds on a two-dimensional

1 2q q× grid lying in the principal component plane of the

data. There are 1 2K q q= intersections in the grid, each one

containing a “prototype” or representative observation,

analogous to the initial cluster centers of a K-Means

model. Each intersection has a two-dimensional “address”

()1 2,Q Q , where 1 1{1,2,..., }Q q∈ and 2 2{1,2,..., }Q q∈ . Each prototype

jm has an associated label 1 1jl Q Q∈ × , where {1,2,..., }j K∈ .

 23

Taking for example n observations with p interval-

scaled variables, the basic Kohonen algorithm processes

each observation ix one at a time, and finds the closest

(Euclidean distance in pℜ) prototype jm . For each

prototype km within the neighborhood of jm , km is moved

toward ix by this update:

()k k i km m x mα← + − ,

where α is a learning rate coefficient which decreases

either linearly or exponentially at each step through the

data. A prototype km lies in the neighborhood of jm if

j kl l r− < , where r is a distance threshold which decreases on

each iteration.

 This process is repeated iteratively until

predetermined stopping criteria are met, with α and r

decreasing on each iteration. The result is displayed as a

two-dimensional grid of prototypes and their associated

observations, which can be interpreted as a mapping or

folding of the original p -dimensional data space onto 2ℜ .

Figure 3 illustrates how prototypes that are closer

together tend to contain more similar observations.

Furthermore, the “folding” of the data space means that

each corner is also “close” to its opposite.

 24

Figure 3 5x5 Kohonen Map of Generated Cluster Data

D. EVALUATION OF CLUSTERING RESULTS

1. Optimum Number of Clusters for K-Means

When applying a partitioning clustering algorithm such as

K-Means, the number of desired clusters must be selected

before clustering. Because cluster analysis is typically

used to describe natural groupings in a data set, it is

valuable to be able to calculate the optimum or “true”

number of clusters, denoted by *k . Hastie et al. propose

in [10] a method to approximate *k by within-cluster

dissimilarity kW as a function of k . kW is a measure of

within-cluster dissimilarity such as total sum of squares,

total variance, or Root-Mean Squared Standard

Deviation.[15] As k increases (the data is partitioned

into more, smaller clusters), kW will decrease (the

clusters become more homogeneous). Once the optimum number

 25

of clusters is exceeded, this increase in homogeneity

(decrease in kW) will be less pronounced, because clusters

of similar objects are being divided into smaller groups of

very similar objects. Thus, an approximation of *k is the

smallest value of k where this “kink” or flattening of the

curve exists. Figure 4 shows this graph for the generated

data in five distinct clusters, and *k = 5 is quite readily

apparent.

Figure 4 Evaluation of Optimum Number of Clusters

2. Cluster Validation

When building a supervised model, such as a

classification tree, it is standard practice to validate

the trained and tested model on a subset of the data that

has not been previously “seen” by the model. There are

different measures of performance for these models, such as

misclassification rate, etc. In the unsupervised case,

however, the true clustering arrangement of the data is

Within-Cluster Sum of Squares vs. Number of Clusters
Generated Data

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

Number of Clusters

Su
m

 o
f S

qu
ar

es

 26

typically unknown, so there is no response variable with

which to compare cluster membership for validation. How,

then, does one evaluate clustering results? This question

is particularly difficult in high-dimensional space, where

visualization is not possible.

The most obvious (but least rigorous) solution to the

cluster validation problem, and one which is appropriate in

many contexts, is “does it work?” In other words, does the

similarity among clustered objects make sense to an expert?

While this is not a very objective measure of performance,

it can be a good first step.

Gordon describes a more rigorous method in [8]. The

data set of interest is randomly divided into two sets,

called A and B . Set A is clustered using the model to be

validated, and then the observations in B are “mapped” to

the clusters found in A. Call this mapping 'B . Set B is

then clustered by the same method used to cluster A, with

the same number of clusters. The final step is to compare

the cluster membership of B with 'B to determine the “co-

clustering rate” of the model. In a “perfect” model, each

observation would have the same cluster membership in both

B and 'B . This “co-clustering” is easily examined by

forming a k x k contingency table for B and 'B , as shown in

Table 2. Assuming the cluster labels are arbitrary, it is

usually possible to rearrange the columns of this table so

that the “best” cluster mapping lies along the main

diagonal, as shown in Table 3.

 27

 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5
cluster-1 11 0 0 0 2
cluster-2 0 17 0 0 0
cluster-3 0 0 0 0 12
cluster-4 0 0 10 0 0
cluster-5 1 0 0 10 0

Table 2 A/B Validation Contingency Table for Generated
Cluster Data

 cluster-1 cluster-2 cluster-5 cluster-3 cluster-4
cluster-1 11 0 2 0 0
cluster-2 0 17 0 0 0
cluster-3 0 0 12 0 0
cluster-4 0 0 0 10 0
cluster-5 1 0 0 0 10

Table 3 A/B Validation Contingency Table for Generated
Cluster Data (Rearranged to Illustrate Cluster

Mapping on Main Diagonal)

In the case of perfect co-clustering, all of the off-

diagonal entries would be zero. However, in any real

clustering problem, the co-clustering will not be perfect.

How then to analyze the “goodness” or validity of the

chosen clustering model?

Conover in [5] discusses various techniques to measure

dependence and association between the rows and columns of

an r c× contingency table. The co-clustering problem

described above lends itself well to this, and Cramer’s

Coefficient has been chosen as the measure of association

for our analysis.

 B clusters

B’ clusters

 B clusters

B’ clusters

 28

 j = 1 j = 2 … … j = c
i = 1 O11 O12 … … O1c r1
i = 2 O21 O22 … … … r2

… … … … … … …
… … … … … … rr-1

i = r Or1 Or2 … … Orc rr
 c1 c2 … cc-1 cc N

Table 4 Example of r c× Contingency Table

 Cramer’s Coefficient is developed as follows,

referring to Table 4: given a contingency table with r

rows and c columns, with row sums 1 2, ,..., rr r r and column sums

1 2, ,..., cc c c , the observed value of cell (,)i j is denoted ijO , and

its estimated expected value (assuming independence of the

rows and columns) is defined as i j
ij

rc
E

N
= . The chi-square

test statistic commonly used for testing the null

hypothesis of independence in contingency tables, is

defined as
2

1 1

()r c
ij ij

i j ij

O E
T

E= =

−
=∑∑ .

Cramer’s Coefficient is the square root of the ratio

of the observed value of T to the maximum possible value of

T for a contingency table with the same number of

observations and rows/columns, or
(1)
TCC

N q
=

−
. N is the

number of observations, and q is the minimum of r and c.

For our purposes, either r or c will do, as r c k= = when

comparing clustering results for A/B validation. For the

generated clustering data validation shown in Table 2, CC =

 29

0.945. This can be interpreted as a “94.5% clustering

model,” which would be assumed to be “better” than, say, a

75% clustering model.

Cramer’s Coefficient has two properties that make it

desirable as a comparative measure: first, it is

dimensionless and unit-scaled (0.0 1.0CC≤ ≤); and second, it

is scale-invariant in ijO , ir and jc .

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. CLEMENTINE DATA MINING SOFTWARE

A. OVERVIEW

Clementine data mining software, produced by SPSS,

Inc., is a robust tool that enables the user to quickly and

easily determine relationships within large data sets

through supervised and unsupervised modeling. IR Seaside

uses Version 7.0, which is more user-friendly and intuitive

than previous editions.

Clementine is used to analyze data by building what is

called a data stream, or simply a stream, a sequence of

operations that begins with a data source, flows through

one or more nodes where the data is manipulated by field or

record operations, and ultimately is used to build some

sort of model. Output can be to a file, plot, or table.

Clementine uses three main data types, Sets, Flags,

and Ranges, which are analogous to those discussed in

Chapter III, Section A. Set fields are analogous to

nominal variables (numeric or non-numeric); Flag fields are

binary variables (either 1-0 or some other coding scheme)

and Range fields are interval scaled variables.

B. UNSUPERVISED LEARNING MODEL TYPES

1. K-Means

The K-Means Node in Clementine produces a partition of

the input data into k clusters. This type of model is

intended for interval-scaled (Range type) data, but it will

also accept categorical (Set and Flag type) variables by

use of data transformations, discussed below. Figure 5

shows an example of a K-Means modeling dialog box, where

 32

the user specifies k as well as other parameters for model

building. Input fields may be selected at build time, or

the model can use the Type Node settings, which are found

upstream.

Figure 5 K-Means Node Model Options Dialog Box Model Tab

The “Expert” options available for building a K-Means

model control the stopping criteria for the iterative

cluster refinement process (number of iterations or change

criteria) and encoding values for Set fields. The default

encoding value of 0.70711 is approximately equal to 0.5 ,

which properly weights the recoded Flag fields to produce a

distance of 1.0 between observations with different values.

Values closer to 1.0 weigh Sets more heavily than numeric

fields. Figure 6 shows an example of the Expert Tab.

 33

Figure 6 K-Means Node Model Options Dialog Box Expert Tab
(Default Values)

K-Means executes a “quick cluster” algorithm that

clusters numeric data very quickly and efficiently. The

algorithm makes three passes through the data. In the

first pass, initial cluster centers are selected. The

second pass updates the initial cluster centers, and the

final pass reassigns cases to the nearest cluster.

Euclidean distance is used to determine “closeness.”

Binary (Flag type) variables are coded as 0 and 1, and

their values are treated as continuous by the algorithm.

This leads to some shortcomings, which are enumerated in

the following section.

K-Means handles nominal (Set type) variables by

recoding them into 1-0 Flag variables and treating them as

described in the preceding paragraph. The transformation

is undertaken by creating one dummy Flag field for each

 34

possible value of the original Set field. For example,

suppose a Set field “PMT_TYPE” has possible values of A, B,

and C. K-Means creates three dummy Flag fields,

PMT_TYPE_A, PMT_TYPE_B, and PMT_TYPE_C. Thus a record with

PMT_TYPE of A would have PMT_TYPE_A = 1, PMT_TYPE_B = 0,

and PMT_TYPE_C = 0.

When a K-Means Node is executed, the result is a

“nugget” that represents the model. This model can be

browsed to examine the number of clusters, number of

records placed into each cluster, inter-cluster

proximities, input fields, model build settings, and model

training summary information. When data is clustered by

the generated model, two new fields are created for each

record: $KM-<model name>, the cluster assignment label,

and $KMD-<model name>, the distance from each record to its

cluster center. For example, a model named KMeans01 will

have resulting fields $KM-KMeans01 and $KMD-KMeans01.

Figure 7 is an example of browsing a K-Means model nugget,

showing the cluster results of this particular model.

 35

Figure 7 K-Means Generated Models Dialog Box Model Tab

2. Two Step

The Two Step Node in Clementine produces a

hierarchical clustering of the data set. The user can

either specify the number of clusters or allow the Two Step

algorithm to automatically determine the appropriate

number. There are no Expert options per se, but there are

options to standardize numeric fields and exclude outliers.

Figure 8 shows an example of the Two Step model building

dialog box.

 36

Figure 8 Two Step Node Model Options Dialog Box Model Tab

Two Step uses a log-likelihood function as a distance

measure, and agglomeratively produces hierarchical clusters

out of “dense regions” of records. The two steps implied

by the name of the algorithm are pre-clustering and cluster

membership assignment. Each step entails one pass through

the data. The pre-clustering step consists of sequential

examination of the data records, determination of dense

regions, and tabulation of cluster features. After

completion of the first data pass, the appropriate number

of clusters (if not user-selected) is determined by finding

the minimum Bayesian Information Criterion (BIC) value

measured at each merge in the pre-clustering step, and

refining it based on the ratio change in distance between

the two merging clusters. The clustering step comprises a

second pass through the data, during which each data record

 37

is assigned membership in the cluster that is closest in

terms of the log-likelihood distance measure. A more

detailed discussion of the Two Step algorithm is available

in [3].

Executing a Two Step node results in a browsable

nugget. Browsing the model, as shown in Figure 9, reveals

the same type of information as described in the preceding

paragraph for a K-Means model. When clustering data with

the generated Two Step model, a cluster label is assigned

to each record in the form $T-<model name>. Because the

distance measure for Two Step is based on a likelihood

function, no distance field is generated.

Figure 9 Two Step Generated Models Dialog Box Model Tab

3. Kohonen

The Kohonen node in Clementine essentially uses

Kohonen’s algorithm as described in Chapter III to produce

a two-dimensional mapping of the data set. The only

difference is that Clementine’s algorithm does the mapping

 38

in two phases. The first phase comprises rough estimation

to capture gross patterns in the data; the second phase

refines the mapping to finer detail. Figure 10 shows the

“Simple” model options available, which essentially control

stopping criteria and reproducibility.

