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ABSTRACT 
 

 In this thesis, we propose a standardized procedure 

for detecting fraud in Defense Finance and Accounting 

Service (DFAS) vendor payment transactions through 

Unsupervised Modeling (cluster analysis).  Clementine Data 

Mining software is used to construct unsupervised models of 

vendor payment data using the K-Means, Two Step, and 

Kohonen algorithms.   Cluster validation techniques are 

applied to select the most useful model of each type, which 

are then combined to select candidate records for physical 

examination by a DFAS auditor.  Our unsupervised modeling 

technique utilizes all the available valid transaction 

data, much of which is not admitted under the current 

supervised modeling procedure.  Our procedure standardizes 

and provides rigor to the existing unsupervised modeling 

methodology at DFAS.  Additionally, we demonstrate a new 

clustering approach called Tree Clustering, which uses 

Classification and Regression Trees to cluster data with 

automatic variable selection and scaling.  A standardized 

procedure for Unsupervised Modeling, detailed explanation 

of all Clementine procedures, and implementation of the 

Tree Clustering algorithm are included as appendices. 

 
 



  vi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  vii

TABLE OF CONTENTS 
 

I. INTRODUCTION ........................................1 
A. OPERATION MONGOOSE AND VENDOR PAYMENT AUDITING .....1 
B. A NEW CLUSTERING METHODOLOGY WITH AUTOMATIC 

VARIABLE SELECTION AND SCALING .....................3 
C. PURPOSE AND SCOPE OF THE THESIS ....................4 
D. OVERVIEW OF THESIS .................................4 

II. CLASSIFICATION AND DETECTION OF FRAUD ...............7 
A. CLASSIFYING FRAUD ..................................7 
B. THE KNOWLEDGE BASE .................................8 
C. DETECTING FRAUD WITH SUPERVISED LEARNING ...........9 

1. Current Procedures ..............................9 
2. Shortcomings of Supervised Modeling ............10 
3. Potential Improvements With Unsupervised 

Modeling .....................................11 
III.  UNSUPERVISED LEARNING .............................13 

A. DEFINITION ........................................13 
B. TYPES OF VARIABLES ................................13 

1.   Interval-Scaled Variables ....................14 
2.   Binary Variables .............................14 

a.   Definition of Symmetric and Asymmetric 
Binary Variables ........................14 

b. Measuring dissimilarity in binary 
variables ...............................15 

3. Nominal Variables ............................16 
4.  Mixed Variable Types ..........................17 

C. UNSUPERVISED LEARNING METHODS .....................19 
1. Partitioning .................................19 
2. Hierarchical Methods .........................20 
3. Self-Organizing Maps .........................22 

D. EVALUATION OF CLUSTERING RESULTS ..................24 
1. Optimum Number of Clusters for K-Means .......24 
2. Cluster Validation ...........................25 

IV. CLEMENTINE DATA MINING SOFTWARE ....................31 
A. OVERVIEW ..........................................31 
B. UNSUPERVISED LEARNING MODEL TYPES .................31 

1. K-Means ......................................31 
2.  Two Step .....................................35 
3. Kohonen ......................................37 

C. SHORTCOMINGS OF CLEMENTINE UNSUPERVISED MODELING ..40 
V. FINDING CLUSTERS IN NO2 VENDOR PAYMENT DATA USING 

CLEMENTINE UNSUPERVISED MODELS ..................43 
A. OVERVIEW OF THE PROCESS ...........................43 



  viii

B. SOURCE DATA: THE NO2 POPULATION DATABASE ..........43 
C. DATA PRE-PROCESSING: THE BASIC FILTER & TYPE 

SUPERNODE .........................................44 
D. K-MEANS MODELING:  KMEANS_UNSUP_POP_GWR.STR .......46 

1.  Methodology ...................................46 
2.  All Fields:  AB10 Models ......................49 
3.  Numeric Fields Only:  AB20 Models .............51 
4.  Numeric Fields Only (Principal Components 

Analysis):  AB30 Models ......................52 
E. TWO STEP MODELING:  TWOSTEP_UNSUP_POP_GWR.STR .....53 
F. KOHONEN MODELING:  KOHONEN_UNSUP_POP_GWR.STR ......54 
G. MODEL ANALYSIS:  ANALYSIS_UNSUP_POP_GWR.STR .......57 

1. Overview .......................................57 
2. K-Means and Two Step Models ....................58 
3.  Kohonen Maps ..................................58 
4.  Implementation and Results ....................60 

VI. TREE CLUSTERING ....................................63 
A. OVERVIEW ..........................................63 
B. CLASSIFICATION TREES ..............................63 

1. Definition .....................................63 
2. Construction ...................................64 
3. Node Impurity and Deviance .....................65 

C. TREE CLUSTERING IMPLEMENTATION ....................66 
D. DEMONSTRATION OF THE TECHNIQUE ....................68 
E. APPLICATION TO VENDOR PAYMENT DATA ................70 

VII. CONCLUSIONS AND RECOMMENDATIONS ....................73 
A. SUPERVISED LEARNING VS. UNSUPERVISED LEARNING .....73 
B. RELATIVE COMPARISON OF K-MEANS, TWO STEP, AND 

KOHONEN CLEMENTINE MODELS .........................73 
C. RECOMMENDATIONS FOR INTERNAL REVIEW SEASIDE .......75 
D. TREE CLUSTERING WITH LARGE DATA SETS ..............76 

APPENDIX A. NO2 POPULATION DATABASE .........................77 
APPENDIX B. NO2 POPULATION UNSUPERVISED MODELING 

IMPLEMENTATION AND DETAILED RESULTS .............83 
1.  BASIC FILTER & TYPE SUPERNODE ......................83 
2.  KMEANS_UNSUP_POP_GWR MODELING STREAM ...............91 

a. Implementation .................................91 
b. Results ........................................99 

3.  TWOSTEP_UNSUP_POP_GWR MODELING STREAM .............103 
4.  KOHONEN_UNSUP_POP_GWR MODELING STREAM .............105 
5.  MODEL_ANALYSIS_POP_GWR ANALYSIS STREAM ............107 

a.  Implementation ...............................107 
b.  Results ......................................115 

APPENDIX C. SPREADSHEET TOOLS FOR UNSUPERVISED MODELING ....117 



  ix

1.  SUM OF SQUARES ....................................117 
2.  CLUSTER CORRESPONDENCE ANALYSIS TEMPLATE ..........117 

APPENDIX D. TREE CLUSTERING SPLUS IMPLEMENTATION ...........121 
1.  S-PLUS IRIS DATA ..................................121 
2.  S-PLUS IMPLEMENTATION .............................122 

a.  Function tree.clust() ........................122 
b.  Application to Iris Noise Data ...............125 
b.  Application to Vendor Payment Data ...........125 

APPENDIX E. PROPOSED STANDARD OPERATING PROCEDURES FOR 
UNSUPERVISED MODELING TO DETECT FRAUD IN VENDOR 
PAYMENTS .......................................127 

1.  PURPOSE AND OVERVIEW ..............................127 
2.  DATA PRE-PROCESSING ...............................128 

a.  Source Data and SPSS Analysis ................128 
b.  The Basic Filter & Type Supernode ............128 

3.  MODEL BUILDING AND SELECTION ......................130 
a.  K-Means Model Building .......................130 
b.  Two Step Model Building ......................139 
c.  Kohonen Model Building .......................139 

4.  MODEL ANALYSIS AND RESULTS ........................140 
LIST OF REFERENCES .........................................147 
INITIAL DISTRIBUTION LIST ..................................149 
 



  x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



  xi

LIST OF FIGURES 
 
 
Figure 1 Generated Data for Clustering by Partitioning 

Methods ...........................................19 
Figure 2 A Hierarchical Clustering Dendrogram of U.S. 

States from the S-PLUS [14] AGNES Clustering 
Algorithm .........................................21 

Figure 3 5x5 Kohonen Map of Generated Cluster Data .........24 
Figure 4 Evaluation of Optimum Number of Clusters ..........25 
Figure 5 K-Means Node Model Options Dialog Box Model Tab ...32 
Figure 6 K-Means Node Model Options Dialog Box Expert Tab 

(Default Values) ..................................33 
Figure 7 K-Means Generated Models Dialog Box Model Tab .....35 
Figure 8 Two Step Node Model Options Dialog Box Model Tab ..36 
Figure 9 Two Step Generated Models Dialog Box Model Tab ....37 
Figure 10 Kohonen Node Model Options Dialog Box Model Tab ...38 
Figure 11 Kohonen Node Model Options Dialog Box Expert Tab ..39 
Figure 12 Kohonen Generated Models Dialog Box Summary Tab ...40 
Figure 13 Basic Filter & Type Supernode .....................45 
Figure 14 Kmeans_unsup_pop_GWR Main Palette .................47 
Figure 15 Model Building Script .............................48 
Figure 16 K-Means Models Built With All Fields ..............50 
Figure 17 K-Means Numeric Only Models .......................52 
Figure 18 K-Means PCA Numeric Only Models ...................53 
Figure 19 TwoStep_unsup_pop_GWR Main Palette ................54 
Figure 20 Kohonen_unsup_GWR Main Palette ....................55 
Figure 21 5x5 Kohonen Map ...................................56 
Figure 22 10x11 Kohonen Map .................................56 
Figure 23 Analysis_unsup_pop_GWR Main Palette ...............57 
Figure 24 Classification Tree of the S-PLUS Iris Data .......64 
Figure 25 Classification Tree Illustrating Degrees of 

Dissimilarity .....................................67 
Figure 26 Comparison of Records Selected by Supervised and 

Unsupervised Models ...............................73 
Figure 27 SQL Node Dialog Box for NO2_STA_POP2000 Database ..81 
Figure 28 Basic Filter Node Dialog Box ......................83 
Figure 29 To String Filler Node Dialog Box ..................84 
Figure 30 Basic Type Node Dialog Box ........................85 
Figure 31 Distributions and Statistics Supernode ............86 
Figure 32 PMT_METH Distribution Node Dialog Box .............87 
Figure 33 PMT_METH Distribution Plot ........................87 
Figure 34 Numeric Statistics Node Dialog Box ................88 
Figure 35 Numeric Statistics Node Output ....................89 
Figure 36 ValSet Derive Node Dialog Box .....................90 
Figure 37 Contract Derive Node Dialog Box ...................91 



  xii

Figure 38 K-Means Model Node Dialog Box .....................92 
Figure 39 PCA Model Node Dialog Box .........................92 
Figure 40 AB10 Models Supernode .............................93 
Figure 41 ValSet Select Node (currently selects ValSet “B”) .94 
Figure 42 A/B Validation Models Supernode ...................94 
Figure 43 K-Means A30/B30 Matrix Dialog Box .................95 
Figure 44 Sum of Squares Supernode ..........................96 
Figure 45 _Square Derive Node Dialog Box ....................96 
Figure 46 Within-Cluster Sum of Squares Set Globals Dialog 

Box ...............................................97 
Figure 47 _Sum_Square Derive Node Dialog Box ................98 
Figure 48 Sum of Squares Aggregate Node Dialog Box ..........98 
Figure 49 K-Means06AB20 Generated Model Node, Summary Tab ..100 
Figure 50 K-Means06AB20 Generated Model Node, Model Tab ....101 
Figure 51 K-Means06AB50 Generated Model Node, Model Tab ....102 
Figure 52 K-Means06AB60 Generated Model Node, Model Tab ....102 
Figure 53 K-Means06AB70 Generated Model Node, Model Tab ....103 
Figure 54 TwoStep Model Node Dialog Box ....................104 
Figure 55 TwoStep07AutoAB20 Generated Models Dialog Box, 

Model Tab ........................................104 
Figure 56 Kohonen Model Node Dialog Box, Model Tab .........105 
Figure 57 Kohonen Model Node Dialog Box, Expert Tab ........106 
Figure 58 Kohonen Model Plot Dialog Box ....................106 
Figure 59 Kohonen Generated Model Dialog Box, Summary Tab ..107 
Figure 60 Sparse Prototypes Supernode ......................108 
Figure 61 Aggregate Node Settings ..........................108 
Figure 62 Table of Kohonen Prototypes Sorted in Descending 

Order by Number of Transactions ..................109 
Figure 63 KSOM_10 Derive Node Settings .....................110 
Figure 64 Contract Count Supernode .........................111 
Figure 65 Merge Node Dialog Box, Merge Tab .................111 
Figure 66 Merge Node Dialog Box, Filter Tab ................112 
Figure 67 Orphans Supernode ................................113 
Figure 68 Merge Node Filter Settings .......................113 
Figure 69 TS_Orphan Derive Node Settings ...................114 
Figure 70 Triple Orphans Select Node Settings ..............114 
Figure 71 Distribution of Orphan Transactions by K-Means 

Cluster ..........................................115 
Figure 72 Distribution of Orphan Transactions by Two Step 

Cluster ..........................................115 
Figure 73 Sum of Squares Spreadsheet Tool ..................117 
Figure 74 Cluster Correspondence Analysis Template Analysis 

Worksheet ........................................118 
Figure 75 Cluster Correspondence Analysis Template 6 

Clusters Worksheet ...............................119 
Figure 76 Basic Filter & Type Supernode ....................128 



  xiii

Figure 77 Distributions and Statistics Supernode ...........129 
Figure 78 Kmeans_NO2pop Stream .............................131 
Figure 79 ValSet Select Node ...............................132 
Figure 80 K-Means Model Building Script (Script Tab of the 

Stream Properties Dialog Box) ....................133 
Figure 81 Generated K-Means Models .........................133 
Figure 82 Sum of Squares Supernode .........................134 
Figure 83 _Square Derive Node Dialog Box ...................135 
Figure 84 Within-Cluster Sum of Squares Set Globals Dialog 

Box ..............................................135 
Figure 85 _Sum_Square Derive Node Dialog Box ...............136 
Figure 86 Sum of Squares Aggregate Node Dialog Box .........136 
Figure 87 Example of Sum of Squares Plot ...................137 
Figure 88 Matrix Node Settings Tab .........................138 
Figure 89 Kohonen Model Node Expert Tab ....................140 
Figure 90 Model_analysis_NO2pop ............................141 
Figure 91 Contract Count Supernode .........................142 
Figure 92 Merge Node Dialog Box, Merge Tab .................142 
Figure 93 Merge Node Dialog Box, Filter Tab ................143 
Figure 94 Orphans Supernode ................................144 
Figure 95 Merge Node Filter Settings .......................144 
Figure 96 TS_Orphan Derive Node Settings ...................145 
Figure 97 Triple Orphans Select Node Settings ..............146 
 
 
 
 
 
 
 



  xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



  xv

LIST OF TABLES 
 
 
Table 1 Binary Variable Contingency Table (from [12]) .....15 
Table 2 A/B Validation Contingency Table for Generated 

Cluster Data ......................................27 
Table 3 A/B Validation Contingency Table for Generated 

Cluster Data (Rearranged to Illustrate Cluster 
Mapping on Main Diagonal) .........................27 

Table 4 Example of r c×  Contingency Table..................28 
Table 5 Effect of Reordering Data on K-Means Models Built 

With Categorical Data .............................51 
Table 6 Sparse Prototype Transaction Counts ...............59 
Table 7 Orphan Transaction Distribution ...................61 
Table 8 Contingency Table for Tree Clustering Scaled Iris 

Noise Data ........................................69 
Table 9 Contingency Table for Clustering Scaled Iris 

Noise Data with PAM (Standardized Variables) ......70 
Table 10 Contingency Table for Tree Clustering Knowledge 

Base ..............................................71 
Table 11 Comparison of Unsupervised Model Types ............74 
Table 12 Modified Fields To Use Matrix (on four pages) .....77 
Table 13 PCA Factor Analysis Component Matrix ..............99 
Table 14 A/B Validation Matrix for K-Means06AB20 ..........101 
Table 15 Cross-Tabulation of Cluster Assignment, K-

Means06AB20 vs. K-Means06AB50 Models .............102 
Table 16 Cross-Tabulation of Cluster Assignment, K-

Means06AB60 vs. K-Means06AB70 Models .............103 
Table 17 A/B Validation Matrix for TwoStep07AutoAB20 ......105 
Table 18 Example of Original Iris Data ....................121 
Table 19 Example of Scaled Iris Data With Noise Variables .121 
 



  xvi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



  xvii

ACKNOWLEDGEMENTS 
 

This thesis would not have been possible without the 

support and assistance of many people.  It is impossible to 

thank everyone who has contributed, but I would like to 

recognize the contributions of those who helped the most. 

LTC Chris Nelson, Dave Riney, and Randy Faulkner from 

Internal Review Seaside provided indispensable assistance 

in everything from teaching me the basics of fraud 

detection and data mining to helping me learn to use 

Clementine effectively.  Thanks also to all the other 

personnel at IR Seaside for their unfailing courtesy and 

assistance. 

Professor Sam Buttrey is the local guru of S-PLUS and 

has been a great source of guidance in my journey into the 

world of unsupervised modeling.  His patience and help with 

the Tree Clustering concept and execution were admirable. 

Professor Robert Koyak suggested using Cramer’s 

Coefficient as a tool for cluster model validation, a 

valuable piece of advice. 

Finally, my heartfelt and sincerest thanks to my 

beloved family, whose love, patience, and support are the 

foundation of all my endeavors.  

 

 
 



  xviii

 
 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK  
 



  xix

EXECUTIVE SUMMARY 
 

The Defense Finance and Accounting Service (DFAS) 

Internal Review Seaside (IR Seaside) office, also known as 

Operation Mongoose, is responsible for identifying 

potentially fraudulent transactions in vendor payment data.  

Their primary tool is data mining of vendor payment data to 

identify candidate transactions for manual audit by DFAS 

accountants.  The current procedure relies heavily on 

supervised methods such as Classification and Regression 

Trees and Neural Networks, which predict the fraud 

classification of transactions in an audit population.  

These supervised models are “trained” using a Knowledge 

Base of transactions from 17 proven fraud cases.  

Unfortunately, this data is outdated and incomplete, so 

supervised models built with the Knowledge Base may not 

effectively exploit all the characteristics of audit 

population data.   

Unsupervised modeling, or cluster analysis, is a data 

mining technique that finds patterns or groupings in data 

without the need for a response variable (such as fraud 

classification).  Unsupervised models are specific to a 

particular data set, and independent of any external data 

for model construction.  The current unsupervised modeling 

process is neither rigorous nor standardized.  Of the total 

number of transactions selected for manual audit, 

supervised modeling is used to identify 80%, unsupervised 

modeling accounts for 10%, and the remaining 10% are 

selected at random.  Supervised and unsupervised models are 

trained using SPSS, Inc.’s data mining software Clementine, 

Version 7.0. 



  xx

The intent of this thesis is to develop a 

standardized, rigorous unsupervised modeling methodology 

that utilizes all available valid transaction data and 

analyzes audit population transactions independent of the 

Knowledge Base.  Clementine’s K-Means, Two Step, and 

Kohonen algorithms are used to construct unsupervised 

models of audit population payment data, and then cluster 

validation techniques are applied to select the most useful 

model of each type.  Finally, these three models are 

combined to select candidate records for physical 

examination by a DFAS auditor.   

The selection of candidate records for audit is based 

on the assumption that all the transactions belonging to 

the same contract are somehow similar, and should be 

grouped together.  After clustering the data, any 

transaction that does not fall within the “home” cluster of 

its parent contract is considered an “orphan.”  

Transactions that are identified as orphans under all three 

clustering schemes are selected for audit. 

This methodology is not intended to replace the 

current system of supervised modeling; rather it should be 

considered complementary.  It is desirable to identify 

different candidate transactions with each of the two 

methods, producing a more robust collection of transactions 

for manual audit.   

This improved methodology was developed using a 

previously audited population of vendor payment 

transactions from the US Navy STARS system in Norfolk, VA.  

A total of 155 transactions (out of over 198,000) were 

identified as orphans by all three of the unsupervised 
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models.  The previously conducted supervised modeling 

effort identified 243 potentially fraudulent transactions 

in the Norfolk data; there were only two transactions 

selected by both methods, illustrating the independence and 

complementary nature of the two techniques. 

Deliverables to IR Seaside include the Clementine 

files used to develop the methodology, a Proposed Standard 

Operating Procedure for Unsupervised Modeling, two 

spreadsheet tools for cluster validation, and a two-hour 

training presentation for all Operation Mongoose personnel. 

This thesis additionally demonstrates a new clustering 

approach called Tree Clustering, which uses Classification 

and Regression Trees to cluster data with automatic 

variable selection and scaling.  This technique is 

successfully demonstrated on a small set of simple data 

using Insightful Corporation’s SPLUS statistics and data 

analysis software.  The technique is also applied to the 

DFAS Knowledge Base, with mixed results. 
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I. INTRODUCTION 

A. OPERATION MONGOOSE AND VENDOR PAYMENT AUDITING 

The Defense Finance and Accounting Service (DFAS) is 

responsible for disbursing nearly all the funds expended by 

the Department of Defense.  Given the enormous number of 

taxpayer dollars that are paid in the services’ Vendor 

Payment systems, fraud is a major concern.  In the mid-

1990’s, the Office of the Secretary of Defense (OSD) 

sponsored a project to uncover fraudulent vendor payment 

transactions called “Operation Mongoose.”  This project was 

subsequently undertaken by the DFAS Internal Review section 

in Seaside, CA (IR Seaside).  To identify fraudulent 

payments, a DFAS examiner reviews the documentation on 

hundreds of vendor payments, selected out of the hundreds 

of thousands of total transactions.  An effective and 

efficient selection process is critical:  auditing is very 

time-consuming, there are a limited number of examiners, 

and fraudulent payments are very rare in proportion to the 

total number of transactions.  Data mining was selected as 

the principal tool to select candidate records for audit.   

IR Seaside contracted Dr. Dean Abbott of Abbott 

Consulting, Inc., to develop its data mining methodology.  

Dr. Abbott et al. devised a data mining process [6] using 

the popular data mining software Clementine [4]. Their 

procedure combines a Knowledge Base (KB) of known 

(successfully prosecuted) fraud transactions and samples of 

transactions from the population being examined (presumably 

not fraudulent) to “train” various classification tree, 

rule-based, and neural network models to detect fraudulent 
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payments.  This technique is called “supervised modeling.”  

The supervised models are evaluated, compared, and combined 

in a weighted voting scheme, which results in the selection 

of candidate records for audit (transactions that the 

models predict are likely to be fraudulent).  Under the 

current DFAS system, the majority of transactions (80%) 

selected for manual audit come from the combined supervised 

model (or are related to those selected), with the 

remainder selected randomly (10%) or through unsupervised 

modeling (10%).   

Since March 2000, the IR Seaside team has conducted 

audits at thirteen vendor payment system sites using the 

methodology described above.  Although many of the payments 

audited after having been selected by data mining have one 

or more Conditions Needing Improvement (CNI; some 

deficiency or error which might indicate potential fraud), 

there has only been one case discovered with evidence of 

fraud strong enough to warrant prosecution.   

The Knowledge Base (KB) of fraudulent transactions 

that is used to “train” the supervised models used in the 

current data mining process is small and outdated.  There 

are many data fields in the populations to be investigated 

that are not populated in the KB, and thus are not used in 

the current supervised modeling process.  These fields 

contain information which if included could presumably 

enhance the detection of fraudulent payments.  Although Dr. 

Abbott et al. used unsupervised learning (cluster analysis) 

in their initial classification of the fraud transactions 

in the KB, the unsupervised modeling conducted in the 

current data mining process is neither rigorous nor 
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standardized.  Unsupervised learning should be used more 

extensively to exploit the many data fields that are not 

populated in the KB, which thus go unused in supervised 

modeling.  Exploration of this otherwise “wasted 

information” could potentially enhance the detection of 

data patterns that might indicate fraudulent activity.  

 

B. A NEW CLUSTERING METHODOLOGY WITH AUTOMATIC VARIABLE 
SELECTION AND SCALING  

When finding clusters in data, the choice of variables 

included for modeling can have an impact on the results.  

There may be one or more fields whose values are unrelated 

to anything of interest, whose inclusion as variables for 

modeling might produce incorrect or misleading results.  A 

useful clustering methodology must be able to detect and 

eliminate such “noise” variables. 

Another challenge when clustering data with continuous 

variables is the choice of scale.  Different scale choices 

can produce wildly different, and possibly misleading, 

clustering results.  Thus, an effective means of scaling is 

desirable for a clustering methodology, as discussed in 

[12]. 

Buttrey has proposed a new method called “Tree 

Clustering” in [2].  This technique uses a set of 

regression or classification trees (one for each original 

variable) to find similarities among observations 

(observations which tend to fall into the same leaves being 

similar).  This approach automatically selects the most 

important variables for clustering and is scale-
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independent.  The Tree Clustering method is described in 

detail in Chapter VI. 

 

C. PURPOSE AND SCOPE OF THE THESIS  

The purpose of this thesis is twofold:  first, to 

develop a useful, rigorous, standardized cluster analysis 

methodology for IR Seaside using the Clementine data mining 

software; second, to demonstrate the tree clustering 

methodology on vendor payment data. 

This thesis will be limited in scope to analyzing DoD 

vendor payment data using unsupervised modeling (cluster 

analysis).  It will not address any issues involving 

supervised modeling other than to point out shortcomings of 

the current procedures.  The specific data used to develop 

the unsupervised modeling methodology is the 

NO2_STA_POP_2000 database of US Navy STARS transactions 

conducted in Norfolk, VA, from October 2000 to March 2002. 

 

D. OVERVIEW OF THESIS 

This thesis is organized into four general areas:  

background information, implementation and results, 

conclusions and recommendations, and appendices.  

Chapters II, III, and IV contain the background 

information from which the methodology is developed.  

Chapter II describes the current state of classification 

and detection of fraud in vendor pay transactions, the 

Knowledge Base and supervised modeling, and potential 

improvements available with unsupervised modeling.  Chapter 

III is a primer on the basics of unsupervised learning, 
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including data types, modeling methods, and validation 

methods.  Chapter IV presents an introduction to the 

Clementine Data Mining software’s basic terminology, 

functions, and unsupervised model types. 

Chapter V presents the implementation and results of 

unsupervised modeling on the Norfolk vendor pay data.  Each 

of the four Clementine streams is discussed in detail, as 

well as the final clustering results.  Chapter VI contains 

a thorough discussion of the Tree Clustering methodology’s 

theory, implementation, and results. 

Chapter VII presents the conclusions drawn from 

analysis of the results obtained from Clementine 

unsupervised modeling and application of the Tree 

Clustering algorithm.  Appendix A displays a detailed 

description of the four Clementine streams discussed in 

Chapter V, as well as supporting results.  Appendix B is a 

proposed Standard Operating Procedure (SOP) for 

Unsupervised Modeling for Operation Mongoose.  Appendix C 

contains the code for S-PLUS implementation of the Tree 

Clustering methodology.    
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II. CLASSIFICATION AND DETECTION OF FRAUD 

A. CLASSIFYING FRAUD 

 Dr. Dean Abbott et al. extensively examined the 

Knowledge Base of historical fraud cases and consulted at 

length with the accounting experts in DFAS to develop a 

classification scheme for vendor pay fraud.  This process 

is exhaustively detailed in Abbott’s Final Report [6].  The 

end result was four classes of fraud:  Big Systematic, 

Small Systematic, Piggyback, and Opportunistic. 