Figure 10 Kohonen Node Model Options Dialog Box Model Tab

The Expert options, shown in Figure 11, give the user

much more control over the details of the Kohonen mapping.

They allow selection of the map’s dimensions and the

learning parameters discussed in Chapter III. The

“neighborhood” parameter corresponds to the radius

parameter r ; “eta” represents the learning rate parameter

α ; and the “number of cycles” is the stopping criteria for

the iterative process.

 39

Figure 11 Kohonen Node Model Options Dialog Box Expert Tab

Unlike the K-Means and Two Step Generated Model Dialog

Box, browsing the Kohonen nugget does not reveal much

useful information other than the dimensions of the

mapping. Because a Kohonen model is a type of neural

network, there is a strong element of the “black box” to

its function. This kinship with neural nets is also

evident in the number of input and output neurons shown

under “Analysis” on the Summary Tab shown in Figure 12.

 40

Figure 12 Kohonen Generated Models Dialog Box Summary Tab

As with K-Means and Two Step, a Kohonen model

generates label fields for each record of a data set that

is passed through it. In this case the fields are $KX-

<model name> and $KY-<model name>, representing the (X,Y)

coordinates of the prototype or node to which each record

“belongs.”

C. SHORTCOMINGS OF CLEMENTINE UNSUPERVISED MODELING

Clementine’s data mining process is for the most part

very user friendly and intuitive. However, there are

several caveats and issues that must be understood to

successfully conduct unsupervised modeling. Most of these

required the assistance of SPSS Technical Support to

thoroughly resolve.

 41

The following issues, if heeded and understood, will

greatly expedite the unsupervised modeling process and

lower the modeler’s average frustration level.

1. Although K-Means provides a mechanism for

clustering categorical data, SPSS experts recommend

against it. Their reason is that the clustering

results obtained by using the K-Means algorithm on

binary data tend to be arbitrary and are strongly

dependent on the order of data presentation. See

Appendix B for an example of this phenomenon.

2. The Two Step algorithm requires complete data for

model building. If there are missing values in the

data used to build a model, those records will be

ignored. Missing values in data which are

clustered by an existing Two Step model may result

in cluster label assignment of $null$.

3. Kohonen modeling can be very memory- and time-

intensive, particularly with large data sets.

Changing any of the learning parameters may

aggravate this problem to the point where the time

required to build a large Kohonen map is excessive.

4. K-Means models sometimes cannot be browsed unless

all data fields are converted to String and then

re-typed. This is accomplished in the Basic Filter

& Type Supernode discussed in Chapter V.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

V. FINDING CLUSTERS IN NO2 VENDOR PAYMENT DATA
USING CLEMENTINE UNSUPERVISED MODELS

A. OVERVIEW OF THE PROCESS

The unsupervised modeling procedure is divided into

three parts: first, data pre-processing to select the data

used for modeling; second, developing cluster models for

the data set using each of the three types of Clementine

unsupervised modeling nodes; finally, combining and

comparing clustering output to select candidate records for

examination. The next six subsections describe this

process from database access through analysis. Detailed

screen shots and other documentation can be found in

Appendices A and B.

B. SOURCE DATA: THE NO2 POPULATION DATABASE

The source data for development of the improved

methodology is the Microsoft Access database table called

NO2_STA_POP2000/Population. The data is introduced into

each stream using an SQL node to select the pre-established

Open Database Connectivity (ODBC) connection. Appendix A

shows the modified Operation Mongoose “Fields to Use”

matrix for the NO2 data, which lists each field, its

description, and the status of the field (not used, model

input, or analysis only).

The population data being clustered is organized by

contracts. Each unique combination of the fields PIIN

(Procurement Identification Number) and DEL_ORD (Delivery

Order) comprises a unique contract. The “null hypothesis”

for clustering these transactions is that all the

 44

transactions from a particular contract will fall into the

same cluster, and that transactions (and contracts) falling

into the same cluster are similar. The ultimate objective

of this process is to identify the “orphan” transactions

(ones that don’t fall into the “home cluster” for their

parent contract) for further inspection by an auditor. A

similar notion applies to Kohonen models, and is discussed

in section F of this chapter.

C. DATA PRE-PROCESSING: THE BASIC FILTER & TYPE SUPERNODE

The intent of applying unsupervised modeling to vendor

pay is to use as much of the data as possible, but certain

fields have incomplete and/or unusable data that will not

contribute to successful clustering, and must be excluded.

The Basic Filter & Type Supernode, shown in Figure 13, pre-

processes the data in order to avoid data-related problems

with model building, and generates two new fields to be

used for analysis. Screen Shots showing the details of

each node’s configuration are found in Appendix B.

 45

Figure 13 Basic Filter & Type Supernode

The Basic Filter Node removes the fields marked “N” in

the modified “Fields to Use” matrix shown in Appendix A.

In general these are fields that are never used for

modeling. The To String Filler node converts each field to

a String, then the Basic Type Node re-types each field to

the appropriate Type. This step is necessary to ensure the

browsability of generated models, as mentioned in Chapter

IV, Section C.

The remaining fields are examined using the Quality

Node and the Distributions and Statistics Supernode. These

two steps identify “problem” fields, denoted by an “B” in

Appendix A, that are filtered from the stream by the Filter

Bad Fields Node; for example, Flag or Set fields that have

only one value and all fields with less than 50% valid

 46

entries. The two fields PMT_METH and PMT_TYPE have the

value $null$ for four records. Because they exceed the 50%

quality threshold, they are dealt with by replacing $null$

with “Blank” in the PMT_METH and PMT_TYPE filler nodes.

The ValSet Derive Node creates a validation set label

field based on the field RNDM_NUM, which is used to

separate the data set into two random partitions for

cluster validation. The Contract Derive Node creates a

single field concatenating the fields PIIN and DEL_ORD for

ease in finding and manipulating records belonging to a

unique contract.

Several fields are either not always appropriate as

model inputs but have utility for model comparison and

analysis, or are only used as model inputs in certain

cases. These fields, marked “A” in Appendix A, are not

completely filtered from the data stream, but rather their

“Direction” is set to “none” in the Final Type Node. The

Final Filter Node removes the remaining unusable fields

(marked “F” in Appendix A) identified by the Distributions

and Statistics Node or preliminary modeling efforts.

The end result “out” of this Supernode is 63 fields

set as modeling inputs, of all three field types Range,

Set, and Flag. There are also 14 other fields available

for modeling or analysis downstream whose default direction

is “none” in the final Type Node.

D. K-MEANS MODELING: KMEANS_UNSUP_POP_GWR.STR

1. Methodology

As described in Chapter III, Sections C and D, a

“good” K-Means cluster model can be selected by evaluating

 47

cluster dissimilarity as a function of number of clusters

to find the optimum value of k, and then validated using

the A/B random partitioning and cluster correspondence

technique. The stream Kmeans_unsup_pop_GWR, shown in

Figure 14, is used to generate K-Means models and output

necessary to evaluate them. Screen shots with details of

each node are found in Appendix B.

Figure 14 Kmeans_unsup_pop_GWR Main Palette

As described earlier in this chapter, the source data

is brought in from the database, pre-processed in the Basic

Filter & Type Supernode, then typed using the Standard Type

Node. The Numeric Type Node selects only “Range” type

fields for modeling the numeric-only models.

 48

The first step in the model building and validation

process is to build K-Means clustering models for all

desired values of k. This is accomplished by a K-Means

Node with Simple (default) settings, producing cluster

membership label $KM-<Model Name> and distance field $KMD-

<Model Name> for each record. The K-Means models are named

in the format K-meanskkVVnn, where kk is the number of

clusters (01, 02,…) ; VV is the validation set (A or B; AB

denotes the entire data set); and nn is the model series

(10 is all fields, 20 is numeric fields, 30 is numeric

fields Principal Component Analysis). For example, K-

Means05AB20 is a five-cluster model of the entire data set

using only the numeric fields.

Construction of these models can be extremely tedious,

as each one takes on the order of 2 to 5 minutes to build,

and typically the modeler is interested in values of k from

1 to 10, 15, or even 20. This stream incorporates a

Clementine script, shown in Figure 15, to automate the

process. In each case the KMeans modeling node is used to

generate the model.

Figure 15 Model Building Script

 49

After all the desired models are constructed, the

“optimum” value of k must be determined to select the

“best” model. The method described in Chapter III is used,

which involves examining a plot of the total sum of squares

of the distance field for each model vs. k. The first

(lowest value of k) “kink” or flat spot in the curve

indicates the “optimum” value of k. The total sum of

squares is derived in the Sum of Squares Supernode,

detailed in Appendix B. The spreadsheet tool “Sum of

Squares,” described in Appendix C, is used to produce the

Sum of Squares vs. Number of Clusters plot.

Once the “best” model in terms of cluster homogeneity

is chosen, it is validated by randomly partitioning the

data set into two equal parts, validation sets A and B.

Each set is then clustered with k = *k (the “optimum” value

of k determined previously). Validation set B is then

passed through the two models (K-Means06A20 and K-

Means06B20, for example) and the clustering results are

compared in a two-way contingency table. Cramer’s

Coefficient is then calculated, and the model’s validity

can be evaluated and compared with that of other models.

The spreadsheet tool “Cluster Correspondence Analysis

Template,” described in Appendix C, is used to calculate

Cramer’s Coefficient.

2. All Fields: AB10 Models

One of the objectives of this thesis is to utilize

more of the data fields in population data sets than is

possible in the supervised modeling process. The majority

of these fields are categorical, so it is not intuitive

that they would be useful for the K-Means algorithm, which

 50

was developed for numeric data. However, Clementine’s K-

Means modeling node admits categorical variables (Sets and

Flags) as inputs by way of transformation as described in

Chapter IV. The methodology described in the preceding

paragraph, when applied to the data stream as it leaves the

Basic Filter & Type Node, results in the graph shown in

Figure 16. Comparing this graph to the one shown in Figure

4, it is obvious there is no “kink” in this curve, so it is

impossible to determine the optimum number of clusters

using this method with these results.

Figure 16 K-Means Models Built With All Fields

Furthermore, clustering models built with binary

variables (Flag fields) tend to be arbitrary and are very

sensitive to the ordering of the data. Reordering numeric

data also changes the clustering results, but not as

dramatically. Table 5 illustrates this difference; there

is less similarity between the models built on the

Within-cluster Sum of Squares vs. Number of Clusters
AB10 Models, Entire Data Set

1000000
1100000

1200000
1300000

1400000
1500000

1600000
1700000

1800000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters

Su
m

 o
f S

qu
ar

es

 51

categorical data than there is between those built on the

numeric data. The details of this comparison appear in

Appendix B.

 Cramer's Coefficient

Numeric,

Reordered
Categorical,
Reordered

 Kmeans06AB50 Kmeans06AB70

Numeric Kmeans06AB20 83.03% N/A
Categorical Kmeans06AB60 N/A 72.12%

Table 5 Effect of Reordering Data on K-Means Models Built
With Categorical Data

3. Numeric Fields Only: AB20 Models

The most logical approach to K-Means clustering is to

use numeric variables (Range Type fields) only. The AB20

series models include all the Range fields included with

the AB10 models, as well as several others that are used in

place of the Set fields derived from them. Figure 17

indicates the proper number of clusters is six, and

Cramer’s Coefficient for this six-cluster model is 83.23%.

Details of this model and calculation of Cramer’s

Coefficient appear in Appendix B.

This model, KMeans06AB20, is considered a “good” model

and is included in the cluster analysis node as a tool to

select interesting transaction records for further

investigation.

 52

Figure 17 K-Means Numeric Only Models

4. Numeric Fields Only (Principal Components
Analysis): AB30 Models

In an effort to further reduce the dimensionality of

the dataset, Principal Components Analysis (PCA) was

applied to the numeric fields, and the K-Means clustering

process was then conducted on the resulting PCA-transformed

data, resulting in the graph shown in Figure 18. Note that

there are several “kinks,” but the first one is at k=4.

This model, KMeans04AB30, has a Cramer’s Coefficient of

82.38%. Because it is not obvious that this is the correct

number of clusters (there are also “kinks” at k=6 and k=9),

and furthermore because the PCA transformation reduces the

information available for clustering, this model was not

selected as a tool for further analysis. Details of the

PCA process and this cluster model appear in Appendix B.

Within-Cluster Sum of Squares vs. Number of Clusters
AB20 Numeric Models, Entire Data Set

2000

3000

4000

5000

6000

7000
8000

9000

10000

11000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clusters

Su
m

 o
f S

qu
ar

es

 53

Figure 18 K-Means PCA Numeric Only Models

E. TWO STEP MODELING: TWOSTEP_UNSUP_POP_GWR.STR

Building a Two Step cluster model is not nearly as

involved as for K-Means, because the “right” number of

clusters is automatically selected by Clementine. The only

real decision that needs to be made is the choice of input

fields, which is already determined in the Basic Filter &

Type Supernode. Figure 19 shows the stream palette. For

Two Step models, the 20 series denotes the second iteration

of modeling, rather than numeric only data.

Within-cluster Sum of Squares vs. Number of Clusters
AB30 PCA Models, Entire Data Set

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clusters

Va
ria

nc
e

 54

Figure 19 TwoStep_unsup_pop_GWR Main Palette

The model generated by the TwoStep node contained

seven clusters, and is named TwoStep07AutoAB20. Its

Cramer’s Coefficient is 91.96%. For the sake of

comparison, a six-cluster model, TwoStep06AB20, was also

constructed; its Cramer’s Coefficient is 90.83%. This

indicates that when all the fields are included, the

appropriate number of clusters is seven. The seven-cluster

Two Step model is included as a tool for cluster analysis

and selection of interesting records. Details of this

stream, the model, and calculation of Cramer’s Coefficient

appear in Appendix B.

F. KOHONEN MODELING: KOHONEN_UNSUP_POP_GWR.STR

 Building a Kohonen Self-Organizing Map is very

straightforward compared to the K-Means modeling process

described earlier. Figure 20 shows the Kohonen modeling

stream, and details of the Kohonen node settings are given

in Appendix B.

 55

Figure 20 Kohonen_unsup_GWR Main Palette

Due to computer difficulties at Operation Mongoose,

the only Kohonen models that were generated are a 5x5 map

and a 10x11 map, shown in Figure 21 and Figure 22,

respectively.

Interpretation of Kohonen mapping results is

straightforward, as suggested by Abbott in [7].

Considering the fields $KX-KSOM10x11AB02 and $KY-

KSOM10x11AB02 as “X” and “Y”, one selects the records that

are mapped to the “sparse” prototypes, such as the line

along Y = 1 for X = 5, 6, 7, 8, 9, by generating a Select

node for those values of X and Y. These records can then

be evaluated using the analysis stream discussed in the

next paragraph.

 56

Figure 21 5x5 Kohonen Map

Figure 22 10x11 Kohonen Map

 57

G. MODEL ANALYSIS: ANALYSIS_UNSUP_POP_GWR.STR

1. Overview

This stream uses the three generated models

(KMeans06AB20, TwoStepAuto07AB20, and KSOM10x11AB02) to

“vote” for the records to be further analyzed by a DFAS

auditor. Figure 23 shows the main palette, whose output is

a table listing the “interesting” transactions selected for

further investigation by a DFAS auditor. The definition of

an interesting transaction depends upon the type of

clustering. The next few paragraphs detail the selection

of interesting transactions for the different types of

models.

Figure 23 Analysis_unsup_pop_GWR Main Palette

 58

2. K-Means and Two Step Models

For the K-Means and Two Step models, an interesting

transaction is one that is an “orphan.” An orphan is

defined as a transaction that falls into a different

cluster than the one containing 70% or more of the

transactions belonging to its parent contract. The 70%

level for this comparison was chosen to simplify the

identification of home clusters and limit the number of

orphans to be examined. For example, if 50% were the

criteria for selecting home clusters, it is not obvious how

to determine the home cluster of a contract whose

transactions are evenly divided between two clusters.

3. Kohonen Maps

There are two ways to approach the task of identifying

interesting transactions using a Kohonen map. The first is

the one discussed in the previous section, selecting all

the records assigned to the sparse prototypes of the map.

Unfortunately the definition of sparse is completely

subjective, so this selection can be arbitrary when done by

“eyeballing” the Kohonen map. Other criteria are possible,

of course, such as selecting all records assigned to

prototypes less than a certain size, or a certain number of

prototypes containing the fewest records. These are also

arbitrary but less subjective than the “eyeball” method.

Table 6 shows the results of this approach: KSOM_10

denotes the ten sparsest prototypes; KSOM_15 contains the

fifteen sparsest ones; and KSOM<500 selects the 26

prototypes with fewer than 500 records assigned to them.

 59

Sparse Prototype

Selections

Number of

Transactions

KSOM_10 1254

KSOM_15 2339

KSOM<500 6175

Table 6 Sparse Prototype Transaction Counts

The second possible approach uses the concept of

orphans, allowing the Kohonen model to vote for

transactions based on the same criterion as the K-Means and

Two Step models. We identify the “home region” or group of

prototypes for each contract, then proceed to find orphan

transactions which do not fall into the same group of

prototypes as the majority of the transactions for that

particular contract. It is appropriate to identify a home

region rather than a home prototype for a Kohonen map

because with the large number of groups of transactions, it

is likely that some of the contracts with thousands of

records will be more or less equally divided along a line

of prototypes. The mechanics of selecting orphan

transactions is the same in this case as it was for the

other two models: an orphan transaction is one assigned to

a prototype containing less than a specified percentage of

the transactions in the parent contract.

It is difficult to pick a percentage criterion for

selection of orphan transactions that works well for all

contracts. This was possible for the other two models

because the maximum number of clusters occupied by

transactions of any one contract was four. For the Kohonen

 60

model, however, there are over 1,300 contracts whose

transactions are assigned to four or more prototypes, and

the maximum number of prototypes occupied by one contract

is fourteen. The challenge is to select a percentage

criterion that is small enough to ignore relatively large

groups of transactions but still large enough to find

orphans from contracts with a small number of transactions.

As can be seen in Table 7, the choice of percentage

criterion has an enormous impact on the number of records

selected. This is an area in which further research is

required, ideally to tailor the selection percentage

criterion to the number of transactions in a contract as

well as the number of prototypes among which those

transactions are divided.

4. Implementation and Results

Each of the three clustering models selects its orphan

transactions as described in the previous paragraphs, then

the transactions selected by all three of the models are

identified for further examination. Table 7 shows the

number of orphan transactions for each of the three models,

as well as the number of common records selected by various

combinations of models. Note that three different

percentage criteria for the Kohonen model, 30%, 20%, and

10%, are examined. The end result is that between 52 and

229 transactions are identified for physical examination by

a DFAS auditor. Details of the orphan selection process

and all the nodes shown in Figure 23 are given in Appendix

B.

 61

Model Name Number of Orphan Records

KM 3494

TS 3665

Kohonen 30% 31,602

Kohonen 20% 16,612

Kohonen 10% 4299

KM & TS 229

Kohonen 30%, KM, & TS 155

Kohonen 20%, KM, & TS 97

Kohonen 10%, KM, & TS 52

Table 7 Orphan Transaction Distribution

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

VI. TREE CLUSTERING

A. OVERVIEW

As proposed in [2] and described in Chapter I, Tree

Clustering is a new unsupervised learning technique that

exploits the properties of classification and regression

trees to cluster data. This method is independent of

variable type and includes automatic variable selection,

automatic data scaling, and automatic selection of the

optimum number of data clusters. This technique is

implemented in S-PLUS by the function tree.clust(),

detailed in Appendix B, which returns a dissimilarity

matrix for further clustering by a conventional algorithm.

B. CLASSIFICATION TREES

1. Definition

Classification Trees are non-parametric supervised

procedures to explain and/or predict a categorical response

based on one or more input variables. The input variables

can be categorical or numeric. Figure 24 shows an example

of a classification tree that illustrates the following

discussion. This tree is based on the S-PLUS Iris data,

and it predicts the species (Setosa, Virginica, or

Versicolor) of a flower based on its sepal length and width

and petal length and width.

 64

| Petal.L<2.45

Petal.W<1.75

Petal.L<4.95
Sepal.L<5.15

Petal.L<4.95

Setosa

Versicolor Versicolor Virginica
Virginica Virginica

Figure 24 Classification Tree of the S-PLUS Iris Data

2. Construction

A classification tree is a binary splitting structure

of the input data, beginning with a node containing all the

data, called the root. The root is divided into two

branches, each of which terminates in a node containing a

subset of the data. These two nodes can each be divided

into two branches, and so on. The terminal node of any

branch is known as a leaf. Each of these node divisions is

made by choice of a splitting variable and criteria to

maximize the reduction in “node impurity” (in terms of

predicted response) for the split. Theoretically (assuming

each observation is unique), these divisions could continue

until there are n leaves, one for each observation in the

data set. In practice, however, excessive subdivision

usually results in an overfit model. Therefore a tree is

 65

typically “pruned” using cross-validation to obtain a model

with reasonable predictive power that is not overfit. [1]

3. Node Impurity and Deviance

The concept of node impurity is important, because it

is the basis for selection of splitting variables at each

node. Deviance is a common measure of impurity; the higher

the deviance in a node, the less related the observations

are in terms of predicted response, and the higher the

impurity. The following discussion from Holmes [11] is

informative.

For a given classification tree of n observations

having a response with K levels, the probability

distribution of the response classes at leaf i is ikp ,

1,2,...,k K= . For leaf i , the joint distribution of the number

of observations of each of the K levels is multinomial with

probabilities ikp , 1,2,...,k K= . The deviance at leaf i is

defined as ˆ2 log()i ik ik
k

D n p= − ∑ , where ikn is the observed number

of observations in level k , and ˆ ikp is the maximum

likelihood estimate of ikp . The total deviance of the tree

is equal to the sum of all the leaf deviances, i
i

D D=∑ .

As mentioned in the previous subsection, a

classification tree is typically pruned to achieve a

balance between predictive power and complexity. This

pruning is usually accomplished by minimizing a complexity

function such as () ()R R T size Tα α= + ⋅ , where ()R T is a risk

function that penalizes a high level of misclassification

rate, impurity or some other measure of effectiveness,

 66

()size T is a measure of complexity such as number of leaves,

and α is a coefficient determining the weight given to the

size function.

C. TREE CLUSTERING IMPLEMENTATION

In Tree Clustering, the similarity of a pair of

observations is measured by the their tendency to fall in

the same leaves of classification and regression trees. A

classification tree is a type of supervised learning, and

requires a response variable for its construction; however,

in the clustering problem there is no such thing. Given n

observations with p variables each, the Tree Clustering

method sequentially constructs p trees, where the response

variable of tree t is tx for {1,2,..., }t p∈ . Each tree is

“pruned” to its optimum size in terms of smallest cross-

validated deviance. Each of the p trees can be described

by its size (number of terminal leaves) and deviance (that

is, decrease in overall deviance from the root to the

terminal level). A tree with only one leaf (and thus zero

deviance) suggests that its response variable contributes

nothing to the similarity of observations. Likewise, these

variables will likely not be chosen as “splitting”

variables in other trees. Such a “noise” variable will be

ignored entirely, which automatically limits selection

variables to those with significant contribution to

similarity.

After the trees are built, the distance between any

two observations is proportional to the number of trees for

which both observations fall in the same leaf. The label

()tL i denotes the leaf in tree t containing observation i . A

 67

simple dissimilarity measure (,)d i j between observations i

and j is

1
(,)

p
ij
t

t
d i j d

=

=∑ ,

where ij
td is an indicator variable such that ij

td = 1 if

() ()t tL i L j≠ , and ij
td = 0 if () ()t tL i L j= .

This dissimilarity measure is rather naïve, as it

takes no account of the different degrees of dissimilarity

among leaves of each tree. For example, two observations i

and j in different leaves split from the same parent are

presumably “less different” than i and k , which fall into

leaves at different levels of the tree. Figure 25

illustrates this concept.

Figure 25 Classification Tree Illustrating Degrees of
Dissimilarity

It is possible to overcome this shortcoming by

implementing a more sophisticated dissimilarity measure.

Using this measure, the distance between two observations

in the same tree is the ratio of the change in deviance

i j

k

 68

obtained by trimming the tree back to their parent node

(the lowest node containing both observations) to the

overall deviance of the tree. For example, in the tree

shown in Figure 25 the parent node of observations i and j

is only one level up, so the change in deviance resulting

from trimming the tree back to that node is very small.

Therefore the deviance ratio is small, indicating that

observations i and j are “close.” Considering observations

i and k , however, the tree would have to be trimmed all the

way back to the root, and the change in deviance would be

equal to the deviance of the whole tree. This results in a

deviance ratio of 1.0, indicating the two observations are

very different. The overall dissimilarity between the two

observations is the sum of their distances over all of the

trees. This dissimilarity measure can be written as

,

1 ,

(,)
ijp
s t

t s t

d i j
D=

∆
=∑ ,

where ,
ij
s t∆ is the change in deviance resulting from trimming

tree t back to the parent node s containing observations i

and j , and ,s tD is the deviance at the parent node s . The

S-PLUS function tree.clust(), shown in Appendix C,

calculates this distance for each (i,j) pair, then uses

them to construct an S-PLUS object of type “dissimilarity”

which can be used as an input to any of the S-PLUS

clustering functions.

D. DEMONSTRATION OF THE TECHNIQUE

To demonstrate the variable selection capability of

the Tree Clustering method, we add five “noise” variables

 69

to the S-PLUS Iris data set (detailed in Appendix C).