 Big Systematic and Small Systematic fraud are 

characterized by a long-term process of well planned 

actions designed to defraud the government.  The primary 

difference is one of scale of money stolen.  Piggyback 

fraud occurs when the criminal “piggybacks” a fraudulent 

payment onto other, legitimate ones.  Finally, 

opportunistic fraud is just what it seems: a relatively 

small-scale theft of opportunity. 

 The class of fraud assigned to a transaction is used 

as the output or response variable in supervised modeling.  

When a vendor pay site’s population of transactions is used 

as training, testing, and validation data to build 

supervised models, each transaction is assigned the class 

of “NF” for “not fraud,” on the assumption that all 

transactions in the population are legitimate.  Thus the 

combined supervised models used by Operation Mongoose are 

designed to select potentially fraudulent payments based on 

the fraud class predicted by the model trained on the KB 

data. 
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B. THE KNOWLEDGE BASE 

Operation Mongoose’s Data Mining Knowledge Base (KB) 

is an historical repository of 17 successfully prosecuted 

fraud cases consisting of 442 total transactions, conducted 

from February 1989 to June 1997.  Each case is classified 

according to one of the four classes of fraud described in 

the previous paragraph.  Each transaction contains 59 

fields of original, transformed, and derived data.  The KB 

has several shortcomings, which brings into question its 

utility in predicting future fraud cases:  first, it is 

outdated; second, many of the fields found in the 

populations are not populated in the KB; and finally, there 

is missing data.   

The age of the KB is problematic for two reasons.  

First and foremost, all of the KB transactions were 

conducted before the advent of electronic payments, so the 

characteristics of these transactions can be expected to 

differ substantially from current EFT-type payments.  This 

contributes to the problem illustrated in the next 

paragraph as well.  Second, the fraudulent payments in the 

KB represent the “state of fraud” at the time.  It is not 

reasonable to presume that fraudulent practices have not 

evolved over time; presumably modern fraudsters would use 

different methods from their predecessors. 

The problem of unpopulated fields in the KB relative 

to the populations being examined relates to the age of the 

Knowledge Base, the evolution of data collection practices, 

and the different types of vendor pay accounting systems in 

use today.  As mentioned in the previous paragraph, one of 

the most significant deficiencies of the KB is the lack of 
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any electronic payment information.  Of course this is 

unavoidable given the age of the KB, but it greatly reduces 

the utility of models built using KB data to predict fraud 

in populations where electronic payments exist.  Besides 

EFT information, there are other data that is captured 

today whose capture was infeasible prior to the advent of 

modern computers and relational databases.  These types of 

fields are unpopulated in the KB, of course.  Finally, 

there are four different types of vendor payment systems in 

use in the DOD today, each of which has unique fields for 

data entry as well as more common ones.  These unique 

fields are not populated in the Knowledge Base. 

Of the 26,078 possible data entries in the KB, 596 of 

them are missing, primarily in two fields.  Monteiro in 

[13] conducted an analysis of the Knowledge Base and 

concluded that the pattern of missing values is nonrandom.  

This nonrandom pattern results in conditional dependence 

among the four fraud classes, increasing the likelihood of 

misclassification.  Combined with the fact that current 

business practices may differ among audit sites, it is 

possible that supervised models trained on the KB are 

predicting either the wrong type of fraud, or predicting 

something other than fraud altogether.  These concerns 

highlight the need to update, expand, and improve the KB 

for successful supervised modeling. 

 

C. DETECTING FRAUD WITH SUPERVISED LEARNING 

1. Current Procedures 

The current DFAS Standard Operating Procedure for Data 

Mining [7] is extensively detailed in its discussion of 
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supervised modeling.  The process begins with random 

division of the population into eight “splits,” each of 

which is further subdivided into training, testing, and 

validation sets.  Transactions from the KB are then 

assigned to each of the 24 sets in a sequential, orderly 

manner, resulting in eight sets of Training, Testing, and 

Validation data containing both known fraud cases and 

records from the population being examined.    

Next, several different modelers independently build a 

model (or set of models) on a different split or set of 

splits, using Clementine supervised models such as 

Classification & Regression Trees, C5.0 Decision Trees, and 

Neural Networks.  The “best” of these models (in terms of 

correctly predicting the fraud class of the KB transactions 

in their data splits) are combined in a complex weighted 

voting scheme, which iteratively produces a list of 

candidate records for further investigation.  These 

candidate records and all related records from the 

population are then selected for manual audit. [7] 

2. Shortcomings of Supervised Modeling 

The primary shortcoming of the supervised modeling 

methodology currently in place is its reliance on the 

outdated, incomplete, and potentially misclassified 

Knowledge Base, as detailed in Section B of this Chapter.  

Additionally, the supervised modelers at Operation Mongoose 

work very hard to create complex models and combinations of 

models that consistently “nail” all the KB transactions of 

a particular type, which is overfitting the data.   

Although the population data is randomly divided, the 

assignment of KB transactions to the data splits is 
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predetermined, not random, which brings into question the 

validity of the predictions made by the resulting models.  

Finally, the supervised models do not use many of the data 

fields that are available in the population because they 

are not populated in the KB. 

3. Potential Improvements With Unsupervised Modeling 

The primary potential improvement with unsupervised 

modeling is the ability to exploit all the data in the 

population without regard to the Knowledge Base.  

Additionally, an unsupervised model will reveal actual 

patterns in the population data, independent of the 

preconceived (and potentially incorrect) fraud 

classifications in the KB.  There are, of course, 

deficiencies and challenges associated with unsupervised 

learning; these are addressed in Chapter IV. 
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III.  UNSUPERVISED LEARNING 

A. DEFINITION 

Unsupervised learning, also known as cluster analysis 

or data segmentation, can be defined as the field of 

statistical modeling that does not predict the value of a 

response variable as a function of one or more factors.  

Rather, an unsupervised model is used to describe a data 

set in its entirety, grouping together similar observations 

into distinct clusters.  The “distance” between clusters 

depends on their degree of dissimilarity; observations that 

fall into two clusters that are “close together” are more 

similar to each other than observations from clusters that 

are “far apart.” 

Some measure of the similarity between observations 

must be calculated in order to find clusters in the data 

set.  Most clustering algorithms utilize a numeric matrix 

(called a similarity or dissimilarity matrix) to represent 

the distances between observations.  Thus any non-numeric 

variables must be coded numerically in terms of similarity 

or dissimilarity.  For consistency, I will discuss 

similarity between observations in terms of distance or 

dissimilarity. 

 

B. TYPES OF VARIABLES 

The measure of similarity between observations depends 

primarily on the type of data that makes up the 

observation.  I will consider only the three data types 

found in the vendor payment data:  interval-scaled, binary, 

and nominal variables, as well as mixed variables.  This 
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discussion of variable types and dissimilarity measures 

follows Kauffman and Rousseau in [12].  Note that there are 

other dissimilarity measures possible than those described 

in the following sections. 

1.   Interval-Scaled Variables 

An interval-scaled variable takes on negative or 

positive real values on a linear scale.  The most common 

measure of dissimilarity, or distance, for this data type 

is Euclidean distance.  For a pair of observations i  and j  

with p  interval-scaled variables per observation, denoted 

by 1,...i ipx x  and 1,...j jpx x  respectively, the distance 

(dissimilarity) is ( ) ( ) ( )2 2 2

1 1 2 2( , ) i j i j ip jpd i j x x x x x x= − + − + ⋅⋅⋅+ − . 

 

2.   Binary Variables 

A binary variable takes on only one of two values or 

states, such as one and zero, on and off, or true and 

false.  In data applications, binary variables are usually 

coded using one and zero.  There are two types of binary 

variables, symmetric and asymmetric.   

a.   Definition of Symmetric and Asymmetric 
Binary Variables 

A symmetric variable, the most common type, is 

one where each state is equally informative, and it does 

not matter which state is coded as a one.  For example, the 

variable “sex” has possible states “male” and “female.” It 

can be stated with confidence that two observations which 

are both “female” both have the same sex.   An asymmetric 

binary variable, however, possesses states that are not 

equally informative, such as the “presence or absence of a 
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relatively rare attribute.”[12]  The convention is to code 

the most important, or rarest, outcome, with a one.  For 

example, consider the variable “hair color” with states 

“red” and “not red.”  In this case, two observations with 

“hair color” of “not red” cannot reasonably be assumed to 

have the same color.  Asymmetric binary variables are not 

as common as symmetric binary variables. 

b. Measuring dissimilarity in binary variables 

Consider two observations i  and j , each 

consisting of p  binary variables.  The first step in 

calculating their dissimilarity is to consider a 2-by-2 

contingency table for them, such as shown in Table 1.  In 

this table, a  is the number of data elements (binary 

variables) that equals one for both observations, b  and c 

represent the number of variables that are different 

between the two observations, and d  is the number of data 

elements that equals zero for both observations.  The sum 

a b c d+ + +  equals the total number of variables, p .  The 

case where both observations have ones ( a  in Table 1) is 

also called a positive match, whereas observing two zeros 

( d  in Table 1) is likewise called a negative match.  

 

 

 1 0  

1 a  b  a b+  

0 c d  c d+  

 a c+  b d+  p  

Table 1   Binary Variable Contingency Table (from [12]) 

observation j  
 

observation i  
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The distinction between the two kinds of binary 

variables is important when considering the dissimilarity 

measure to be used for clustering in a particular 

application.  When considering symmetric binary variables, 

positive and negative matches are equally important, so 

invariant dissimilarity coefficients, in which a  and d  

carry equal weight, are appropriate.  The most common 

invariant coefficient (which is also the simplest and most 

intuitive) is called the simple matching coefficient, and 

is also known as the M-coefficient or affinity index.  It 

is defined as the proportion of disagreements between the 

two observations i  and j : 

( , ) b cd i j
a b c d

+=
+ + +

.  

When considering an asymmetric binary variable, 

however, the most important (and rarest) outcome is 

typically coded as a one, so a positive match is more 

significant than a negative match.  Thus a noninvariant 

coefficient is required, one that gives more weight to a  

than d .  The most popular noninvariant coefficient, the 

Jaccard coefficient, looks remarkably similar to the simple 

matching coefficient except that d  is left out of the 

equation entirely:  

( , ) b cd i j
a b c

+=
+ +

. 

3. Nominal Variables 

A nominal variable is one that takes on one of a 

finite set of values, such as a field containing hair 

color, with possible values brown, blond, black, red, and 

other.  Generally speaking, these states or values are 
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coded as integers 1,2,3,..., ,M  where M  is of course the total 

number of possible values, and each integer corresponds to 

one of the actual values (brown = 1, blond = 2, etc.).  

These states are unordered, and each one is equally 

important, so the coding can be done in any order. 

Returning to the example of observations i  and j , we 

now consider each one to consist of p  nominal variables.  

The most common measure of dissimilarity between them is 

the simple matching approach: 

( , ) p ud i j
p
−= , 

where u  is the total number of matches (the number of 

variables out of p  that have the same value for both 

observations).  Because the coding of possible states is 

unordered, this dissimilarity measure is invariant. 

4.  Mixed Variable Types 

In the event that all of the variables in a data set 

are of the same type (interval scaled, binary, or nominal), 

a dissimilarity matrix can be constructed using the 

dissimilarity measures described in the previous three 

subsections.  However, in many real-world data sets, there 

are variables of more than one type.  Therefore, to cluster 

mixed variable type observations, some combined 

dissimilarity measure must be used.  

Kaufman and Rousseeuw in [12] describe a 

generalization of the method of Gower [9], which applies to 

all of the variable types previously discussed.  Consider a 

data set of n  observations each with p  variables of mixed 

types, with the following definitions: 
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¾ ifx  is the thf variable of observation i  

¾ ( )f
ijδ  is an indicator variable 

( )f
ijδ  = 1 if both ifx  and jfx  are nonmissing 

         =  0 if either ifx  or jfx  is missing or if 

variable f is an asymmetric binary variable and 
observations i  and j  constitute a 0-0 match 

¾ fR  is the range of an interval-scaled variable f  

¾ ( )f
ijd  is the contribution of the thf  variable to the 

dissimilarity between observations i  and j  

o for a binary or nominal variable f  

( )f
ijd  = 1 if if jfx x≠  

           = 0 otherwise  

o for an interval-scaled variable f  

( ) if jff
ij

f

x x
d

R
−

= ; ( )0 1f
ijd≤ ≤  

Note that Euclidean distance is not used in this case. 

Using the preceding definitions, the overall 

dissimilarity between observations i  and j  is defined as: 

  

( ) ( )

1

( )

1

( , )

p
f f

ij ij
f

p
f

ij
f

d
d i j

δ

δ

=

=

=
∑

∑
 

Because ( ) {0,1}f
ijδ ∈  and ( )0 1f

ijd≤ ≤ , 0 ( , ) 1d i j≤ ≤  and it can be 

entered directly into an n n×  dissimilarity matrix for use 

in a clustering algorithm. 