Additionally, to demonstrate the method’s scale

invariability, we multiply one of the original variables

and one of the noise variables by ten, so they are one

order of magnitude greater than the other variables. After

running treeclust() on the noisy data, the resulting

dissimilarity matrix is passed to pam(), a partitioning

function in S-PLUS, with k = 3 clusters specified. Tree

Clustering admits two of the noise variables and all of the

original variables, and the PAM clustering results are as

shown in Table 8, with Cramer’s Coefficient = 92.22%.

Species Cluster 1 Cluster 2 Cluster 3

Setosa 50 0 0

Versicolor 3 47 0

Virginica 2 3 45

Table 8 Contingency Table for Tree Clustering Scaled
Iris Noise Data

To provide a standard for comparison, the scaled,

noisy data was clustered using PAM with standardized

variables. PAM standardizes variables (columns) by

subtracting the column mean and dividing by the column

standard deviation. These results are shown in Table 9,

with Cramer’s Coefficient = 70.58%. The tree clustering is

clearly superior to the “straight” PAM clustering. Details

of these results appear in Appendix C.

 70

Species Cluster 1 Cluster 2 Cluster 3

Setosa 48 2 0

Versicolor 0 17 33

Virginica 0 7 43

Table 9 Contingency Table for Clustering Scaled Iris
Noise Data with PAM (Standardized Variables)

E. APPLICATION TO VENDOR PAYMENT DATA

To demonstrate the Tree Clustering method on a more

complicated data set, we apply tree.clust() to the DFAS

Knowledge Base. Use of the Knowledge Base provides a four-

level response variable, FRAUD_TYPE, with which to evaluate

the Tree Clustering results. There are 442 records, each

with 43 input fields, used for this application.

Tree Clustering the Knowledge Base admitted all of the

variables and resulted in the cluster assignments shown in

Table 10, with Cramer’s Coefficient = 27.33%. This

clustering “score” is much lower than that obtained using

the Iris data, probably because of a significant difference

in the “true” classification of each data set.

Specifically, while the classifications of the iris species

is completely objective, the Knowledge Base transaction

classifications are derived from (subjective) expert

opinion of the type of fraud used to describe each

transaction’s parent case. Furthermore, the fraud experts

originally proposed six classes of fraud, which were merged

 71

into the four classes used today. The seemingly poor

results perhaps reflect these two issues.

Fraud Class Cluster 1 Cluster 2 Cluster 3 Cluster 4

Big

Systematic

144 107 29 2

Opportunistic 40 3 1 1

Piggyback 9 2 20 0

Small

Systematic

46 17 20 1

Table 10 Contingency Table for Tree Clustering Knowledge
Base

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

VII. CONCLUSIONS AND RECOMMENDATIONS

A. SUPERVISED LEARNING VS. UNSUPERVISED LEARNING

One objective of using unsupervised modeling is to

identify interesting transactions in the population payment

data that might not be selected by the supervised modeling

process. This can be evaluated by using a Derive Node to

generate a Flag Field called Sup_Selected, whose value is

“T” for the records selected by the supervised modeling

stream. Likewise, a Derive Node is used to generate a Flag

Field called Unsup_Selected for the records that are

“triple orphans” in the unsupervised model analysis stream.

Figure 26 clearly shows that the unsupervised methodology

is selecting different records from the supervised process,

as there are only two records selected by both.

Figure 26 Comparison of Records Selected by Supervised and
Unsupervised Models

B. RELATIVE COMPARISON OF K-MEANS, TWO STEP, AND KOHONEN
CLEMENTINE MODELS

Each of the three generated models, KMeans06AB20,

TwoStepAuto7AB20, and KSOM10x11AB02 were used to identify

 74

orphan transactions in the payment data. There are

advantages and disadvantages to each type of modeling,

summarized in Table 11.

Model Type Advantages Disadvantages

K-Means • Method exists to
select number of
clusters

• Handles missing
values fairly well

• Models can be built
fairly quickly

• Limited to numeric
data

• Construction of
models for Sum of
Squares analysis is
very tedious if not
automated

Two Step • Accepts categorical
data

• Only one model is
required

• Missing values not
allowed

• Sometimes assigns
$null$ as cluster
label

Kohonen • Easy to interpret
in terms of sparse
nodes

• Determination of
orphan transactions
can be difficult

• Expert Settings
require expert
knowledge

• Model building can be
very time- and
memory-intensive

Table 11 Comparison of Unsupervised Model Types

Using all three models to “vote” for candidate records

for audit should capitalize on the strengths of each type

of model while compensating for their weaknesses. Another

approach could be to limit the voting to the K-Means and

Two Step models, because their structures are very similar,

although the clustering results are different. The Kohonen

 75

results can then be used to identify records assigned to

the sparse prototypes, and either treat them separately or

include them in the voting scheme.

C. RECOMMENDATIONS FOR INTERNAL REVIEW SEASIDE

Appendix E contains the Recommended Standard Operating

Procedure (SOP) for Unsupervised Modeling, which is

intended to supplement the existing Datamining SOP. This

SOP should be used together with the spreadsheet tools

described in Appendix C to conduct unsupervised modeling

with more rigor and success than is possible under the

current process. Applying this methodology should enhance

IR Seaside’s ability to successfully identify records for

audit that contain Conditions Needing Improvement or

fraudulent payments.

Supervised Modeling should continue to be a part of IR

Seaside’s datamining toolbox. The single largest

impediment to improvement of this process and successful

detection of fraud is the age and incompleteness of the

Knowledge Base. If at all possible, more current fraud

cases should be obtained and used to update and expand the

Knowledge Base. If this is not achieved, the supervised

modeling process and results will not improve.

Finally, it is recommended to investigate the utility

of modeling using the CNI database rather than the

Knowledge Base as a model-training tool. This is an area

ripe for further graduate research that could maintain the

strong relationship between IR Seaside and the Naval

Postgraduate School Operations Research Department.

 76

 D. TREE CLUSTERING WITH LARGE DATA SETS

Although the results shown in Chapter VI, Section D

are not “good” in the sense of clustering based on fraud

classification, they do demonstrate the utility of the Tree

Clustering methodology on a relatively large data set.

Using this method on a very large data set (for example,

the NO2 data used to develop the unsupervised modeling

methodology), will be limited primarily by the ability of

the S-PLUS clustering algorithms to handle very large

dissimilarity matrices. While the scalability of the

tree.clust() function is theoretically unlimited, its

performance is heavily dependent upon the size of the data

set to be clustered, particularly in the number of

observations.

There are two primary performance factors in Tree

Clustering a very large data set: the number of trees

constructed (a function of the number of variables, p), and

the size of the dissimilarity matrix produced (a function

of the number of observations, n). Using “Big O” notation,

and assuming n2 >> p, the function tree.clust() runs in

O(n2) time, because the dissimilarity between each pair of

observations must be calculated. In the unusual case where

p > n2, the function will run in O(np) time while building p

trees with the n variables. The storage required is also

O(n2), because the dissimilarity matrix (actually

implemented as a vector), must contain entries for each

pair of observations.

 77

APPENDIX A. NO2 POPULATION DATABASE

Table 12 Modified Fields To Use Matrix (on four pages)

g:\home\abottdw\Clemlib\ProcessDocumentation\FieldsToUseNO2.xls Sup&UnsupTypeNodeFieldInputs
rt&dc28may02

Field Name Transformation Description N
O

2
U

ns
up

v

C
LE

M
 T

yp
e

N
od

e
Ty

pe

Comment
I = Not filtered in Basic Filter & Type Supernode. These fields may be used as direct input for modeling or as a potential source for a Clementine derive node.
A = Not filtered in Basic Filter & Type Supernode. These fields are used for analysis or record identification or as a potential source for a Clementine derive node, but not as a modeling input.
B = "Bad field" iltered in the Basic Filter & Type Supernode. These fields are never used directly or indirectly for modeling input and are not used for analysis or record identification in the mo
N = Filtered in the Basic Filter & Type Supernode. These fields are never used directly or indirectly for modeling input and are not used for analysis or record identification in the modeling pro

1 SUB_DT Submission Date N Set
2 SYS_ID System ID N Set
3 SITE_ID Submission Site ID N Set

144 FILE_SEQ File Sequence Number N Typeless
5 PIIN Procurement Identification Number A Typeless
6 DEL_ORD Delivery Order A Typeless

145 SYS_DCN System Document Control Number N Typeless
8 DOV_NUM Disbursing Office Voucher Number N Typeless

19 DOV_AMT Disbursing Office Voucher Amount N Real Rg
9 PMT_NUM Payment Number N Typeless

50 VOU_STAT Voucher Status B Set Unsupervised modeler may wish to use this set versus the vou_stat flags below.
13 CHK_DT Check Date I Typeless
15 DSSN Disbursing Station Symbol Number N Typeless
10 CHK_NUM Check Number N Typeless
12 CHK_AMT Check Amount I Real Rg
53 EFT_ACCT EFT Account Number N Typeless
54 EFT_RTN EFT Routing Number N Typeless
47 TIN Tax identification number N Typeless
55 DUNS_NUM Data Universal Numbering System N Typeless NAME CHANGED FROM 'DUNS'. Not populated in the KB

CAGE_CD Contractor and Government Entity N Typeless NEW FIELD Not populated in the KB
30 MAN_IND Manual Indicator N Set Use m_pymt flag
14 CHK_STAT Check Status N Typeless Are payment cdf records created when check status equals V?

CHK_CAN_DT Date Check Cancelled N Typeless NAME CHANGED FROM 'DTCKCAN' Not populated in the KB
57 CHK_XREF Cross Reference Check Number N Typeless

INT_PD_AMT Interest Paid Amount N Real Rg NAME CHANGED FROM 'IP_AMT' Not populated in the KB
46 TAX_AMT Tax Amount N Real Rg Not populated in the KB
16 DISC_AMT Discount Amount N Real Rg Use discount flag transformation.
18 LOST_AMT Lost Discount Amount N Real Rg Not populated in the KB. Could be used to derive set range field.
17 LOST_CD Lost Discount Code N Set Not populated in the KB
34 PMT_METH Payment Method I Set Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the

pmt_meth flags below.
35 PMT_TYPE Payment Type I Set Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the

pmt_type flags below.
33 PMT_CAT Payment Category I Typeless Not fully populated in the KB
36 PMT_PROV Payment Provision I Set Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the

pmt_prov flags below.
PPA_XMPT Prompt Payment Act Exempt I Set NEW FIELD Not populated in the KB

29 INV_AMT Invoice Amount I Real Rg
25 INV_DT Invoice Date I Typeless
26 INV_NUM Invoice Number N Typeless
27 INV_RCVD Invoice Receipt Date I Typeless

INV_ENTR_DT Invoice Entered Date N Typeless Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus
INV_ENTR_DT. Not populated in the KB.

22 FRT_STAT Freight Status N Set Not populated in the KB
7 LINEITEM Line Item N Typeless Contract Line Item Number

FOB Freight on Board I Set Not populated in the KB
21 FRT_AMT Freight Amount N Real Rg Not populated in the KB

MDSE_ACC_DT Merchandise Acceptance Date N Typeless Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus
INV_ENTR_DT. Not populated in the KB.

MDSE_DEL_DT Merchandise Delivery Date I Typeless Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus
INV_ENTR_DT. Not populated in the KB.