 

 

 



  19 

C. UNSUPERVISED LEARNING METHODS 

1. Partitioning 

A partitioning method groups a data set of n  

observations into k  distinct clusters.  This grouping must 

satisfy the requirements of a partition:  each group must 

contain at least one observation, and each observation must 

fall in exactly one group.    The user must specify the 

value of k  before commencing clustering.  A partitioning 

algorithm can construct any specified number of clusters, 

but not all such groupings will be natural or useful for 

the given data.  Therefore final selection of k  is 

dependent on trial and error, expert opinion, or other 

methods.  This problem is discussed more fully in section D 

of this chapter. Figure 1 shows a data set generated to 

illustrate partitioning clustering.  

Figure 1   Generated Data for Clustering by Partitioning 
Methods 
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A popular partitioning method for data clustering 

discussed in [12] is called K-Means.  This technique uses 

Euclidean distance between observations and cluster centers 

as its dissimilarity measure, so it is most applicable to 

interval-scaled data.  Some software (including Clementine) 

transforms categorical data for clustering by this method; 

see Chapter IV, Section B for a detailed discussion. 

The basic K-Means algorithm uses three steps to 

cluster data: 

1. During an initial pass through the data, k  initial 
cluster centers are selected. 

2. In the second pass, the Euclidean distance from each 
observation to the nearest center is calculated, and 
the observation is initially assigned to that cluster. 

3. During the third data pass, the cluster centers are 
updated based on the mean distance between all 
observations within it. 

Steps two and three are iterated until the decrease in 

mean distance achieved by changing the cluster assignment 

of any observation is below some specified threshold, or a 

specified maximum number of iterations is reached.  Each 

observation is ultimately assigned a cluster number label 

and (Euclidean) distance from its cluster center. 

2. Hierarchical Methods 

While a partitioning method seeks to create a 

predetermined number of groups of observations, 

hierarchical clustering results in every possible number of 

clusters from 1 (all observations in the same cluster) to n  

(one observation per cluster).  As the name implies, as k  

increases from 1 to n , clusters on each “level” of the 

hierarchy consist of subsets of the clusters on the level 

above (smaller k ).  For example, if k  increases from five 

to six, the sixth cluster is a subset of one of the other 
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five; conversely, if k  decreases from four to three, one of 

those three clusters will contain all the observations 

found in some pair of the original four clusters.  This 

type of clustering is best visualized as a dendrogram or 

tree (see Figure 2). 
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Figure 2 A Hierarchical Clustering Dendrogram of U.S. 
States from the S-PLUS [14] AGNES Clustering 

Algorithm 

 

There are two ways to conduct hierarchical clustering:  

top down (divisive), and bottom up (agglomerative).  A 

divisive clustering algorithm begins with k =1, with all n  

observations in one cluster.  The clustering consists of 

splitting the data into smaller and smaller groups based on 

some similarity (or dissimilarity) measure, until k = n .  An 

agglomerative clustering algorithm works the opposite way, 
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beginning with n  clusters containing one observation each, 

then repeatedly combining similar clusters until k =1.   

A clustering scheme with either k = n  or k =1 is not 

very useful in most cases, so the user must select the 

appropriate number of clusters by “pruning” the hierarchy 

to a meaningful size.  This has traditionally been 

considered a separate problem, distinct from clustering 

itself.  As will be shown later, Clementine’s Two Step 

hierarchical clustering algorithm automatically selects the 

appropriate number of clusters. 

 

3. Self-Organizing Maps 

A self-organizing map, or SOM, is described in [10] as 

“a constrained version of K-Means clustering.”  This method 

is closely related to principal curves and surfaces, and 

has the similar benefit of reducing high-dimensional data 

to one- or two-dimensional space for data visualization. 

Teuvo Kohonen, a Finnish mathematician, developed a 

popular algorithm to construct a SOM, fittingly called a 

Kohonen map.  A Kohonen SOM builds on a two-dimensional 

1 2q q×  grid lying in the principal component plane of the 

data.  There are 1 2K q q=  intersections in the grid, each one 

containing a “prototype” or representative observation, 

analogous to the initial cluster centers of a K-Means 

model.  Each intersection has a two-dimensional “address” 

( )1 2,Q Q , where 1 1{1,2,..., }Q q∈  and 2 2{1,2,..., }Q q∈ .  Each prototype 

jm  has an associated label 1 1jl Q Q∈ × , where {1,2,..., }j K∈ . 
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Taking for example n  observations with p  interval-

scaled variables, the basic Kohonen algorithm processes 

each observation ix  one at a time, and finds the closest 

(Euclidean distance in pℜ ) prototype jm .  For each 

prototype km  within the neighborhood of jm , km  is moved 

toward ix  by this update: 

( )k k i km m x mα← + − , 

where α  is a learning rate coefficient which decreases 

either linearly or exponentially at each step through the 

data.  A prototype km  lies in the neighborhood of jm  if 

j kl l r− < , where r  is a distance threshold which decreases on 

each iteration. 

 This process is repeated iteratively until 

predetermined stopping criteria are met, with α  and r  

decreasing on each iteration.  The result is displayed as a 

two-dimensional grid of prototypes and their associated 

observations, which can be interpreted as a mapping or 

folding of the original p -dimensional data space onto 2ℜ .  

Figure 3 illustrates how prototypes that are closer 

together tend to contain more similar observations.  

Furthermore, the “folding” of the data space means that 

each corner is also “close” to its opposite. 

 

 

 

 



  24 

 

Figure 3 5x5 Kohonen Map of Generated Cluster Data 

 

D. EVALUATION OF CLUSTERING RESULTS 

1. Optimum Number of Clusters for K-Means 

When applying a partitioning clustering algorithm such as 

K-Means, the number of desired clusters must be selected 

before clustering.  Because cluster analysis is typically 

used to describe natural groupings in a data set, it is 

valuable to be able to calculate the optimum or “true” 

number of clusters, denoted by *k .  Hastie et al. propose 

in [10] a method to approximate *k  by within-cluster 

dissimilarity kW  as a function of k .  kW  is a measure of 

within-cluster dissimilarity such as total sum of squares, 

total variance, or Root-Mean Squared Standard 

Deviation.[15]  As k  increases (the data is partitioned 

into more, smaller clusters), kW  will decrease (the 

clusters become more homogeneous).  Once the optimum number 
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of clusters is exceeded, this increase in homogeneity 

(decrease in kW ) will be less pronounced, because clusters 

of similar objects are being divided into smaller groups of 

very similar objects.  Thus, an approximation of *k  is the 

smallest value of k  where this “kink” or flattening of the 

curve exists.  Figure 4 shows this graph for the generated 

data in five distinct clusters, and *k  = 5 is quite readily 

apparent. 

 

Figure 4   Evaluation of Optimum Number of Clusters 

 

2. Cluster Validation 

When building a supervised model, such as a 

classification tree, it is standard practice to validate 

the trained and tested model on a subset of the data that 

has not been previously “seen” by the model.  There are 

different measures of performance for these models, such as 

misclassification rate, etc.  In the unsupervised case, 

however, the true clustering arrangement of the data is 
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typically unknown, so there is no response variable with 

which to compare cluster membership for validation.  How, 

then, does one evaluate clustering results?  This question 

is particularly difficult in high-dimensional space, where 

visualization is not possible. 

The most obvious (but least rigorous) solution to the 

cluster validation problem, and one which is appropriate in 

many contexts, is “does it work?”  In other words, does the 

similarity among clustered objects make sense to an expert?  

While this is not a very objective measure of performance, 

it can be a good first step. 

Gordon describes a more rigorous method in [8].  The 

data set of interest is randomly divided into two sets, 

called A and B .  Set A is clustered using the model to be 

validated, and then the observations in B  are “mapped” to 

the clusters found in A.  Call this mapping 'B .  Set B  is 

then clustered by the same method used to cluster A, with 

the same number of clusters.  The final step is to compare 

the cluster membership of B  with 'B  to determine the “co-

clustering rate” of the model.  In a “perfect” model, each 

observation would have the same cluster membership in both 

B  and 'B .  This “co-clustering” is easily examined by 

forming a k x k contingency table for B  and 'B , as shown in 

Table 2.  Assuming the cluster labels are arbitrary, it is 

usually possible to rearrange the columns of this table so 

that the “best” cluster mapping lies along the main 

diagonal, as shown in Table 3.   
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  cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 
cluster-1 11 0 0 0 2 
cluster-2 0 17 0 0 0 
cluster-3 0 0 0 0 12 
cluster-4 0 0 10 0 0 
cluster-5 1 0 0 10 0 

Table 2   A/B Validation Contingency Table for Generated 
Cluster Data 

 
 
 

  cluster-1 cluster-2 cluster-5 cluster-3 cluster-4 
cluster-1 11 0 2 0 0 
cluster-2 0 17 0 0 0 
cluster-3 0 0 12 0 0 
cluster-4 0 0 0 10 0 
cluster-5 1 0 0 0 10 

 

Table 3   A/B Validation Contingency Table for Generated 
Cluster Data (Rearranged to Illustrate Cluster 

Mapping on Main Diagonal) 
 

In the case of perfect co-clustering, all of the off-

diagonal entries would be zero.  However, in any real 

clustering problem, the co-clustering will not be perfect.  

How then to analyze the “goodness” or validity of the 

chosen clustering model? 

Conover in [5] discusses various techniques to measure 

dependence and association between the rows and columns of 

an r c×  contingency table.  The co-clustering problem 

described above lends itself well to this, and Cramer’s 

Coefficient has been chosen as the measure of association 

for our analysis.  

 

 

 

 B clusters 

B’ clusters 

 B clusters 

B’ clusters 
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 j = 1 j = 2 … … j = c  
i = 1 O11 O12 … … O1c r1 
i = 2 O21 O22 … … … r2 

… … … … … … … 
… … … … … … rr-1 

i = r Or1 Or2 … … Orc rr 
 c1 c2 … cc-1 cc N 

 

Table 4 Example of r c×  Contingency Table 

 

  Cramer’s Coefficient is developed as follows, 

referring to Table 4:  given a contingency table with r 

rows and c columns, with row sums 1 2, ,..., rr r r  and column sums 

1 2, ,..., cc c c , the observed value of cell ( , )i j  is denoted ijO , and 

its estimated expected value (assuming independence of the 

rows and columns) is defined as i j
ij

rc
E

N
= .  The chi-square 

test statistic commonly used for testing the null 

hypothesis of independence in contingency tables, is 

defined as 
2

1 1

( )r c
ij ij

i j ij

O E
T

E= =

−
=∑∑ . 

Cramer’s Coefficient is the square root of the ratio 

of the observed value of T  to the maximum possible value of 

T  for a contingency table with the same number of 

observations and rows/columns, or 
( 1)
TCC

N q
=

−
.  N  is the 

number of observations, and q  is the minimum of r and c.  

For our purposes, either r  or c will do, as r c k= =  when 

comparing clustering results for A/B validation.  For the 

generated clustering data validation shown in Table 2, CC = 
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0.945.  This can be interpreted as a “94.5% clustering 

model,” which would be assumed to be “better” than, say, a 

75% clustering model. 

Cramer’s Coefficient has two properties that make it 

desirable as a comparative measure:  first, it is 

dimensionless and unit-scaled (0.0 1.0CC≤ ≤ ); and second, it 

is scale-invariant in ijO , ir  and jc . 
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IV. CLEMENTINE DATA MINING SOFTWARE 

A. OVERVIEW 

Clementine data mining software, produced by SPSS, 

Inc., is a robust tool that enables the user to quickly and 

easily determine relationships within large data sets 

through supervised and unsupervised modeling.  IR Seaside 

uses Version 7.0, which is more user-friendly and intuitive 

than previous editions.   

Clementine is used to analyze data by building what is 

called a data stream, or simply a stream, a sequence of 

operations that begins with a data source, flows through 

one or more nodes where the data is manipulated by field or 

record operations, and ultimately is used to build some 

sort of model.  Output can be to a file, plot, or table. 

Clementine uses three main data types, Sets, Flags, 

and Ranges, which are analogous to those discussed in 

Chapter III, Section A.  Set fields are analogous to 

nominal variables (numeric or non-numeric); Flag fields are 

binary variables (either 1-0 or some other coding scheme) 

and Range fields are interval scaled variables.  

 

B. UNSUPERVISED LEARNING MODEL TYPES 

1. K-Means 

The K-Means Node in Clementine produces a partition of 

the input data into k  clusters.  This type of model is 

intended for interval-scaled (Range type) data, but it will 

also accept categorical (Set and Flag type) variables by 

use of data transformations, discussed below.  Figure 5 

shows an example of a K-Means modeling dialog box, where 
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the user specifies k  as well as other parameters for model 

building.  Input fields may be selected at build time, or 

the model can use the Type Node settings, which are found 

upstream. 

 

 

Figure 5   K-Means Node Model Options Dialog Box Model Tab 

 

The “Expert” options available for building a K-Means 

model control the stopping criteria for the iterative 

cluster refinement process (number of iterations or change 

criteria) and encoding values for Set fields.  The default 

encoding value of 0.70711 is approximately equal to 0.5 , 

which properly weights the recoded Flag fields to produce a 

distance of 1.0 between observations with different values. 

Values closer to 1.0 weigh Sets more heavily than numeric 

fields.  Figure 6 shows an example of the Expert Tab. 
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Figure 6   K-Means Node Model Options Dialog Box Expert Tab 
(Default Values) 

 

K-Means executes a “quick cluster” algorithm that 

clusters numeric data very quickly and efficiently.  The 

algorithm makes three passes through the data.  In the 

first pass, initial cluster centers are selected.  The 

second pass updates the initial cluster centers, and the 

final pass reassigns cases to the nearest cluster.  

Euclidean distance is used to determine “closeness.” 

Binary (Flag type) variables are coded as 0 and 1, and 

their values are treated as continuous by the algorithm.  