RMT_CD Remit Code N Typeless
RMT_NAME Remit Name N Typeless

 78

39 RMT_L1 Remit to Address Line 1 N Typeless
40 RMT_L2 Remit to Address Line 2 N Typeless
41 RMT_L3 Remit to Address Line 3 N Typeless
42 RMT_L4 Remit to Address Line 4 N Typeless Not populated in the KB
43 RMT_CITY Remit to City N Typeless
44 RMT_ST Remit to State N Typeless
45 RMT_ZIP Remit to Zip Code N Typeless

BCO_ID Base Contracting Office ID N Typeless Not populated in the KB
101 AWARD_DT Award Date N Typeless

CON_AMT Contract Amount N Real Rg Not populated in the KB. Could be used to derive ranges in unsupervised modeling.
GS_IND Goods/Service Indicator I Set Not populated in the KB
NET_VND Net Vendor Days N Typeless Not populated in the KB
CON_STAT Contract Status I Set Not populated in the KB
CON_TYP Contract Type I Set Not populated in the KB
VND_NAME Vendor Name N Typeless Not populated in the KB
VND_ADR1 Vendor Address 1 N Typeless Not populated in the KB
VND_ADR2 Vendor Address 2 N Typeless Not populated in the KB
VND_ADR3 Vendor Address 3 N Typeless Not populated in the KB
VND_CITY Vendor City N Typeless Not populated in the KB
VND_ST Vendor State N Typeless Not populated in the KB
VND_ZIP Vendor Zip Code N Typeless Not populated in the KB
VND_TYP Domestic or Foreign Vendor I Typeless Not populated in the KB
VND_ID Vendor Identification Number N Typeless Not populated in the KB
VE1_CD Voucher Examiner Code 1 B Typeless Not populated in the KB
VE2_CD Voucher Examiner Code 2 B Typeless Not populated in the KB
VE3_CD Voucher Examiner Code 3 B Typeless Not populated in the KB
VE4_CD Voucher Examiner Code 4 B Typeless Not populated in the KB
VE5_CD Voucher Examiner Code 5 B Typeless Not populated in the KB
SYS_UNIQ System unique data not recorded N Typeless Never used as input, information only.
CDF_RMT_NAME CDF Remit Name N Typeless
CDF_RMT_L1 CDF Remit to Address Line 1 N Typeless
CDF_RMT_L2 CDF Remit to Address Line 2 N Typeless
CDF_RMT_L3 CDF Remit to Address Line 3 N Typeless
CDF_RMT_L4 CDF Remit to Address Line 4 N Typeless
CDF_RMT_CITY CDF Remit City N Typeless

CDF_RMT_ST CDF Remit State N Typeless

CDF_RMT_ZIP CDF Remit Zip Code N Typeless
PAYMENT Consolidates transaction into a single

payment
N Typeless Field used to consolidate transactions into a single payment

74 TRANS_NUM Number of transactions associated with a
single payment

N Real Rg

75 PAYEE Complete name of Payee N Typeless Never used as input! Required for results calculations! Leave in as Typless/None!
143 PAYEE13 First 13 Characters of Payee N Typeless

ADDRESS13 First 13 Characters of Address N Typeless
C_INV_NUM Cleaned Invoice Number N Typeless Modify clean invoice number to drop leading zeros.

88 AGGREG_PAYEE Total Dollar Amount Paid to a Specific
Payee

N Real Rg Derive range sets or flags for modeling. May be able to use Real Range for NN modeling.

89 AGGREG_ADR Total Dollar Amount Paid to a Specific
Address

N Real Rg Derive range sets or flags for modeling. May be able to use Real Range for NN modeling.

102 INV_AWARD_DT Number of days between invoice date
and contract award date

N IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
Also, consider boosting in Real Range is used for input for C5 model.

103 INV_RECV_AWARD_DT Number of days between invoice
received date and award date

N IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
Also, consider boosting in Real Range is used for input for C5 model.

104CHK_AWARD_DT Number of days between check date and
award date

N IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
Also, consider boosting in Real Range is used for input for C5 model.

105 INV_RECV_INV_DT Number of days between invoice
received date and invoice date

I IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
Also, consider boosting in Real Range is used for input for C5 model.

106CHK_INV_DT Number of days between check date and
invoice date

I IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
Also, consider boosting in Real Range is used for input for C5 model.

107CHK_INV_RECV_DT Number of days between the check date
and invoice received date

I IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?
Also, consider boosting in Real Range is used for input for C5 model.

60 INTEREST Was Interest Paid I Flag Caution: No occurrence in KB.
61 MILPAY Military Pay Appropriation I Flag Caution: Limited occurrence in KB.
62 DBOF DBOF Appropriation I Flag

 79

63 BRAC BRAC Appropriation I Flag Caution: No occurrence in KB.
64 OTHERX X Year Appropriation other than BRAC,

DBOF, UNUSUAL
I Flag

65 UNUSUAL Appropriation = 5188, 5189, 6875, 3880,
3875 or 8164

B Flag Caution: Limited occurrence in KB.

66 ALLX All X year appropriations I Flag
67 Y1_PRIOR 1 year Expired Appropriation I Flag
68 Y1_CUR 1 Year current appropriation I Flag
69 Y2_PRIOR 2 Year Expired Appropriation I Flag Caution: Limited occurrence in KB.
70 Y2_CUR_1ST 2 Year Current Appropriation Paid 1st

Year
I Flag Caution: Limited occurrence in KB.

71 Y2_CUR_2ND 2 Year Current Appropriation Paid 2nd
Year

I Flag

72 Y3_PLUS 3 or more year appropriation I Flag
73 ALL_OTHER None of the above appropriations

starting with MILPAY
I Flag Caution: Limited occurrence in KB.

76 CNT_CDF OBE N Flag Should never be used as input.
141 PAY_ORDER Some version of 'Pay to the Order' in the

Remit to field
N Flag Change in business practice should have eliminated this flag.

138 ENHANCE_PAYEE Flag when Payee found in Remit_L1 field I Flag

77 ORDER_CDF Replace 'Pay to the Order' with Remit_L1 N Flag Should never be used as input.

79 STE Pymt made to suite address I Flag
80 LOCKBOX Payments to lockboxes B Flag Caution: No occurrence in KB.
81 POBOX Payments to PO box I Flag
82 INV_PAYEE Payee with different invoice number

lengths
I Flag

83 INV_CNT Contract with different invoice number
lengths

I Flag

84 DOVAMT_2K DOV_AMT >= to 2000 I Flag
85 DOVAMT_1K DOV_AMT >= to 1000 I Flag
86 AVG_5K Average payment amount to payee is >=

5K
I Flag

87 PAYEE_4_PYMT 4 or more payments to the same payee I Flag

90 MULTI_PAYEE Multiple payees to the same address N Flag Caution: Modeler should consider using derive node to combine with eft_payee. Ref: ?.nod

91 MULTI_ADR Muliple address to the same payee N Flag Caution: Modeler should consider using derive node to combine with eft_adr. Ref: ?.nod

92 INV_SEQ Invoices out of sequence to the same
payee

I Flag

93 PMT_FREQ_HI Regular payments over a period of time I Flag

94 PMT_FREQ_LO Payments occuring in a short period to
time

I Flag

95 TINS Tax identification number is present in
record

I Flag Notes: 1) Not fully populated in KB. 2) When tins flag = "1", tin is null!!!

96 MULTI_TINS Multiple TINS for a Payee I Flag Not fully populated in KB.

97 MULTI_PAYTIN Multiple Payees to the same TIN I Flag Caution: No occurrence in KB.
148 MULTI_PAYEE_K Multiple Payees to the same contract I Flag
149 MULTI_ADDR_K Multiple Addresses to the same contract I Flag Modeler should consider using derive node to combine with multi_eft_k. Ref: ?.nod

150 MULTI_TINS_K Multiple TINS to the same contract I Flag Caution: Limited occurrence in KB.
151 MULTI_EFT_K Multiple EFT to the same contract I Flag Caution: No occurrence in KB. Modeler should consider using derive node to combine with

multi_addr_k. Ref: ?.nod
98 DISCOUNT Was discount paid I Flag Caution: Limited occurrence in KB. In NO2, 10,515.
99 M_PYMT Manual Payment I Flag

100 FEW_PYMT Flag companies that have <200
payments in a year

I Flag

108 MISC_OBLIG Flag that looks for MORD or MOD in the
PIIN

I Flag

109 EFT_PAYEE Muliple payees to same EFT N Flag Caution: No occurrence in KB. Modeler should consider using derive node to combine with
multi_payee. Ref: ?.nod

110 EFT_ADR Multiple EFTs to a single Payee N Flag Caution: No occurrence in KB. Modeler should consider using derive node to combine with
multi_adr. Ref: ?.nod

134 DUPPAY102 Duplicate Payment Indicator 102 - Logic:
Same PIIN, Same SPIIN, Same Inv#,
DOVAmt >=2000

N Flag Note Dup pays are sparsly populated in KB/Possible vendor fraud

 80

DP109 Duplicate Payment Indicator 109 - Logic:
Same K, Same Inv_Amt, Same
Mdse del Dt Inv Amt>=2000

I Flag

DP111 Duplicate Payment Indicator 111 - Logic:
Same K, Same Inv_Amt, Inv_Amt
>=10000

I Flag

NOT_DFAR
PIIN/Del Ord does not comform to the
DFAR I

Flag

140FRAUD_TYPE Knowledge Base: BigSys, SmallSys,
Piggy, Opportunistic
Payment Population: Assumed Not
Fraud (NF)

N Set Never used as input. Always out during model creation.

139SEQ_ID Record Sequence ID Number N IntegerRg
NUMADR_K Number of addresses (ADR_L1+CITY) to

an individual contract (PIIN+DO).
I IntegerRg

NUMEFT_K Number of EFT addresses (ACCT+RTN)
to an individual contract (PIIN+DO).

I IntegerRgNot populated in KB. Modeler should consider derived field combined w/ NUMADR_K.

NUMADREE Number of addresses (ADR_L1+CITY) to
a whole payee.

I IntegerRg

NUMEFTEE Number of EFT addresses (ACCT+RTN)
to a whole payee.

I IntegerRgNot populated in KB. Modeler should consider derived field combined w/ NUMADREE.

NUM_EE_K Number of whole payees to an individual
contract (PIIN+DO).

I IntegerRg

MDELAWDT Number of days between the K Award
Date and the Merchandise Delivery Date.

N IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??
Caution: Award Dt not always reliable.

MDELCKDT Number of days between the Check Date
and the Merchandise Delivery Date.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

MDELINDT Number of days between the Invoice
Date and the Merchandise Delivery Date.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

MDELIRDT Number of days between the Invoice
Received Date and the Merchandise
Delivery Date.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

NUMKAWEE

Number of contracts (PIIN+DO) with the
same award date to the same whole
payee.

N IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??
Caution: Award Dt not always reliable.

NUMCHEE Number of checks to the same whole
payee on the same day.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

CASE Knowledge Base Case Name - TypelessNever used as input! Required for results calculations! Leave in as Typless/None!
RNDM_NUM Random number A TypelessCreated in population only not in Splits
M_INV_AWARD_RG Ranges of days between the invoice and I Set Caution: Award Dt not always reliable.
M_INV_RECV_AWARD_RG Ranges of days between the invoice

received and award dates
I Set Caution: Award Dt not always reliable.

M_CHK_AWARD_RG Ranges of days between the check and I Set Caution: Award Dt not always reliable.
M_INV_RECV_INV_RG Ranges of days between the invoice

received and invoice dates
I Set

M_CHK_INV_RG Ranges of days between the check and I Set
M_CHK_INV_RECV_RG Ranges of days between the cehck and

invoice received dates
I Set

M_STE1_OR_BOX1 STE flag =1 or POBOX flag =1 or I Flag
M_DBOF1_OR_NDFAR1 DBOF flag = 1 OR NOT_DFAR flag = 1 I Flag
M_DBOF0_OR_NDFAR1 DBOF flag = 1 and NOT_DFAR flag = 0 I Flag
M_DBOF1_AND_NDFAR1 DBOF flag = 1 and NOT_DFAR flag = 1 I Flag
M_DBOF0_AND_NDFAR1 DBOF flag = 0 and NOT_DFAR flag = 1 I Flag
M_MADRK1_OR_MEFTK1 I Flag
M_MADR1_OR_EADR1 MULTI_ADR = 1 or EFT_ADR = 1 I Flag
M_AGG_ADR_RG Ranges of AGGREG_ADR amounts I Set
M_AGG_PAYEE_RG Ranges of AGGREG_PAYEE amounts I Set
M_DOVAMT_RG Ranges of DOV_AMT amounts I Set

 81

Figure 27 SQL Node Dialog Box for NO2_STA_POP2000 Database

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

APPENDIX B. NO2 POPULATION UNSUPERVISED MODELING
IMPLEMENTATION AND DETAILED RESULTS

1. BASIC FILTER & TYPE SUPERNODE

As described in Chapter V, this Supernode pre-

processes the data in preparation for clustering.

Figure 28 Basic Filter Node Dialog Box

Figure 28 is an example of a Filter Node dialog, where

the modeler can remove or rename fields from the modeling

stream. The other Filter Node dialogs in this Supernode

are very similar so are not shown.

 84

Figure 29 To String Filler Node Dialog Box

Figure 29 is an example of a Filler Node dialog. This

particular one converts all fields to String storage prior

to the Basic Type Node to prevent modeling problems

downstream. The PMT_METH and PMT_TYPE Filler Nodes are

similar, used to replace $null$ values with a new Set

value, “Blank.”

 85

Figure 30 Basic Type Node Dialog Box

Figure 30 is an example of a Type Node, which

specifies the variable storage, Type, and Values of each

field, as well as the “Direction” of the field for

modeling. The four possible Direction settings are In

(used as an input or independent variable for modeling),

Out (used as an response or dependent variable for

modeling), Both (input and response), and None (not used

for modeling). In this node all fields are initially set

to “In.” The Final Type Node sets the Direction of all

fields marked “A” in Appendix A to “None.” All other

fields remain as “In.”

 86

Figure 31 Distributions and Statistics Supernode

The Distributions and Statistics Supernode creates

plots of the distribution of categorical variables as shown

in Figure 33. This plot allows the modeler to determine

the qualtity of categorical fields, which might contain all

one value, for example, and thus be useless and inputs for

modeling. Figure 32 is an example of a Distribution Node

Dialog Box. All the other Distribution Nodes in this

Supernode and their outputs are similar.

 87

Figure 32 PMT_METH Distribution Node Dialog Box

Figure 33 PMT_METH Distribution Plot

 88

Figure 34 Numeric Statistics Node Dialog Box

As another check on quality of numeric (Range Type)

fields, the Numeric Statistics Node (shown in Figure 34)

produces output as shown in Figure 35, showing the modeler

various statistics and correlation information about all

these fields.

 89

Figure 35 Numeric Statistics Node Output

The two Derive Nodes, shown in Figure 36 and Figure

37, are used to add new fields to the data stream for model

 90

analysis. The ValSet Derive Node assigns Validation Set

membership of A or B depending on the value of RNDM_NUM, a

random number field generated in Access that comes from the

database. Its purpose is to allow the modeler to divide

the data set into two equally-sized random subsets for A/B

validation of K-Means and Two Step cluster models. The

Contract derive node creates a new field to identify

specific contracts and enable analysis of clustering

results with regard to contract distributions.

Figure 36 ValSet Derive Node Dialog Box

 91

Figure 37 Contract Derive Node Dialog Box

2. KMEANS_UNSUP_POP_GWR MODELING STREAM

The purpose of this stream is to construct K-Means

cluster models and produce output to be used to select the

appropriate number of clusters and validate generated

models.

a. Implementation

 All K-Means models are built using the K-Means Model

Dialog Box, shown in Figure 38. No Expert Options were

selected. Figure 39 shows the PCA Modeling Dialog Box,

 92

which was used to create the Principal Components Analysis

model for the AB30 series clustering.

Figure 38 K-Means Model Node Dialog Box

Figure 39 PCA Model Node Dialog Box

 93

Figure 40 shows the end result of creating the

multiple K-Means models required to evaluate the optimum

number of clusters using the Sum of Squares method

described in Chapter V. The AB20 Models Supernode and the

AB30 PCA Models Supernode are both similar to the one

shown.

Figure 40 AB10 Models Supernode

Figure 41 illustrates the use of the field ValSet to

select the validation subset which is used for modeling.

Figure 42 shows how the data is passed through the two

validation models built on validation sets A and B.

 94

Figure 41 ValSet Select Node (currently selects ValSet

“B”)

Figure 42 A/B Validation Models Supernode

Figure 43 is an example of a Matrix Node Dialog Box,

which is used to generate cross-tabulation of cluster

assignments for the A/B validation process.

 95

Figure 43 K-Means A30/B30 Matrix Dialog Box

The Sum of Squares Supernode (Figure 44) produces a

table of within-cluster sum of squares of the distance

fields for each model contained in one of the AB Models

Supernodes.

The _Square Node (Figure 45) creates a field

containing the square of the distance field $KMD-<Model

Name> for each record. The Within-Cluster Sum of Squares

Set Globals Node (Figure 46) sums these squared values for

each model and creates Global fields for each value. This

is the desired result, and it would be possible to stop at

this point. However, the following sequence of nodes

produces data in a format that is much easier to use in

producing a Wk vs. k graph such as shown in Chapter V.

 96

Figure 44 Sum of Squares Supernode

Figure 45 _Square Derive Node Dialog Box

 97

Figure 46 Within-Cluster Sum of Squares Set Globals

Dialog Box

The _Sum_Square Derive Node (Figure 47) creates

another field and assigns it the Global value that was

created by the Set Globals Node described above. These

sums of squares are then compiled by the Aggregate Node

shown in Figure 48, and this aggregation is sent through a

Type Node to the Table Node which produces useable output.

This table can be copied and pasted into Excel for easy

production of a graph of Within-Cluster Sum of Squares vs.

Number of Clusters to be used to evaluate the proper number

of clusters for a particular model.

 98

Figure 47 _Sum_Square Derive Node Dialog Box

Figure 48 Sum of Squares Aggregate Node Dialog Box

 99

b. Results

Table 13 shows the Principal Components extraction of

the numeric data used for the AB30 series of cluster

models.

Component Matrix(a)
Component

1 2 3 4 5
CHK_AMT -.169 -.170 .329 -.370 .710

INV_AMT -6.161E-
02

-8.265E-
02 .170 -.140 .535

INV_RECV_INV_DT .767 4.962E-02 -.299 -.211 .116
CHK_INV_DT .908 6.193E-02 -.346 -.158 .142

CHK_INV_RECV_DT .526 3.950E-02 -.191 1.189E-
02 8.816E-02

NUMADR_K -.101 .943 4.190E-
02

4.378E-
02 .171

NUMEFT_K -7.134E-
02 .534 1.287E-

02
1.214E-

02 3.304E-02

NUMADREE 9.603E-02 -.129 -.101 .823 .323
NUMEFTEE 8.529E-02 -.123 -.105 .797 .396

NUM_EE_K -.105 .951 3.900E-
02

3.949E-
02 .159

MDELCKDT .922 6.323E-02 .334 3.592E-
02

-3.029E-
02

MDELINDT 4.129E-02 3.345E-03 .924 .262 -.233

MDELIRDT .755 4.946E-02 .540 3.544E-
02

-9.825E-
02

NUMCHEE -6.120E-
02 -.186 .250 -.320 .458

Extraction Method: Principal Component Analysis.
a 5 components extracted.

Table 13 PCA Factor Analysis Component Matrix

 100

The K-Means model selected for use in further analysis

was K-Means06AB20, built with six clusters on the numeric

fields only. Figure 50 and Figure 49 show the input fields

and cluster distribution, respectively, for this model.

Table 14 shows the co-clustering matrix for the A and B

validation models, resulting in Cramer’s Coefficient =

83.23%.

Figure 49 K-Means06AB20 Generated Model Node, Summary Tab

 101

Figure 50 K-Means06AB20 Generated Model Node, Model Tab

 K-Means06B20
K-Means06A20 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6
 cluster-1 63558 0 0 0 0 11292
 cluster-2 957 1007 0 252 0 55
 cluster-3 0 268 0 0 0 0
 cluster-4 19 0 0 19166 0 1419
 cluster-5 0 0 0 0 283 0
 cluster-6 0 0 1032 0 0 0

Table 14 A/B Validation Matrix for K-Means06AB20

The following sequence of figures and tables

illustrates the effect of changing the order of data for a

K-Means clustering model, comparing the results of using

numeric fields only to using categorical fields only. The

model K-Means06AB50 was generated using numeric fields

only, with the data sorted by RNDM_NUM. Figure 51 shows

the cluster distribution of this model, and Table 15 shows

the cross-tabulation of cluster assignments, resulting in

Cramer’s Coefficient = 83.03%. Figure 52, Figure 53, and

 102

Table 16 show the same process for categorical fields only,

resulting in Cramer’s Coefficient = 72.12%.

Figure 51 K-Means06AB50 Generated Model Node, Model Tab

 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6

cluster-1 126885 0 2136 38 0 0
cluster-2 4 598 1890 3 0 0
cluster-3 0 0 0 0 0 2043
cluster-4 0 0 536 38293 0 0
cluster-5 0 0 0 0 580 0
cluster-6 22628 0 133 2849 0 0

Table 15 Cross-Tabulation of Cluster Assignment, K-
Means06AB20 vs. K-Means06AB50 Models

Figure 52 K-Means06AB60 Generated Model Node, Model Tab

 103

Figure 53 K-Means06AB70 Generated Model Node, Model Tab

 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6

cluster-1 4 350 99 14147 6 31886
cluster-2 5 15552 12746 24739 4407 337
cluster-3 18404 31 9 32 0 0
cluster-4 124 24273 2799 5156 0 1771
cluster-5 1 224 112 5 272 23765
cluster-6 6 71 65 692 16526 0

Table 16 Cross-Tabulation of Cluster Assignment, K-
Means06AB60 vs. K-Means06AB70 Models

3. TWOSTEP_UNSUP_POP_GWR MODELING STREAM

Figure 54 shows the dialog used to create the Two Step

clustering model used for analysis. Figure 55 shows the

cluster distribution for the generated model, and Table 17

shows the co-clustering matrix for the A and B validation

models, resulting in Cramer’s Coefficient = 91.96%.

 104

Figure 54 TwoStep Model Node Dialog Box

Figure 55 TwoStep07AutoAB20 Generated Models Dialog Box,
Model Tab

 105

 TwoStep07B20
TwoStep07A20 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6 cluster-7

cluster-1 7477 33 0 0 0 0 0
cluster-2 0 0 0 0 17 0 5022
cluster-3 0 139 990 504 11080 0 99
cluster-4 10 443 19686 1800 401 0 0
cluster-5 0 10 34 16987 5044 0 2
cluster-6 0 0 1 0 1 9058 0
cluster-7 190 20157 54 0 69 0 0

Table 17 A/B Validation Matrix for TwoStep07AutoAB20

4. KOHONEN_UNSUP_POP_GWR MODELING STREAM

Figure 56 and Figure 57 show the Model Node settings

used in building the KSOM10x11AB02 model used for analysis.

The only Expert settings used were to adjust the dimensions

of the Kohonen map. Figure 58 is used to create the two-

dimensional plot of the Kohonen prototypes and record

assignments for evaluation. Figure 59 shows the input and

output layers for the generated model.

Figure 56 Kohonen Model Node Dialog Box, Model Tab

 106

Figure 57 Kohonen Model Node Dialog Box, Expert Tab

Figure 58 Kohonen Model Plot Dialog Box

 107

Figure 59 Kohonen Generated Model Dialog Box, Summary Tab
5. MODEL_ANALYSIS_POP_GWR ANALYSIS STREAM

a. Implementation

The model analysis stream produces a table of

transactions that have been identified as orphans in all

three of the generated models. There is also the option to

identify sparse prototypes in the Kohonen map, accomplished

by the Sparse Prototypes Supernode (Figure 60). Figure 61

shows the aggregation on Kohonen prototype fields, which

after sorting produces a table showing each prototype and

the number of records it contains (Figure 62 is an

example). This table is used to identify the sparse

prototypes.

 108

Figure 60 Sparse Prototypes Supernode

Figure 61 Aggregate Node Settings

 109

Figure 62 Table of Kohonen Prototypes Sorted in Descending
Order by Number of Transactions

After selection of the appropriate metric for

determining a sparse prototype, a Derive Node can be

generated from the generated table. An example is shown in

Figure 63, which identifies records belonging to one of the

ten sparsest nodes. The other two Derive Nodes in the

Supernode perform the same function.

 110

Figure 63 KSOM_10 Derive Node Settings

The Contract Count Supernode (Figure 64) produces a

field containing the number of transactions in the contract

to which each record belongs, which is essential to

identifying orphan transactions.

 111

Figure 64 Contract Count Supernode

The data is first aggregated by contract, and then the

Merge Node (Figure 65 and Figure 66) creates a new field

with the number of contracts for each transaction.

Figure 65 Merge Node Dialog Box, Merge Tab

 112

Figure 66 Merge Node Dialog Box, Filter Tab

The Orphans Supernode (Figure 67) accomplishes the

important task of creating fields identifying records as

orphans for one or more of the generated models. For each

type of model, Two Step, K-Means, and Kohonen, the data is

first merged on contract and cluster number (prototype

number in the Kohonen case), then merged back to create a

field identifying the number of transactions in each

cluster from each contract. Figure 68 shows an example

Merge Node Filter Tab, with the new field TS_Cluster_Count.

The other two merge nodes are very similar and produce the

new fields KM_Cluster_Count and KSOM_Prototype_Count.

 113

Figure 67 Orphans Supernode

Figure 68 Merge Node Filter Settings

The three Derive Nodes create new Flag fields to

identify orphan transactions. Figure 69 shows an example

for the Two Step orphans; the other two derive nodes are

very similar.

 114

Figure 69 TS_Orphan Derive Node Settings

The final step in this stream is to select the

“multiple orphans,” which is accomplished by the Triple

Orphans Select Node (Figure 70). A table of these records

is then produced that identifies transactions for audit.

Figure 70 Triple Orphans Select Node Settings

 115

b. Results

In addition to identifying the transactions that are

“triple orphans,” analysis of the distribution of orphan

transactions by cluster can give some insight into the

structure of the data. The orphan distribution by cluster

for the K-Means and Two Step models are shown in Figure 71

and Figure 72 respectively.

Figure 71 Distribution of Orphan Transactions by K-Means
Cluster

Figure 72 Distribution of Orphan Transactions by Two Step
Cluster

 116

THIS PAGE INTENTIONALLY LEFT BLANK

 117

APPENDIX C. SPREADSHEET TOOLS FOR UNSUPERVISED
MODELING

1. SUM OF SQUARES

The spreadsheet tool shown in Figure 73 is used to

construct the Sum of Squares vs. Number of Clusters plot

for determination of the appropriate number of clusters for

K-Means modeling. It is self-explanatory and automatically

produces the plot.