This leads to some shortcomings, which are enumerated in 

the following section. 

K-Means handles nominal (Set type) variables by 

recoding them into 1-0 Flag variables and treating them as 

described in the preceding paragraph.  The transformation 

is undertaken by creating one dummy Flag field for each 
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possible value of the original Set field.  For example, 

suppose a Set field “PMT_TYPE” has possible values of A, B, 

and C.  K-Means creates three dummy Flag fields, 

PMT_TYPE_A, PMT_TYPE_B, and PMT_TYPE_C. Thus a record with 

PMT_TYPE of A would have PMT_TYPE_A = 1, PMT_TYPE_B = 0, 

and PMT_TYPE_C = 0. 

When a K-Means Node is executed, the result is a 

“nugget” that represents the model.  This model can be 

browsed to examine the number of clusters, number of 

records placed into each cluster, inter-cluster 

proximities, input fields, model build settings, and model 

training summary information.  When data is clustered by 

the generated model, two new fields are created for each 

record:  $KM-<model name>, the cluster assignment label, 

and $KMD-<model name>, the distance from each record to its 

cluster center.  For example, a model named KMeans01 will 

have resulting fields $KM-KMeans01 and $KMD-KMeans01.  

Figure 7 is an example of browsing a K-Means model nugget, 

showing the cluster results of this particular model. 
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Figure 7   K-Means Generated Models Dialog Box Model Tab 

 

2.  Two Step 

The Two Step Node in Clementine produces a 

hierarchical clustering of the data set.  The user can 

either specify the number of clusters or allow the Two Step 

algorithm to automatically determine the appropriate 

number.  There are no Expert options per se, but there are 

options to standardize numeric fields and exclude outliers.  

Figure 8 shows an example of the Two Step model building 

dialog box. 
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Figure 8   Two Step Node Model Options Dialog Box Model Tab 

 

Two Step uses a log-likelihood function as a distance 

measure, and agglomeratively produces hierarchical clusters 

out of “dense regions” of records.  The two steps implied 

by the name of the algorithm are pre-clustering and cluster 

membership assignment.  Each step entails one pass through 

the data.  The pre-clustering step consists of sequential 

examination of the data records, determination of dense 

regions, and tabulation of cluster features.  After 

completion of the first data pass, the appropriate number 

of clusters (if not user-selected) is determined by finding 

the minimum Bayesian Information Criterion (BIC) value 

measured at each merge in the pre-clustering step, and 

refining it based on the ratio change in distance between 

the two merging clusters.  The clustering step comprises a 

second pass through the data, during which each data record 
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is assigned membership in the cluster that is closest in 

terms of the log-likelihood distance measure. A more 

detailed discussion of the Two Step algorithm is available 

in [3]. 

Executing a Two Step node results in a browsable 

nugget.  Browsing the model, as shown in Figure 9, reveals 

the same type of information as described in the preceding 

paragraph for a K-Means model.  When clustering data with 

the generated Two Step model, a cluster label is assigned 

to each record in the form $T-<model name>.  Because the 

distance measure for Two Step is based on a likelihood 

function, no distance field is generated. 

 

 

Figure 9   Two Step Generated Models Dialog Box Model Tab 

 

3. Kohonen 

The Kohonen node in Clementine essentially uses 

Kohonen’s algorithm as described in Chapter III to produce 

a two-dimensional mapping of the data set.  The only 

difference is that Clementine’s algorithm does the mapping 
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in two phases.  The first phase comprises rough estimation 

to capture gross patterns in the data; the second phase 

refines the mapping to finer detail.  Figure 10 shows the 

“Simple” model options available, which essentially control 

stopping criteria and reproducibility.   

 

 

Figure 10   Kohonen Node Model Options Dialog Box Model Tab 

 

The Expert options, shown in Figure 11, give the user 

much more control over the details of the Kohonen mapping.  

They allow selection of the map’s dimensions and the 

learning parameters discussed in Chapter III.  The 

“neighborhood” parameter corresponds to the radius 

parameter r ; “eta” represents the learning rate parameter 

α ; and the “number of cycles” is the stopping criteria for 

the iterative process. 
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Figure 11   Kohonen Node Model Options Dialog Box Expert Tab 

 

Unlike the K-Means and Two Step Generated Model Dialog 

Box, browsing the Kohonen nugget does not reveal much 

useful information other than the dimensions of the 

mapping.  Because a Kohonen model is a type of neural 

network, there is a strong element of the “black box” to 

its function.  This kinship with neural nets is also 

evident in the number of input and output neurons shown 

under “Analysis” on the Summary Tab shown in Figure 12. 
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Figure 12   Kohonen Generated Models Dialog Box Summary Tab 

 

As with K-Means and Two Step, a Kohonen model 

generates label fields for each record of a data set that 

is passed through it.  In this case the fields are $KX-

<model name> and $KY-<model name>, representing the (X,Y) 

coordinates of the prototype or node to which each record 

“belongs.” 

 

C. SHORTCOMINGS OF CLEMENTINE UNSUPERVISED MODELING 

Clementine’s data mining process is for the most part 

very user friendly and intuitive.  However, there are 

several caveats and issues that must be understood to 

successfully conduct unsupervised modeling. Most of these 

required the assistance of SPSS Technical Support to 

thoroughly resolve. 
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The following issues, if heeded and understood, will 

greatly expedite the unsupervised modeling process and 

lower the modeler’s average frustration level. 

1. Although K-Means provides a mechanism for 

clustering categorical data, SPSS experts recommend 

against it.  Their reason is that the clustering 

results obtained by using the K-Means algorithm on 

binary data tend to be arbitrary and are strongly 

dependent on the order of data presentation.  See 

Appendix B for an example of this phenomenon. 

2. The Two Step algorithm requires complete data for 

model building.  If there are missing values in the 

data used to build a model, those records will be 

ignored.  Missing values in data which are 

clustered by an existing Two Step model may result 

in cluster label assignment of $null$. 

3. Kohonen modeling can be very memory- and time- 

intensive, particularly with large data sets.  

Changing any of the learning parameters may 

aggravate this problem to the point where the time 

required to build a large Kohonen map is excessive. 

4. K-Means models sometimes cannot be browsed unless 

all data fields are converted to String and then 

re-typed.  This is accomplished in the Basic Filter 

& Type Supernode discussed in Chapter V. 
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V. FINDING CLUSTERS IN NO2 VENDOR PAYMENT DATA 
USING CLEMENTINE UNSUPERVISED MODELS 

A. OVERVIEW OF THE PROCESS 

The unsupervised modeling procedure is divided into 

three parts:  first, data pre-processing to select the data 

used for modeling; second, developing cluster models for 

the data set using each of the three types of Clementine 

unsupervised modeling nodes; finally, combining and 

comparing clustering output to select candidate records for 

examination.  The next six subsections describe this 

process from database access through analysis.  Detailed 

screen shots and other documentation can be found in 

Appendices A and B. 

 

B. SOURCE DATA: THE NO2 POPULATION DATABASE 

The source data for development of the improved 

methodology is the Microsoft Access database table called 

NO2_STA_POP2000/Population. The data is introduced into 

each stream using an SQL node to select the pre-established 

Open Database Connectivity (ODBC) connection.  Appendix A 

shows the modified Operation Mongoose “Fields to Use” 

matrix for the NO2 data, which lists each field, its 

description, and the status of the field (not used, model 

input, or analysis only). 

The population data being clustered is organized by 

contracts.  Each unique combination of the fields PIIN 

(Procurement Identification Number) and DEL_ORD (Delivery 

Order) comprises a unique contract.  The “null hypothesis” 

for clustering these transactions is that all the 
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transactions from a particular contract will fall into the 

same cluster, and that transactions (and contracts) falling 

into the same cluster are similar.  The ultimate objective 

of this process is to identify the “orphan” transactions 

(ones that don’t fall into the “home cluster” for their 

parent contract) for further inspection by an auditor.  A 

similar notion applies to Kohonen models, and is discussed 

in section F of this chapter. 

 

C. DATA PRE-PROCESSING: THE BASIC FILTER & TYPE SUPERNODE 

The intent of applying unsupervised modeling to vendor 

pay is to use as much of the data as possible, but certain 

fields have incomplete and/or unusable data that will not 

contribute to successful clustering, and must be excluded.  

The Basic Filter & Type Supernode, shown in Figure 13, pre-

processes the data in order to avoid data-related problems 

with model building, and generates two new fields to be 

used for analysis.  Screen Shots showing the details of 

each node’s configuration are found in Appendix B. 
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Figure 13   Basic Filter & Type Supernode 

 

The Basic Filter Node removes the fields marked “N” in 

the modified “Fields to Use” matrix shown in Appendix A.  

In general these are fields that are never used for 

modeling.  The To String Filler node converts each field to 

a String, then the Basic Type Node re-types each field to 

the appropriate Type.  This step is necessary to ensure the 

browsability of generated models, as mentioned in Chapter 

IV, Section C.   

The remaining fields are examined using the Quality 

Node and the Distributions and Statistics Supernode.  These 

two steps identify “problem” fields, denoted by an “B” in 

Appendix A, that are filtered from the stream by the Filter 

Bad Fields Node; for example, Flag or Set fields that have 

only one value and all fields with less than 50% valid 
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entries.  The two fields PMT_METH and PMT_TYPE have the 

value $null$ for four records.  Because they exceed the 50% 

quality threshold, they are dealt with by replacing $null$ 

with “Blank” in the PMT_METH and PMT_TYPE filler nodes.   

The ValSet Derive Node creates a validation set label 

field based on the field RNDM_NUM, which is used to 

separate the data set into two random partitions for 

cluster validation.  The Contract Derive Node creates a 

single field concatenating the fields PIIN and DEL_ORD for 

ease in finding and manipulating records belonging to a 

unique contract. 

Several fields are either not always appropriate as 

model inputs but have utility for model comparison and 

analysis, or are only used as model inputs in certain 

cases.  These fields, marked “A” in Appendix A, are not 

completely filtered from the data stream, but rather their 

“Direction” is set to “none” in the Final Type Node.  The 

Final Filter Node removes the remaining unusable fields 

(marked “F” in Appendix A) identified by the Distributions 

and Statistics Node or preliminary modeling efforts. 

The end result “out” of this Supernode is 63 fields 

set as modeling inputs, of all three field types Range, 

Set, and Flag.  There are also 14 other fields available 

for modeling or analysis downstream whose default direction 

is “none” in the final Type Node. 

 

D. K-MEANS MODELING:  KMEANS_UNSUP_POP_GWR.STR 

1.  Methodology 

As described in Chapter III, Sections C and D, a 

“good” K-Means cluster model can be selected by evaluating 
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cluster dissimilarity as a function of number of clusters 

to find the optimum value of k, and then validated using 

the A/B random partitioning and cluster correspondence 

technique.  The stream Kmeans_unsup_pop_GWR, shown in 

Figure 14, is used to generate K-Means models and output 

necessary to evaluate them.  Screen shots with details of 

each node are found in Appendix B.  

 

 

Figure 14   Kmeans_unsup_pop_GWR Main Palette 

As described earlier in this chapter, the source data 

is brought in from the database, pre-processed in the Basic 

Filter & Type Supernode, then typed using the Standard Type 

Node.  The Numeric Type Node selects only “Range” type 

fields for modeling the numeric-only models. 
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The first step in the model building and validation 

process is to build K-Means clustering models for all 

desired values of k.  This is accomplished by a K-Means 

Node with Simple (default) settings, producing cluster 

membership label $KM-<Model Name> and distance field $KMD-

<Model Name> for each record.  The K-Means models are named 

in the format K-meanskkVVnn, where kk is the number of 

clusters (01, 02,…) ; VV is the validation set (A or B; AB 

denotes the entire data set); and nn is the model series 

(10 is all fields, 20 is numeric fields, 30 is numeric 

fields Principal Component Analysis).  For example, K-

Means05AB20 is a five-cluster model of the entire data set 

using only the numeric fields. 

Construction of these models can be extremely tedious, 

as each one takes on the order of 2 to 5 minutes to build, 

and typically the modeler is interested in values of k from 

1 to 10, 15, or even 20.  This stream incorporates a 

Clementine script, shown in Figure 15, to automate the 

process.  In each case the KMeans modeling node is used to 

generate the model. 

 

Figure 15   Model Building Script 
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After all the desired models are constructed, the 

“optimum” value of k must be determined to select the 

“best” model.  The method described in Chapter III is used, 

which involves examining a plot of the total sum of squares 

of the distance field for each model vs. k.  The first 

(lowest value of k) “kink” or flat spot in the curve 

indicates the “optimum” value of k.  The total sum of 

squares is derived in the Sum of Squares Supernode, 

detailed in Appendix B.  The spreadsheet tool “Sum of 

Squares,” described in Appendix C, is used to produce the 

Sum of Squares vs. Number of Clusters plot. 

Once the “best” model in terms of cluster homogeneity 

is chosen, it is validated by randomly partitioning the 

data set into two equal parts, validation sets A and B.  

Each set is then clustered with k = *k  (the “optimum” value 

of k determined previously).  Validation set B is then 

passed through the two models (K-Means06A20 and K-

Means06B20, for example) and the clustering results are 

compared in a two-way contingency table.  Cramer’s 

Coefficient is then calculated, and the model’s validity 

can be evaluated and compared with that of other models.  

The spreadsheet tool “Cluster Correspondence Analysis 

Template,” described in Appendix C, is used to calculate 

Cramer’s Coefficient. 