Figure 73 Sum of Squares Spreadsheet Tool

2. CLUSTER CORRESPONDENCE ANALYSIS TEMPLATE

The spreadsheet tool shown in Figure 74 and Figure 75

is used to calculate Cramer’s Coefficient for selected

 118

models. It accepts models with up to ten clusters, and

automatically calculates Cramer’s Coefficient and displays

results for multiple models on the Analysis page. It is

self-explanatory, automatic, and easy to use.

Figure 74 Cluster Correspondence Analysis Template
Analysis Worksheet

 119

Figure 75 Cluster Correspondence Analysis Template 6
Clusters Worksheet

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

APPENDIX D. TREE CLUSTERING SPLUS IMPLEMENTATION

1. S-PLUS IRIS DATA

The S-PLUS Iris data set consists of fifty samples

each of three Iris species, Setosa, Versicolor, and

Virginica, with measurements of sepal length and width and

petal length and width. A sample of this data is show in

Table 18. To evaluate the automatic variable selection

capability of the Tree Clustering method, we add five

random or “noise” variables, and multiply the values of

Sepal Width and the first noise variable by ten, as shown

in Table 19.

 Species Sepal.L Sepal.W Petal.L Petal.W

1 Setosa 5.1 3.5 1.4 0.2

2 Setosa 4.9 3.0 1.4 0.2

3 Setosa 4.7 3.2 1.3 0.2

…

51 Versicolor 7.0 3.2 4.7 1.4

52 Versicolor 6.4 3.2 4.5 1.5

53 Versicolor 6.9 3.1 4.9 1.5

…

101 Virginica 6.3 3.3 6.0 2.5

102 Virginica 5.8 2.7 5.1 1.9

103 Virginica 7.1 3.0 5.9 2.1

…

Table 18 Example of Original Iris Data

 Species Sepal.L Sepal.W Petal.L Petal.W N1 N2 N3 N4 N5

1 Setosa 5.1 35 1.4 0.2 64 4.8 6.8 5.5 5.4

2 Setosa 4.9 30 1.4 0.2 49 4.9 5.9 4.9 6.0

3 Setosa 4.7 32 1.3 0.2 72 4.9 4.3 5.5 6.3

…

Table 19 Example of Scaled Iris Data With Noise Variables

 122

2. S-PLUS IMPLEMENTATION

a. Function tree.clust()

The following S-PLUS function takes as input a data

frame with the observations as rows and the variables as

columns, and returns a list containing a list of variables

retained, the size and deviance of the tree for each of

those variables, and a dissimilarity matrix suitable for

clustering by any S-PLUS clustering algorithm. The

arguments are structured to allow flexibility in

application and debugging of the function.

> tree.clust
function(df, fancy.dist = T, rank.y = F, verbose = F, debug = F)
{
 if(!is.data.frame(df))
 stop("This function requires a data frame")
 if(version$major < 6)
 oldClass <- class
 out <- as.data.frame(matrix(0, nrow(df), ncol(df))) # Deal with
columns whose names have embedded spaces. They suck, by the way.

 dimnames(out) <- dimnames(df)
 nm <- names(df)
 first.space <- first.occurrence(nm, " ")
 which <- first.space != nchar(nm)
 if(any(which)) {
 nm[which] <- substring(nm[which], 1, first.space[which] -
1)
 if(length(nm) != length(unique(nm)))
 stop("Truncating embedded spaces in names leads to
ambiguity. I give up.")
 names(df)[which] <- nm[which]
 }

Handy function to convert "where" entries to leaf numbers

 leaf.numbers <- function(tree)
 {
 where <- tree$where
 leaves <- as.numeric(dimnames(tree$frame)[[1]])
 leaves[where]
 }

 123

 assign("df", df, frame = 1)
 df.name <- deparse(substitute(df))
 results <- matrix(0, nrow = ncol(df), ncol = 2)
 dimnames(results) <- list(dimnames(df)[[2]], c("Dev", "Size"))
 big.list <- vector("list", ncol(df))
 if(fancy.dist) {
 big.dist.mat <- matrix(0, nrow(df), nrow(df))
 }
 for(i in 1:ncol(df)) {
 if(verbose > 0)
 cat("Creating tree with column", i, "\n")
 if(rank.y)
 str <- paste("tree (rank(", names(df)[i], ") ~ .,
data = df)", sep = "")
 else str <- paste("tree (", names(df)[i], " ~ ., data =
df)", sep = "")
 mytree <- eval(parse(text = str))
 if(oldClass(mytree) == "singlenode")
 next
 my.cv <- cv.tree(mytree, FUN = prune.tree)
 my.size <- my.cv$size[my.cv$dev == min(my.cv$dev)][1]
 if(my.size == 1) {
 results[i, "Dev"] <- 0
 results[i, "Size"] <- 1
 next
 }
 mytree <- prune.tree(mytree, best = my.size)
 big.list[[i]] <- mytree #
When "fancydist" is FALSE, we simply use the leaf identifier for each
observations. By our making it factor, daisy() will compute the
distance
as a 0 or 1. When fancydist is TRUE, we compute the distance from
each
observation to all the others in terms of...

 if(fancy.dist) {
 leaves <- leaf.numbers(mytree)
 node.numbers <-
as.numeric(dimnames(mytree$frame)[[1]])
 non.leaves <- node.numbers[!is.element(node.numbers,
leaves)]
 if(length(non.leaves) == 1) {
 dev.at.node <- mytree$frame["1", "dev"]
 names(dev.at.node) <- "1"
 subtree.dev <- deviance(mytree)
 names(subtree.dev) <- "1"
 }
 else {
 dev.at.node <- mytree$frame[mytree$frame$var !=
"<leaf>", "dev", drop = F]
 nm <- dimnames(dev.at.node)[[1]]
 dev.at.node <- as.vector(dev.at.node[, 1, drop
= T])
 names(dev.at.node) <- nm
 subtree.dev <- sapply(select.tree(mytree,
non.leaves), deviance)

 124

 }
 u.leaves <- unique(leaves)
 lul <- length(u.leaves)
 dmat <- matrix(0, lul, lul)
 dimnames(dmat) <- list(u.leaves, u.leaves)
 for(u in 1:(lul - 1)) {
 this <- u.leaves[u] # leaf number
 ind <- leaves == this # logical
 for(other in (u + 1):lul) {
 that <- u.leaves[other] # leaf number
 o.ind <- leaves == that
 parent <- as.character(max(leaf.paths[this,
][match(leaf.paths[that,], leaf.paths[this,], 0)])) #
##cat("Distance between", this, " and ", that,
" is ", subtree.dev[parent],
", since parent is", parent, "\n")
 dmat[u, other] <- subtree.dev[parent] #

Old egad: egad <- try(big.dist.mat[o.ind, ind] <-
big.dist.mat[o.ind, other] + subtree.dev[
parent]/subtree.dev["1"])

 egad <- try(big.dist.mat[o.ind, ind] <-
big.dist.mat[o.ind, other] + 1 - (subtree.dev[parent]/dev.at.node[
 parent]))
 if(any(is.na(big.dist.mat)))
 if(debug)
 browser()
 else stop("NA's are gonna get you")
 if(length(class(egad)) > 0 && class(egad) ==
"Error") {
 if(debug)
 browser()
 else stop("Dammit, I don't know what to do,
and debug is FALSE.")
 }
 }
 }
 dmat <- dmat + t(dmat)
 }
 out[, i] <- factor(mytree$where)
 orig.dev <- dev(df[, i])
 new.dev <- summary(mytree)$dev
 results[i, "Dev"] <- orig.dev - new.dev
 results[i, "Size"] <- my.size
 if(!is.factor(df[, i]))
 results[i, "Dev"] <- results[i, "Dev"]/var(df[, i])
 }
 if(!any(results[, "Size"] > 1))
 stop("Egad! No tree produced anything!")
 out <- out[, results[, "Size"] > 1]
 big.list <- big.list[results[, "Size"] > 1]
 results <- results[results[, "Size"] > 1,]
 if(fancy.dist) {
 dists <- big.dist.mat[row(big.dist.mat) >
col(big.dist.mat)]

 125

 attr(dists, "Size") <- nrow(df)
 attr(dists, "Labels") <- as.character(1:nrow(df))
 attr(dists, "Metric") <- "euclidean"
 oldClass(dists) <- "dissimilarity"
 }
 else dists <- daisy(out)
 out <- list(mat = out, call = match.call(), tbl = results, trees
= big.list, dists = dists)
 oldClass(out) <- "treeclust"
 return(out)
}

b. Application to Iris Noise Data

The following S-PLUS code was executed to produce the

results shown in Chapter VI, Section D.

> iris.noise.scale.pam_pam(iris.noise.scale[,-1],3,diss=F,stand=T)
> table(iris.noise[,1],iris.noise.scale.pam$clustering)
 1 2 3
 Setosa 48 2 0
Versicolor 0 17 33
 Virginica 0 7 43
> iris.noise.scale.tc_tree.clust(df=iris.noise.scale[,-1])
> iris.noise.scale.tc
 Dev Size
Sepal.L 132.69178 10
Sepal.W 85.93450 4
Petal.L 144.87745 6
Petal.W 141.61504 6
Noise 1 40.08875 6
Noise 2 13.74929 2
> iris.noise.scale.tc.pam_pam(iris.noise.scale.tc$dists,3,diss=T)
> table (iris.noise[,1], iris.noise.scale.tc.pam$cluster)
 1 2 3
 Setosa 50 0 0
Versicolor 3 47 0
 Virginica 2 3 45

b. Application to Vendor Payment Data

The following S-PLUS code was executed to produce the

results shown in Chapter VI, Section E.

> KB.tc_tree.clust(df=KBData[,-5])
> KB.tc
 Dev Size
 CHK.AMT 321.42728 4
 PMT.METH 146.32514 7
 PMT.TYPE 704.36352 14
 INV.AMT 372.58038 6
INV.RECV.INV.DT 410.56259 7
 CHK.INV.DT 421.59578 10

 126

CHK.INV.RECV.DT 415.87393 10
 INTEREST 269.51651 4
 DBOF 436.75056 3
 OTHERX 436.47283 3
 ALLX 408.59796 8
 Y1.PRIOR 366.13269 4
 Y1.CUR 389.61332 4
 Y2.CUR.2ND 305.11099 3
 Y3.PLUS 204.30980 4
 ENHANCE.PAYEE 375.51852 8
 STE 382.90927 6
 POBOX 412.31105 15
 INV.PAYEE 220.28978 8
 INV.CNT 332.77792 7
 DOVAMT.2K 441.00000 2
 DOVAMT.1K 441.00000 2
 AVG.5K 385.83321 3
 PAYEE.4.PYMT 355.60706 10
 INV.SEQ 67.82436 3
 PMT.FREQ.HI 434.38967 8
 PMT.FREQ.LO 392.99234 10
 TINS 360.78780 7
 MULTI.TINS 433.48543 5
 MULTI.PAYEE.K 441.00000 2
 MULTI.ADDR.K 441.00000 2
 DISCOUNT 269.79951 4
 M.PYMT 428.76615 6
 MISC.OBLIG 315.41648 5
 NOT.DFAR 350.46514 27
 NUMADR.K 439.12694 3
 NUMADREE 378.58206 14
 NUM.EE.K 441.00000 3
 DP109 358.23176 9
 DP111 214.10555 11
 MDELCKDT 379.81641 10
 MDELINDT 400.30045 9
 MDELIRDT 378.21893 8
> KB.tc.pam_pam(KB.tc$dists,4,diss=T)
> table(KBData[,5],KB.tc.pam$clustering)
 1 2 3 4
 Bigsys 144 107 29 2
Opportunistic 40 3 1 1
 Piggy 9 2 20 0
 Smallsys 46 17 20 1

 127

APPENDIX E. PROPOSED STANDARD OPERATING PROCEDURES
FOR UNSUPERVISED MODELING TO DETECT FRAUD IN VENDOR

PAYMENTS

1. PURPOSE AND OVERVIEW

This is a recommended Standard Operating Procedure

(SOP) for Unsupervised Modeling, designed as a supplement

to the Internal Review Seaside Datamining SOP. The intent

of this SOP is to provide a more rigorous and standardized

process for selection of unsupervised candidates in the

Internal Review Datamining process. It is based on the

idea that transactions that belong to the same contract are

somehow similar, and thus should fall into the same cluster

of a clustering model. Transactions that fall into

clusters other than the one containing the majority of

transactions for their contract are considered “orphans.”

Selection of orphan transactions is the ultimate result of

this procedure.

This Recommended SOP is organized into three sections:

Data Pre-Processing, Model Building and Selection, and

Model Analysis. Familiarity with Clementine on the part of

the reader is assumed, so some of the specific details of

Clementine implementation are omitted. For more detail on

any area of this SOP, refer to the Naval Postgraduate

School Master’s Thesis “An Improved Unsupervised Modeling

Methodology for Detecting Fraud in Vendor Payment

Transactions,” June 2003, by Major Gregory W. Rouillard.

Q:\Mongoose\Unsupervised_Modeling contains the example

streams, supernodes, and spreadsheet tools referred to in

this SOP.

 128

2. DATA PRE-PROCESSING

a. Source Data and SPSS Analysis

Obtaining and opening the population database and SPSS

analysis should be conducted as always, as detailed in the

Datamining SOP. The procedures described in this document

assume that the population database and an ODBC connection

have been established, and that the Fields to Use

spreadsheet has been completed.

b. The Basic Filter & Type Supernode

The Basic Filter & Type Supernode, shown in Figure 76,

can be used for additional data pre-processing if desired.

Note that Two Step cluster models do not admit fields with

missing values, so some consideration might be given to

conducting this analysis and either using filler nodes to

correct missing values, or eliminating fields with a high

percentage of missing values.

Figure 76 Basic Filter & Type Supernode

 129

The To String Filler node is necessary to be able to

browse constructed K-Means models (this is a quirk of

Clementine’s). The Quality node, as well as the

Distributions and Statistics Supernode (Figure 77), are

used to analyze fields for inclusion or filtering. The

ValSet Derive Node assigns Validation Set membership of A

or B depending on the value of RNDM_NUM. Its purpose is to

allow the modeler to divide the data set into two equally-

sized random subsets for A/B validation of K-Means and Two

Step cluster models. The Contract derive node creates a

new field to identify specific contracts and enable

analysis of clustering results with regard to contract

distributions.

Figure 77 Distributions and Statistics Supernode

 130

The Final Type Node is used to assign the Direction to

each unfiltered field.

3. MODEL BUILDING AND SELECTION

Clementine’s unsupervised modeling choices are K-

Means, Two Step, and Kohonen. Refer to the Clementine 7.0

User’s Guide or online Help for more details on the basic

functioning and uses of these models.

a. K-Means Model Building

K-Means model building and selection is the most

complicated part of the unsupervised modeling process,

primarily because the modeler must select the number of

clusters for model building. The procedure outlined here

provides a rigorous method for selecting the correct number

of clusters and validating constructed models. The stream

KMeans_NO2pop, shown in Figure 78, can be used as a

reference for this section.

The procedures outlined here are based on theory that

is fully detailed and explained in Chapter III of Major

Rouillard’s thesis. It is not necessary to understand this

theory to successfully apply these procedures.

Note: although Clementine’s K-Means modeling algorithm

will accept categorical (Set and Flag Type) fields, it is

not recommended. Clustering results on categorical fields

tend to be arbitrary and are very sensitive to the order of

the data. Always filter non-numeric fields or set their

direction to “none” for K-Means clustering.

 131

Figure 78 Kmeans_NO2pop Stream

1. Build a stream with an SQL node for the source data,

the Basic Filter & Type Supernode, and a Type Node

setting only the numeric fields as “In.” All others

should be set to “None.”

2. Add a K-Means modeling node downstream of the

Numeric Type Node. This modeling node should only

require the Simple settings, and will be used to

generate all of the K-Means models.

3. Add a Select Node, shown in Figure 79, to select the

appropriate Validation Set for model validation,

detailed in Step 10.

 132

Figure 79 ValSet Select Node

4. Build models with number of clusters k = 1, 2, 3, …,

15. Stopping at k = 10 is usually acceptable. If

you are familiar with Clementine scripting, a script

such as shown in Figure 80 can be used to streamline

this process. Otherwise, the models must be built

by hand, changing the number of clusters and the

name for each model.

5. Once all of the models have been built, connect them

to the stream between the Numeric Type Node and the

Sum of Squares Supernode. Figure 81 shows an

example, with the models organized in a Supernode.

 133

Figure 80 K-Means Model Building Script (Script Tab of the
Stream Properties Dialog Box)

Figure 81 Generated K-Means Models

 134

6. The Sum of Squares Supernode (Figure 82) produces a

table of values that is used in the spreadsheet Sum

Of Squares to help determine the correct number of

clusters for K-Means modeling.

Figure 82 Sum of Squares Supernode

7. The four nodes boxed in the above figure must be

edited to select the correct fields. Figure 83,

Figure 84, Figure 85, and Figure 86 show examples of

this step.

 135

Figure 83 _Square Derive Node Dialog Box

Figure 84 Within-Cluster Sum of Squares Set Globals

Dialog Box

 136

Figure 85 _Sum_Square Derive Node Dialog Box

Figure 86 Sum of Squares Aggregate Node Dialog Box

 137

8. When the Table Node is executed, it produces a table

containing a field for each model that is its

Within-Cluster Sum of Squares. In this table,

select Edit-Select All, then Edit-Copy (inc. field

names). Open the Sum of Squares spreadsheet, and

then follow the directions given therein. The end

result is a graph similar to the one shown in Figure

87, and the correct number of clusters is at the

“kink” or flat spot in the curve.

Figure 87 Example of Sum of Squares Plot

9. After selecting the correct number of clusters for

K-Means modeling, the next step is to validate that

model for comparison with other generated models.

10. Connect the K-Means Model Node to the ValSet Select

Node, and build a model on the “A” Validation Set

with the number of clusters selected in Step 8.

Next, build a model with the same number of clusters

Within-Cluster Sum of Squares vs. Number of Clusters
AB20 Numeric Models, Entire Data Set

2000

3000

4000

5000

6000

7000
8000

9000

10000

11000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clusters

Su
m

 o
f S

qu
ar

es

6 clusters

 138

on the “B” Validation Set. Finally, connect both

models to the ValSet Node (still set to select

Validation Set “B”) and connect a Matrix to compare

the cluster fields $KM-<model name>, as shown in

Figure 88.

Figure 88 Matrix Node Settings Tab

11. This matrix will show the cross-tabulation (co-

clustering) of the two models. Select Edit-Select

All and Edit-Copy (inc. field names), then paste

into the appropriate workbook in the spreadsheet

Cluster Correspondence Analysis Template. Be sure

to save your workbook under another name to keep the

template clear. Follow the instructions in that

 139

spreadsheet, and you will have a single number

(Cramer’s Coefficient, a measure of how good your

clustering model is) to compare with other models.

b. Two Step Model Building

Building a Two Step model is much easier than building

the “right” K-Means model. Two Step models are designed to

work with all data types, so the Two Step modeling node may

be connected directly to the Basic Filter & Type Node.

Build a Two Step model with the simple (default) settings,

then rename it to incorporate the number of clusters

(automatically chosen by Two Step). The validation

procedure is the same as described in Steps 9, 10, and 11

of the preceding section.

c. Kohonen Model Building

Building a Kohonen model is not difficult, but it can

be very time- and memory- intensive, and there are many

expert options which can affect the results. It is

recommended to use the default settings of the Expert Model

Tab, changing only the dimensions of the generated map

(Figure 89).

Trial and error may be required to determine

appropriate dimensions for the Kohonen map. Generally

speaking, for a data set the size of the audit populations,

a map of size 10x10 or larger should be considered for

interpretability.

 140

Figure 89 Kohonen Model Node Expert Tab

4. MODEL ANALYSIS AND RESULTS

The stream Model_analysis_NO2pop (Figure 90)

demonstrates the method described in this section. In this

stream, each generated model selects its own orphan

transactions, and the transactions that are selected by all

three models are forwarded for audit.

The selection of orphans is highly dependent on

determination of the threshold for contract concentration.

For example, a model that selects as orphans only

transactions falling in clusters containing 30% or fewer of

the transactions in a contract will identify more orphans

than one whose threshold is 10%. This threshold is set in

the Derive Nodes of the Orphans Supernode (Figure 94),

discussed in detail below.

The concept of orphan transactions in a Kohonen

mapping is not as simple as for a K-Means or Two Step

 141

cluster model, because by the nature of a Kohonen map there

is not necessarily a “home” node for each contract.

Therefore it might be desirable to evaluate a Kohonen map

based on the concept of “sparse” nodes (ones with few

records): perhaps the transactions that occupy sparse

nodes are more interesting than those in dense nodes. The

Sparse Prototypes Supernode facilitates this type of

analysis.

Figure 90 Model_analysis_NO2pop

The Contract Count Supernode (Figure 91) produces a

field containing the number of transactions in the contract

to which each record belongs, which is essential to

identifying orphan transactions.

 142

Figure 91 Contract Count Supernode

The data is first aggregated by contract, and then the

Merge Node (Figure 92 and Figure 93) creates a new field

with the number of contracts for each transaction.

Figure 92 Merge Node Dialog Box, Merge Tab

 143

Figure 93 Merge Node Dialog Box, Filter Tab

The Orphans Supernode (Figure 94) accomplishes the

important task of creating fields identifying records as

orphans for one or more of the generated models. For each

type of model, Two Step, K-Means, and Kohonen, the data is

first merged on contract and cluster number (prototype

number in the Kohonen case), then merged back to create a

field identifying the number of transactions in each

cluster from each contract. Figure 95 shows an example

Merge Node Filter Tab, with the new field TS_Cluster_Count.

The other two merge nodes are very similar and produce the

new fields KM_Cluster_Count and KSOM_Prototype_Count.

 144

Figure 94 Orphans Supernode

Figure 95 Merge Node Filter Settings

The three Derive Nodes create new Flag fields to

identify orphan transactions. Figure 96 shows an example

for the Two Step orphans; the other two derive nodes are

very similar. As discussed at the beginning of this

 145

section, selection of the orphan threshold (30% shown here)

has a large impact on the number of orphans identified.

Figure 96 TS_Orphan Derive Node Settings

The final step in this stream is to select the

“multiple orphans,” which is accomplished by the Triple

Orphans Select Node (Figure 97). A table of these records

is then produced that identifies transactions for audit.

 146

Figure 97 Triple Orphans Select Node Settings

The final step is to generate a table of the selected

transactions. Alternatively, a Derive or Select Node can

be generated from this table to select these transactions

based on SEQ_ID or some other field.

 147

LIST OF REFERENCES

[1] Breiman, L., and others, Classification and

Regression Trees, pp. 59-63, Wadsworth Interantional

Group, 1984.

[2] Buttrey, Samuel E., “A Scale-Independent Clustering

Method With Automatic Variable Selection Based On

Trees,” draft Naval Postgraduate School Technical

Report, 2003.

[3] Chiu, Tom Y.M., and others, “A Two-step Clustering

Algorithm for Mining Large Datasets with Mixed Type

Attributes,” Proceedings of AFCEA International's

18th Annual Federal Database Colloquium and

Exposition, pp. 55-67, 2001.

[4] Clementine Datamining Software, Version 7.0, SPSS,

Inc., 2002.

[5] Conover, W.J., Practical Nonparametric Statistics,

Third Edition, pp. 229-230, John Wiley & Sons, Inc.,

1999.

[6] Defense Finance and Accounting Service, Task Order

0033, Improper Payments/Data Mining Project Support

Final Report, 2000.

[7] Defense Finance and Accounting Service, Standard

Operating Procedures for Datamining, 2003.

[8] Gordon, A.D., Classification, Second Edition, pp.

183-204, Chapman & Hall/CRC, 1999.

[9] Gower, J.C., “A General Coefficient of Similarity and

Some of its Properties,” Biometrics, Vol. 27, pp.

857-871, 1971.

 148

[10] Hastie, T., Tibshirani, R., and Friedman, J.,

Elements of Statistical Learning, pp. 453-485,

Springer, 2001.

[11] Holmes, Susan, “Classification Trees,” [http://www-

stat.stanford.edu/~susan/courses/b494/index/node45.ht

ml], January 2002.

[12] Kauffman, L., and Rousseeuw, P., Finding Groups in

Data, pp. 1-44, John Wiley & Sons, Inc., 1990.

[13] Monteiro, Antonio, Multiple Additive Regression

Trees, A Methodology For Predictive Data Mining For

Fraud Detection, Master’s Thesis, Operations Research

Department, Naval Postgraduate School, September

2002.

[14] S-PLUS 2000 Statistical and Data Analysis Software,

Insightful Corporation, 2000.

[15] Zaiane, O.R., and others, “On Data Clustering

Analysis: Scalability, Constraints, and Validation,”

[http://www.cs.ualberta.ca/~zaiane/postscript/pakddZa

iane.pdf], 2002.

 149

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education

MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center
MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity

(Attn: Operations Officer)
Camp Pendleton, California

7. Director, Studies and Analysis Division

MCCDC, Code C45
Quantico, Virginia

8. Internal Review Seaside (Operation Mongoose)
DOD Center Monterey Bay
Seaside, California