2.  All Fields:  AB10 Models 

One of the objectives of this thesis is to utilize 

more of the data fields in population data sets than is 

possible in the supervised modeling process.  The majority 

of these fields are categorical, so it is not intuitive 

that they would be useful for the K-Means algorithm, which 
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was developed for numeric data.  However, Clementine’s K-

Means modeling node admits categorical variables (Sets and 

Flags) as inputs by way of transformation as described in 

Chapter IV.  The methodology described in the preceding 

paragraph, when applied to the data stream as it leaves the 

Basic Filter & Type Node, results in the graph shown in 

Figure 16.  Comparing this graph to the one shown in Figure 

4, it is obvious there is no “kink” in this curve, so it is 

impossible to determine the optimum number of clusters 

using this method with these results. 

 

Figure 16   K-Means Models Built With All Fields  

 

Furthermore, clustering models built with binary 

variables (Flag fields) tend to be arbitrary and are very 

sensitive to the ordering of the data.  Reordering numeric 

data also changes the clustering results, but not as 

dramatically.  Table 5 illustrates this difference; there 

is less similarity between the models built on the 
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categorical data than there is between those built on the 

numeric data.  The details of this comparison appear in 

Appendix B. 

 

 Cramer's Coefficient 

  
Numeric, 

Reordered   
Categorical, 
Reordered 

   Kmeans06AB50 Kmeans06AB70 

Numeric Kmeans06AB20 83.03% N/A 
Categorical Kmeans06AB60 N/A 72.12% 

Table 5 Effect of Reordering Data on K-Means Models Built 
With Categorical Data 

 
3.  Numeric Fields Only:  AB20 Models 

The most logical approach to K-Means clustering is to 

use numeric variables (Range Type fields) only.  The AB20 

series models include all the Range fields included with 

the AB10 models, as well as several others that are used in 

place of the Set fields derived from them.  Figure 17 

indicates the proper number of clusters is six, and 

Cramer’s Coefficient for this six-cluster model is 83.23%.  

Details of this model and calculation of Cramer’s 

Coefficient appear in Appendix B. 

This model, KMeans06AB20, is considered a “good” model 

and is included in the cluster analysis node as a tool to 

select interesting transaction records for further 

investigation. 
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Figure 17   K-Means Numeric Only Models 

 

4.  Numeric Fields Only (Principal Components 
Analysis):  AB30 Models 

In an effort to further reduce the dimensionality of 

the dataset, Principal Components Analysis (PCA) was 

applied to the numeric fields, and the K-Means clustering 

process was then conducted on the resulting PCA-transformed 

data, resulting in the graph shown in Figure 18.  Note that 

there are several “kinks,” but the first one is at k=4.  

This model, KMeans04AB30, has a Cramer’s Coefficient of 

82.38%.  Because it is not obvious that this is the correct 

number of clusters (there are also “kinks” at k=6 and k=9), 

and furthermore because the PCA transformation reduces the 

information available for clustering, this model was not 

selected as a tool for further analysis.  Details of the 

PCA process and this cluster model appear in Appendix B. 

Within-Cluster Sum of Squares vs. Number of Clusters
AB20 Numeric Models, Entire Data Set

2000

3000

4000

5000

6000

7000
8000

9000

10000

11000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clusters

Su
m

 o
f S

qu
ar

es



  53 

 

Figure 18   K-Means PCA Numeric Only Models 

 

E. TWO STEP MODELING:  TWOSTEP_UNSUP_POP_GWR.STR 

Building a Two Step cluster model is not nearly as 

involved as for K-Means, because the “right” number of 

clusters is automatically selected by Clementine.  The only 

real decision that needs to be made is the choice of input 

fields, which is already determined in the Basic Filter & 

Type Supernode.  Figure 19 shows the stream palette.  For 

Two Step models, the 20 series denotes the second iteration 

of modeling, rather than numeric only data.  
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Figure 19   TwoStep_unsup_pop_GWR Main Palette 

 

The model generated by the TwoStep node contained 

seven clusters, and is named TwoStep07AutoAB20.  Its 

Cramer’s Coefficient is 91.96%.  For the sake of 

comparison, a six-cluster model, TwoStep06AB20, was also 

constructed; its Cramer’s Coefficient is 90.83%.  This 

indicates that when all the fields are included, the 

appropriate number of clusters is seven.  The seven-cluster 

Two Step model is included as a tool for cluster analysis 

and selection of interesting records.  Details of this 

stream, the model, and calculation of Cramer’s Coefficient 

appear in Appendix B. 

 

F. KOHONEN MODELING:  KOHONEN_UNSUP_POP_GWR.STR 

 Building a Kohonen Self-Organizing Map is very 

straightforward compared to the K-Means modeling process 

described earlier.  Figure 20 shows the Kohonen modeling 

stream, and details of the Kohonen node settings are given 

in Appendix B.   
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Figure 20   Kohonen_unsup_GWR Main Palette 

 

Due to computer difficulties at Operation Mongoose, 

the only Kohonen models that were generated are a 5x5 map 

and a 10x11 map, shown in Figure 21 and Figure 22, 

respectively. 

Interpretation of Kohonen mapping results is 

straightforward, as suggested by Abbott in [7].  

Considering the fields $KX-KSOM10x11AB02 and $KY-

KSOM10x11AB02 as “X” and “Y”, one selects the records that 

are mapped to the “sparse” prototypes, such as the line 

along Y = 1 for X = 5, 6, 7, 8, 9, by generating a Select 

node for those values of X and Y.  These records can then 

be evaluated using the analysis stream discussed in the 

next paragraph. 
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Figure 21   5x5 Kohonen Map 

 

 

Figure 22   10x11 Kohonen Map 
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G. MODEL ANALYSIS:  ANALYSIS_UNSUP_POP_GWR.STR 

1. Overview 

This stream uses the three generated models 

(KMeans06AB20, TwoStepAuto07AB20, and KSOM10x11AB02) to 

“vote” for the records to be further analyzed by a DFAS 

auditor.  Figure 23 shows the main palette, whose output is 

a table listing the “interesting” transactions selected for 

further investigation by a DFAS auditor. The definition of 

an interesting transaction depends upon the type of 

clustering.  The next few paragraphs detail the selection 

of interesting transactions for the different types of 

models.   

 

 

Figure 23   Analysis_unsup_pop_GWR Main Palette 
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2. K-Means and Two Step Models 

For the K-Means and Two Step models, an interesting 

transaction is one that is an “orphan.”  An orphan is 

defined as a transaction that falls into a different 

cluster than the one containing 70% or more of the 

transactions belonging to its parent contract.  The 70% 

level for this comparison was chosen to simplify the 

identification of home clusters and limit the number of 

orphans to be examined.  For example, if 50% were the 

criteria for selecting home clusters, it is not obvious how 

to determine the home cluster of a contract whose 

transactions are evenly divided between two clusters. 

3.  Kohonen Maps 

There are two ways to approach the task of identifying 

interesting transactions using a Kohonen map.  The first is 

the one discussed in the previous section, selecting all 

the records assigned to the sparse prototypes of the map. 

Unfortunately the definition of sparse is completely 

subjective, so this selection can be arbitrary when done by 

“eyeballing” the Kohonen map.  Other criteria are possible, 

of course, such as selecting all records assigned to 

prototypes less than a certain size, or a certain number of 

prototypes containing the fewest records.  These are also 

arbitrary but less subjective than the “eyeball” method.  

Table 6 shows the results of this approach:  KSOM_10 

denotes the ten sparsest prototypes; KSOM_15 contains the 

fifteen sparsest ones; and KSOM<500 selects the 26 

prototypes with fewer than 500 records assigned to them.   
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Sparse Prototype 

Selections 

Number of 

Transactions 

KSOM_10 1254 

KSOM_15 2339 

KSOM<500 6175 

Table 6 Sparse Prototype Transaction Counts 

 

The second possible approach uses the concept of 

orphans, allowing the Kohonen model to vote for 

transactions based on the same criterion as the K-Means and 

Two Step models.  We identify the “home region” or group of 

prototypes for each contract, then proceed to find orphan 

transactions which do not fall into the same group of 

prototypes as the majority of the transactions for that 

particular contract.  It is appropriate to identify a home 

region rather than a home prototype for a Kohonen map 

because with the large number of groups of transactions, it 

is likely that some of the contracts with thousands of 

records will be more or less equally divided along a line 

of prototypes.  The mechanics of selecting orphan 

transactions is the same in this case as it was for the 

other two models: an orphan transaction is one assigned to 

a prototype containing less than a specified percentage of 

the transactions in the parent contract.   

It is difficult to pick a percentage criterion for 

selection of orphan transactions that works well for all 

contracts.  This was possible for the other two models 

because the maximum number of clusters occupied by 

transactions of any one contract was four.  For the Kohonen 
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model, however, there are over 1,300 contracts whose 

transactions are assigned to four or more prototypes, and 

the maximum number of prototypes occupied by one contract 

is fourteen.  The challenge is to select a percentage 

criterion that is small enough to ignore relatively large 

groups of transactions but still large enough to find 

orphans from contracts with a small number of transactions.  

As can be seen in Table 7, the choice of percentage 

criterion has an enormous impact on the number of records 

selected.  This is an area in which further research is 

required, ideally to tailor the selection percentage 

criterion to the number of transactions in a contract as 

well as the number of prototypes among which those 

transactions are divided. 

4.  Implementation and Results 

Each of the three clustering models selects its orphan 

transactions as described in the previous paragraphs, then 

the transactions selected by all three of the models are 

identified for further examination.  Table 7 shows the 

number of orphan transactions for each of the three models, 

as well as the number of common records selected by various 

combinations of models.  Note that three different 

percentage criteria for the Kohonen model, 30%, 20%, and 

10%, are examined.  The end result is that between 52 and 

229 transactions are identified for physical examination by 

a DFAS auditor.  Details of the orphan selection process 

and all the nodes shown in Figure 23 are given in Appendix 

B. 
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Model Name Number of Orphan Records 

KM 3494 

TS 3665 

Kohonen 30% 31,602 

Kohonen 20% 16,612 

Kohonen 10% 4299 

KM & TS 229 

Kohonen 30%, KM, & TS 155 

Kohonen 20%, KM, & TS 97 

Kohonen 10%, KM, & TS 52 

Table 7   Orphan Transaction Distribution 
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VI. TREE CLUSTERING 

A. OVERVIEW 

As proposed in [2] and described in Chapter I, Tree 

Clustering is a new unsupervised learning technique that 

exploits the properties of classification and regression 

trees to cluster data.  This method is independent of 

variable type and includes automatic variable selection, 

automatic data scaling, and automatic selection of the 

optimum number of data clusters.  This technique is 

implemented in S-PLUS by the function tree.clust(), 

detailed in Appendix B, which returns a dissimilarity 

matrix for further clustering by a conventional algorithm.   

 

B. CLASSIFICATION TREES 

1. Definition 

Classification Trees are non-parametric supervised 

procedures to explain and/or predict a categorical response 

based on one or more input variables.  The input variables 

can be categorical or numeric.  Figure 24 shows an example 

of a classification tree that illustrates the following 

discussion.  This tree is based on the S-PLUS Iris data, 

and it predicts the species (Setosa, Virginica, or 

Versicolor) of a flower based on its sepal length and width 

and petal length and width.    
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| Petal.L<2.45

Petal.W<1.75

Petal.L<4.95
Sepal.L<5.15

Petal.L<4.95

Setosa

Versicolor Versicolor Virginica
Virginica Virginica

 

Figure 24   Classification Tree of the S-PLUS Iris Data 

 

2. Construction 

A classification tree is a binary splitting structure 

of the input data, beginning with a node containing all the 

data, called the root.  The root is divided into two 

branches, each of which terminates in a node containing a 

subset of the data.  These two nodes can each be divided 

into two branches, and so on.  The terminal node of any 

branch is known as a leaf.  Each of these node divisions is 

made by choice of a splitting variable and criteria to 

maximize the reduction in “node impurity” (in terms of 

predicted response) for the split.  Theoretically (assuming 

each observation is unique), these divisions could continue 

until there are n  leaves, one for each observation in the 

data set.  In practice, however, excessive subdivision 

usually results in an overfit model.  Therefore a tree is 
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typically “pruned” using cross-validation to obtain a model 

with reasonable predictive power that is not overfit. [1] 

3. Node Impurity and Deviance 

The concept of node impurity is important, because it 

is the basis for selection of splitting variables at each 

node. Deviance is a common measure of impurity; the higher 

the deviance in a node, the less related the observations 

are in terms of predicted response, and the higher the 

impurity.  The following discussion from Holmes [11] is 

informative. 

For a given classification tree of n  observations 

having a response with K  levels, the probability 

distribution of the response classes at leaf i  is ikp , 

1,2,...,k K= .  For leaf i , the joint distribution of the number 

of observations of each of the K  levels is multinomial with 

probabilities ikp , 1,2,...,k K= .  The deviance at leaf i  is 

defined as ˆ2 log( )i ik ik
k

D n p= − ∑ , where ikn  is the observed number 

of observations in level k , and ˆ ikp  is the maximum 

likelihood estimate of ikp . The total deviance of the tree 

is equal to the sum of all the leaf deviances, i
i

D D=∑ . 

As mentioned in the previous subsection, a 

classification tree is typically pruned to achieve a 

balance between predictive power and complexity.  This 

pruning is usually accomplished by minimizing a complexity 

function such as ( ) ( )R R T size Tα α= + ⋅ , where ( )R T  is a risk 

function that penalizes a high level of misclassification 

rate, impurity or some other measure of effectiveness, 
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( )size T  is a measure of complexity such as number of leaves, 

and α  is a coefficient determining the weight given to the 

size function. 

C. TREE CLUSTERING IMPLEMENTATION 

In Tree Clustering, the similarity of a pair of 

observations is measured by the their tendency to fall in 

the same leaves of classification and regression trees.  A 

classification tree is a type of supervised learning, and 

requires a response variable for its construction; however, 

in the clustering problem there is no such thing.  Given n  

observations with p  variables each, the Tree Clustering 

method sequentially constructs p  trees, where the response 

variable of tree t  is tx  for {1,2,..., }t p∈ .  Each tree is 

“pruned” to its optimum size in terms of smallest cross-

validated deviance.  Each of the p  trees can be described 

by its size (number of terminal leaves) and deviance (that 

is, decrease in overall deviance from the root to the 

terminal level).  A tree with only one leaf (and thus zero 

deviance) suggests that its response variable contributes 

nothing to the similarity of observations.  Likewise, these 

variables will likely not be chosen as “splitting” 

variables in other trees.  Such a “noise” variable will be 

ignored entirely, which automatically limits selection 

variables to those with significant contribution to 

similarity. 

After the trees are built, the distance between any 

two observations is proportional to the number of trees for 

which both observations fall in the same leaf.  The label 

( )tL i  denotes the leaf in tree t  containing observation i .  A 
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simple dissimilarity measure ( , )d i j  between observations i  

and j  is  

1
( , )

p
ij
t

t
d i j d

=

=∑ , 

where ij
td  is an indicator variable such that ij

td  = 1 if 

( ) ( )t tL i L j≠ , and ij
td  = 0 if ( ) ( )t tL i L j= .   

This dissimilarity measure is rather naïve, as it 

takes no account of the different degrees of dissimilarity 

among leaves of each tree.  For example, two observations i  

and j  in different leaves split from the same parent are 

presumably “less different” than i  and k , which fall into 

leaves at different levels of the tree.  Figure 25 

illustrates this concept. 

 

 

 

 

 

 

 

Figure 25   Classification Tree Illustrating Degrees of 
Dissimilarity 

 

It is possible to overcome this shortcoming by 

implementing a more sophisticated dissimilarity measure.  

Using this measure, the distance between two observations 

in the same tree is the ratio of the change in deviance 

i j

k
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obtained by trimming the tree back to their parent node 

(the lowest node containing both observations) to the 

overall deviance of the tree.   For example, in the tree 

shown in Figure 25 the parent node of observations i  and j  

is only one level up, so the change in deviance resulting 

from trimming the tree back to that node is very small.  

Therefore the deviance ratio is small, indicating that 

observations i  and j  are “close.”  Considering observations 

i  and k , however, the tree would have to be trimmed all the 

way back to the root, and the change in deviance would be 

equal to the deviance of the whole tree.  This results in a 

deviance ratio of 1.0, indicating the two observations are 

very different.  The overall dissimilarity between the two 

observations is the sum of their distances over all of the 

trees.  This dissimilarity measure can be written as  

,

1 ,

( , )
ijp
s t

t s t

d i j
D=

∆
=∑ , 

where ,
ij
s t∆  is the change in deviance resulting from trimming 

tree t  back to the parent node s  containing observations i  

and j , and ,s tD  is the deviance at the parent node s .  The 

S-PLUS function tree.clust(), shown in Appendix C, 

calculates this distance for each (i,j) pair, then uses 

them to construct an S-PLUS object of type “dissimilarity” 

which can be used as an input to any of the S-PLUS 

clustering functions. 

 

D. DEMONSTRATION OF THE TECHNIQUE 

To demonstrate the variable selection capability of 

the Tree Clustering method, we add five “noise” variables 



  69 

to the S-PLUS Iris data set (detailed in Appendix C).  

Additionally, to demonstrate the method’s scale 

invariability, we multiply one of the original variables 

and one of the noise variables by ten, so they are one 

order of magnitude greater than the other variables.  After 

running treeclust() on the noisy data, the resulting 

dissimilarity matrix is passed to pam(), a partitioning 

function in S-PLUS, with k = 3 clusters specified.  Tree 

Clustering admits two of the noise variables and all of the 

original variables, and the PAM clustering results are as 

shown in Table 8, with Cramer’s Coefficient = 92.22%.   

 
 

Species Cluster 1 Cluster 2 Cluster 3 

Setosa 50 0 0 

Versicolor 3 47 0 

Virginica 2 3 45 

Table 8  Contingency Table for Tree Clustering Scaled 
Iris Noise Data 

 
 

To provide a standard for comparison, the scaled, 

noisy data was clustered using PAM with standardized 

variables.  PAM standardizes variables (columns) by 

subtracting the column mean and dividing by the column 

standard deviation.  These results are shown in Table 9, 

with Cramer’s Coefficient = 70.58%.  The tree clustering is 

clearly superior to the “straight” PAM clustering.  Details 

of these results appear in Appendix C. 
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Species Cluster 1 Cluster 2 Cluster 3 

Setosa 48 2 0 

Versicolor 0 17 33 

Virginica 0 7 43 

Table 9  Contingency Table for Clustering Scaled Iris 
Noise Data with PAM (Standardized Variables) 

 

E. APPLICATION TO VENDOR PAYMENT DATA 

To demonstrate the Tree Clustering method on a more 

complicated data set, we apply tree.clust() to the DFAS 

Knowledge Base.  Use of the Knowledge Base provides a four-

level response variable, FRAUD_TYPE, with which to evaluate 

the Tree Clustering results.  There are 442 records, each 

with 43 input fields, used for this application. 

Tree Clustering the Knowledge Base admitted all of the 

variables and resulted in the cluster assignments shown in 

Table 10, with Cramer’s Coefficient = 27.33%.  This 

clustering “score” is much lower than that obtained using 

the Iris data, probably because of a significant difference 

in the “true” classification of each data set.  

Specifically, while the classifications of the iris species 

is completely objective, the Knowledge Base transaction 

classifications are derived from (subjective) expert 

opinion of the type of fraud used to describe each 

transaction’s parent case.  Furthermore, the fraud experts 

originally proposed six classes of fraud, which were merged 
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into the four classes used today.  The seemingly poor 

results perhaps reflect these two issues. 

 

Fraud Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Big 

Systematic 

144 107 29 2 

Opportunistic 40 3 1 1 

Piggyback 9 2 20 0 

Small 

Systematic 

46 17 20 1 

Table 10   Contingency Table for Tree Clustering Knowledge 
Base 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. SUPERVISED LEARNING VS. UNSUPERVISED LEARNING 

One objective of using unsupervised modeling is to 

identify interesting transactions in the population payment 

data that might not be selected by the supervised modeling 

process.  This can be evaluated by using a Derive Node to 

generate a Flag Field called Sup_Selected, whose value is 

“T” for the records selected by the supervised modeling 

stream.  Likewise, a Derive Node is used to generate a Flag 

Field called Unsup_Selected for the records that are 

“triple orphans” in the unsupervised model analysis stream.  

Figure 26 clearly shows that the unsupervised methodology 

is selecting different records from the supervised process, 

as there are only two records selected by both. 

 

Figure 26   Comparison of Records Selected by Supervised and 
Unsupervised Models 

 

B. RELATIVE COMPARISON OF K-MEANS, TWO STEP, AND KOHONEN 
CLEMENTINE MODELS 

Each of the three generated models, KMeans06AB20, 

TwoStepAuto7AB20, and KSOM10x11AB02 were used to identify 
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orphan transactions in the payment data.  There are 

advantages and disadvantages to each type of modeling, 

summarized in Table 11. 

 

Model Type Advantages Disadvantages 

K-Means • Method exists to 
select number of 
clusters 

• Handles missing 
values fairly well 

• Models can be built 
fairly quickly 

• Limited to numeric 
data 

• Construction of 
models for Sum of 
Squares analysis is 
very tedious if not 
automated 

Two Step • Accepts categorical 
data 

• Only one model is 
required 

• Missing values not 
allowed 

• Sometimes assigns 
$null$ as cluster 
label 

Kohonen • Easy to interpret 
in terms of sparse 
nodes 

• Determination of 
orphan transactions 
can be difficult 

• Expert Settings 
require expert 
knowledge 

• Model building can be 
very time- and 
memory-intensive 

Table 11  Comparison of Unsupervised Model Types 
 

Using all three models to “vote” for candidate records 

for audit should capitalize on the strengths of each type 

of model while compensating for their weaknesses.  Another 

approach could be to limit the voting to the K-Means and 

Two Step models, because their structures are very similar, 

although the clustering results are different.  The Kohonen 



  75 

results can then be used to identify records assigned to 

the sparse prototypes, and either treat them separately or 

include them in the voting scheme. 

 
C. RECOMMENDATIONS FOR INTERNAL REVIEW SEASIDE 

Appendix E contains the Recommended Standard Operating 

Procedure (SOP) for Unsupervised Modeling, which is 

intended to supplement the existing Datamining SOP.  This 

SOP should be used together with the spreadsheet tools 

described in Appendix C to conduct unsupervised modeling 

with more rigor and success than is possible under the 

current process.  Applying this methodology should enhance 

IR Seaside’s ability to successfully identify records for 

audit that contain Conditions Needing Improvement or 

fraudulent payments.  

Supervised Modeling should continue to be a part of IR 

Seaside’s datamining toolbox.  The single largest 

impediment to improvement of this process and successful 

detection of fraud is the age and incompleteness of the 

Knowledge Base.  If at all possible, more current fraud 

cases should be obtained and used to update and expand the 

Knowledge Base.  If this is not achieved, the supervised 

modeling process and results will not improve. 

Finally, it is recommended to investigate the utility 

of modeling using the CNI database rather than the 

Knowledge Base as a model-training tool.  This is an area 

ripe for further graduate research that could maintain the 

strong relationship between IR Seaside and the Naval 

Postgraduate School Operations Research Department. 
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  D. TREE CLUSTERING WITH LARGE DATA SETS 

Although the results shown in Chapter VI, Section D 

are not “good” in the sense of clustering based on fraud 

classification, they do demonstrate the utility of the Tree 

Clustering methodology on a relatively large data set.  

Using this method on a very large data set (for example, 

the NO2 data used to develop the unsupervised modeling 

methodology), will be limited primarily by the ability of 

the S-PLUS clustering algorithms to handle very large 

dissimilarity matrices.  While the scalability of the 

tree.clust() function is theoretically unlimited, its 

performance is heavily dependent upon the size of the data 

set to be clustered, particularly in the number of 

observations. 

There are two primary performance factors in Tree 

Clustering a very large data set:  the number of trees 

constructed (a function of the number of variables, p), and 

the size of the dissimilarity matrix produced (a function 

of the number of observations, n).  Using “Big O” notation, 

and assuming n2 >> p, the function tree.clust() runs in 

O(n2) time, because the dissimilarity between each pair of 

observations must be calculated.  In the unusual case where 

p > n2, the function will run in O(np) time while building p 

trees with the n variables.  The storage required is also 

O(n2), because the dissimilarity matrix (actually 

implemented as a vector), must contain entries for each 

pair of observations. 

 



  77 

APPENDIX A. NO2 POPULATION DATABASE 

Table 12   Modified Fields To Use Matrix (on four pages) 

g:\home\abottdw\Clemlib\ProcessDocumentation\FieldsToUseNO2.xls       Sup&UnsupTypeNodeFieldInputs
rt&dc28may02

Field Name Transformation Description N
O

2 
U

ns
up

v

C
LE

M
 T

yp
e 

N
od

e 
Ty

pe

Comment
I = Not filtered in Basic Filter & Type Supernode.  These fields may be used as direct input for modeling or as a potential source for a Clementine derive node.
A = Not filtered in Basic Filter & Type Supernode.  These fields are used for analysis or record identification or as a potential source for a Clementine derive node, but not as a modeling input.
B = "Bad field" iltered in the Basic Filter & Type Supernode.  These fields are never used directly or indirectly for modeling input and are not used for analysis or record identification in the mo
N = Filtered in the Basic Filter & Type Supernode.  These fields are never used directly or indirectly for modeling input and are not used for analysis or record identification in the modeling pro

1 SUB_DT Submission Date N Set
2 SYS_ID System ID N Set
3 SITE_ID Submission Site ID N Set

144 FILE_SEQ File Sequence Number N Typeless
5 PIIN Procurement Identification Number A Typeless
6 DEL_ORD Delivery Order A Typeless

145 SYS_DCN System Document Control Number N Typeless
8 DOV_NUM Disbursing Office Voucher Number N Typeless

19 DOV_AMT Disbursing Office Voucher Amount N Real Rg
9 PMT_NUM Payment Number N Typeless

50 VOU_STAT Voucher Status B Set Unsupervised modeler may wish to use this set versus the vou_stat flags below.
13 CHK_DT Check Date I Typeless
15 DSSN Disbursing Station Symbol Number N Typeless
10 CHK_NUM Check Number N Typeless
12 CHK_AMT Check Amount I Real Rg
53 EFT_ACCT EFT Account Number N Typeless
54 EFT_RTN EFT Routing Number N Typeless
47 TIN Tax identification number N Typeless
55 DUNS_NUM Data Universal Numbering System N Typeless NAME CHANGED FROM 'DUNS'.  Not populated in the KB

CAGE_CD Contractor and Government Entity N Typeless NEW FIELD  Not populated in the KB
30 MAN_IND Manual Indicator N Set Use m_pymt flag
14 CHK_STAT Check Status N Typeless Are payment cdf records created when check status equals V?

CHK_CAN_DT Date Check Cancelled N Typeless NAME CHANGED FROM 'DTCKCAN'  Not populated in the KB
57 CHK_XREF Cross Reference Check Number N Typeless

INT_PD_AMT Interest Paid Amount N Real Rg NAME CHANGED FROM 'IP_AMT'   Not populated in the KB
46 TAX_AMT Tax Amount N Real Rg Not populated in the KB
16 DISC_AMT Discount Amount N Real Rg Use discount flag transformation.
18 LOST_AMT Lost Discount Amount N Real Rg Not populated in the KB.  Could be used to derive set range field.
17 LOST_CD Lost Discount Code N Set Not populated in the KB
34 PMT_METH Payment Method I Set Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the 

pmt_meth flags below.
35 PMT_TYPE Payment Type I Set Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the 

pmt_type flags below.
33 PMT_CAT Payment Category I Typeless Not fully populated in the KB
36 PMT_PROV Payment Provision I Set Not fully populated in the KB. Unsupervised modeler may wish to use this set versus the 

pmt_prov flags below.
PPA_XMPT Prompt Payment Act Exempt I Set NEW FIELD   Not populated in the KB

29 INV_AMT Invoice Amount I Real Rg
25 INV_DT Invoice Date I Typeless
26 INV_NUM Invoice Number N Typeless
27 INV_RCVD Invoice Receipt Date I Typeless

INV_ENTR_DT Invoice Entered Date N Typeless Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus 
INV_ENTR_DT. Not populated in the KB.

22 FRT_STAT Freight Status N Set Not populated in the KB
7 LINEITEM Line Item N Typeless Contract Line Item Number

FOB Freight on Board I Set Not populated in the KB
21 FRT_AMT Freight Amount N Real Rg Not populated in the KB

MDSE_ACC_DT Merchandise Acceptance Date N Typeless Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus 
INV_ENTR_DT. Not populated in the KB.

MDSE_DEL_DT Merchandise Delivery Date I Typeless Use to derive date differences, INV_DT minus INV_ENTR_DT or INV_RECVD minus 
INV_ENTR_DT. Not populated in the KB.

RMT_CD Remit Code N Typeless
RMT_NAME Remit Name N Typeless
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39 RMT_L1 Remit to Address Line 1 N Typeless
40 RMT_L2 Remit to Address Line 2 N Typeless
41 RMT_L3 Remit to Address Line 3 N Typeless
42 RMT_L4 Remit to Address Line 4 N Typeless Not populated in the KB
43 RMT_CITY Remit to City N Typeless
44 RMT_ST Remit to State N Typeless
45 RMT_ZIP Remit to Zip Code N Typeless

BCO_ID Base Contracting Office ID N Typeless Not populated in the KB
101 AWARD_DT Award Date N Typeless

CON_AMT Contract Amount N Real Rg Not populated in the KB.  Could be used to derive ranges in unsupervised modeling.
GS_IND Goods/Service Indicator I Set Not populated in the KB
NET_VND Net Vendor Days N Typeless Not populated in the KB
CON_STAT Contract Status I Set Not populated in the KB
CON_TYP Contract Type I Set Not populated in the KB
VND_NAME Vendor Name N Typeless Not populated in the KB
VND_ADR1 Vendor Address 1 N Typeless Not populated in the KB
VND_ADR2 Vendor Address 2 N Typeless Not populated in the KB
VND_ADR3 Vendor Address 3 N Typeless Not populated in the KB
VND_CITY Vendor City N Typeless Not populated in the KB
VND_ST Vendor State N Typeless Not populated in the KB
VND_ZIP Vendor Zip Code N Typeless Not populated in the KB
VND_TYP Domestic or Foreign Vendor I Typeless Not populated in the KB
VND_ID Vendor Identification Number N Typeless Not populated in the KB
VE1_CD Voucher Examiner Code 1 B Typeless Not populated in the KB
VE2_CD Voucher Examiner Code 2 B Typeless Not populated in the KB
VE3_CD Voucher Examiner Code 3 B Typeless Not populated in the KB
VE4_CD Voucher Examiner Code 4 B Typeless Not populated in the KB
VE5_CD Voucher Examiner Code 5 B Typeless Not populated in the KB
SYS_UNIQ System unique data not recorded N Typeless Never used as input, information only.
CDF_RMT_NAME CDF Remit Name N Typeless
CDF_RMT_L1 CDF Remit to Address Line 1 N Typeless
CDF_RMT_L2 CDF Remit to Address Line 2 N Typeless
CDF_RMT_L3 CDF Remit to Address Line 3 N Typeless
CDF_RMT_L4 CDF Remit to Address Line 4 N Typeless
CDF_RMT_CITY CDF Remit City N Typeless

CDF_RMT_ST CDF Remit State N Typeless

CDF_RMT_ZIP CDF Remit Zip Code N Typeless
PAYMENT Consolidates transaction into a single 

payment
N Typeless Field used to consolidate transactions into a single payment

74 TRANS_NUM Number of transactions associated with a  
single payment

N Real Rg

75 PAYEE Complete name of Payee N Typeless Never used as input!  Required for results calculations!  Leave in as Typless/None!
143 PAYEE13 First 13 Characters of Payee N Typeless

ADDRESS13 First 13 Characters of Address N Typeless
C_INV_NUM Cleaned Invoice Number N Typeless Modify clean invoice number to drop leading zeros.

88 AGGREG_PAYEE Total Dollar Amount Paid to a Specific 
Payee

N Real Rg Derive range sets or flags for modeling. May be able to use Real Range for NN modeling.

89 AGGREG_ADR Total Dollar Amount Paid to a Specific 
Address

N Real Rg Derive range sets or flags for modeling. May be able to use Real Range for NN modeling.

102 INV_AWARD_DT Number of days between invoice date 
and contract award date

N IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?  
Also, consider boosting in Real Range is used for input for C5 model.

103 INV_RECV_AWARD_DT Number of days between invoice 
received date and award date

N IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?  
Also, consider boosting in Real Range is used for input for C5 model.

104CHK_AWARD_DT Number of days between check date and 
award date

N IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?  
Also, consider boosting in Real Range is used for input for C5 model.

105 INV_RECV_INV_DT Number of days between invoice 
received date and invoice date

I IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?  
Also, consider boosting in Real Range is used for input for C5 model.

106CHK_INV_DT Number of days between check date and 
invoice date

I IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?  
Also, consider boosting in Real Range is used for input for C5 model.

107CHK_INV_RECV_DT Number of days between the check date 
and invoice received date

I IntegerR
g

Derive range sets or flags for modeling. May be able to use Real Range for NN modeling?  
Also, consider boosting in Real Range is used for input for C5 model.

60 INTEREST Was Interest Paid I Flag Caution: No occurrence in KB.
61 MILPAY Military Pay Appropriation I Flag Caution: Limited occurrence in KB.
62 DBOF DBOF Appropriation I Flag



  79 

 
 
 
 

63 BRAC BRAC Appropriation I Flag Caution: No occurrence in KB.
64 OTHERX X Year Appropriation other than BRAC, 

DBOF, UNUSUAL
I Flag

65 UNUSUAL Appropriation = 5188, 5189, 6875, 3880, 
3875 or 8164

B Flag Caution: Limited occurrence in KB.

66 ALLX All X year appropriations I Flag
67 Y1_PRIOR 1 year Expired Appropriation I Flag
68 Y1_CUR 1 Year current appropriation I Flag
69 Y2_PRIOR 2 Year Expired Appropriation I Flag Caution: Limited occurrence in KB.
70 Y2_CUR_1ST 2 Year Current Appropriation Paid 1st 

Year
I Flag Caution: Limited occurrence in KB.

71 Y2_CUR_2ND 2 Year Current Appropriation Paid 2nd 
Year

I Flag

72 Y3_PLUS 3 or more year appropriation I Flag
73 ALL_OTHER None of the above appropriations 

starting with MILPAY
I Flag Caution: Limited occurrence in KB.

76 CNT_CDF OBE N Flag Should never be used as input.
141 PAY_ORDER Some version of 'Pay to the Order' in the 

Remit to field
N Flag Change in business practice should have eliminated this flag.

138 ENHANCE_PAYEE Flag when Payee found in Remit_L1 field I Flag

77 ORDER_CDF Replace 'Pay to the Order' with Remit_L1 N Flag Should never be used as input.

79 STE Pymt made to suite address I Flag
80 LOCKBOX Payments to lockboxes B Flag Caution: No occurrence in KB.
81 POBOX Payments to PO box I Flag
82 INV_PAYEE Payee with different invoice number 

lengths
I Flag

83 INV_CNT Contract with different invoice number 
lengths 

I Flag

84 DOVAMT_2K DOV_AMT >= to 2000 I Flag
85 DOVAMT_1K DOV_AMT >= to 1000 I Flag
86 AVG_5K Average payment amount to payee is >= 

5K
I Flag

87 PAYEE_4_PYMT 4 or more payments to the same payee I Flag

90 MULTI_PAYEE Multiple payees to the same address N Flag Caution: Modeler should consider using derive node to combine with eft_payee. Ref: ?.nod

91 MULTI_ADR Muliple address to the same payee N Flag Caution: Modeler should consider using derive node to combine with eft_adr. Ref: ?.nod

92 INV_SEQ Invoices out of sequence to the same 
payee

I Flag

93 PMT_FREQ_HI Regular payments over a period of time I Flag

94 PMT_FREQ_LO Payments occuring in a short period to 
time

I Flag

95 TINS Tax identification number is present in 
record

I Flag Notes: 1) Not fully populated in KB.  2) When tins flag = "1", tin is null!!!

96 MULTI_TINS Multiple TINS for a Payee I Flag Not fully populated in KB.

97 MULTI_PAYTIN Multiple Payees to the same TIN I Flag Caution: No occurrence in KB.
148 MULTI_PAYEE_K Multiple Payees to the same contract I Flag
149 MULTI_ADDR_K Multiple Addresses to the same contract I Flag Modeler should consider using derive node to combine with multi_eft_k. Ref: ?.nod

150 MULTI_TINS_K Multiple TINS to the same contract I Flag Caution: Limited occurrence in KB.
151 MULTI_EFT_K Multiple EFT to the same contract I Flag Caution: No occurrence in KB. Modeler should consider using derive node to combine with 

multi_addr_k. Ref: ?.nod
98 DISCOUNT Was discount paid I Flag Caution: Limited occurrence in KB.  In NO2, 10,515.
99 M_PYMT Manual Payment I Flag

100 FEW_PYMT Flag companies that have <200 
payments in a year

I Flag

108 MISC_OBLIG Flag that looks for MORD or MOD in the 
PIIN

I Flag

109 EFT_PAYEE Muliple payees to same EFT N Flag Caution: No occurrence in KB. Modeler should consider using derive node to combine with 
multi_payee. Ref: ?.nod

110 EFT_ADR Multiple EFTs to a single Payee N Flag Caution: No occurrence in KB. Modeler should consider using derive node to combine with 
multi_adr. Ref: ?.nod

134 DUPPAY102 Duplicate Payment Indicator 102 - Logic: 
Same PIIN, Same SPIIN, Same Inv#, 
DOVAmt >=2000

N Flag Note Dup pays are sparsly populated in KB/Possible vendor fraud
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DP109 Duplicate Payment Indicator 109 - Logic: 
Same K,  Same Inv_Amt, Same 
Mdse del Dt Inv Amt>=2000

I Flag

DP111 Duplicate Payment Indicator 111 - Logic: 
Same K, Same Inv_Amt, Inv_Amt 
>=10000

I Flag

NOT_DFAR
PIIN/Del Ord does not comform to the 
DFAR I

Flag

140FRAUD_TYPE Knowledge Base: BigSys, SmallSys, 
Piggy, Opportunistic                                
Payment Population:  Assumed Not 
Fraud (NF)

N Set Never used as input.  Always out during model creation.

139SEQ_ID Record Sequence ID Number N IntegerRg
NUMADR_K Number of addresses (ADR_L1+CITY) to 

an individual contract (PIIN+DO).
I IntegerRg

NUMEFT_K Number of EFT addresses (ACCT+RTN) 
to an individual contract (PIIN+DO).

I IntegerRgNot populated in KB.  Modeler should consider derived field combined w/ NUMADR_K.

NUMADREE Number of addresses (ADR_L1+CITY) to 
a whole payee.

I IntegerRg

NUMEFTEE Number of EFT addresses (ACCT+RTN) 
to a whole payee. 

I IntegerRgNot populated in KB.  Modeler should consider derived field combined w/ NUMADREE.

NUM_EE_K Number of whole payees to an individual 
contract (PIIN+DO).

I IntegerRg

MDELAWDT Number of days between the K Award 
Date and the Merchandise Delivery Date.

N IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??  
Caution: Award Dt not always reliable.

MDELCKDT Number of days between the Check Date 
and the Merchandise Delivery Date.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

MDELINDT Number of days between the Invoice 
Date and the Merchandise Delivery Date.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

MDELIRDT Number of days between the Invoice 
Received Date and the Merchandise 
Delivery Date.

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

NUMKAWEE

Number of contracts (PIIN+DO) with the 
same award date to the same whole 
payee.

N IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??  
Caution: Award Dt not always reliable.

NUMCHEE Number of checks to the same whole 
payee on the same day. 

I IntegerRgSuggest future range set. Actual number may be appropriate in Neural Net models??

CASE Knowledge Base Case Name - TypelessNever used as input!  Required for results calculations!  Leave in as Typless/None!
RNDM_NUM Random number A TypelessCreated in population only not in Splits
M_INV_AWARD_RG Ranges of days between the invoice and I Set Caution: Award Dt not always reliable.
M_INV_RECV_AWARD_RG Ranges of days between the invoice 

received and award dates
I Set Caution: Award Dt not always reliable.

M_CHK_AWARD_RG Ranges of days between the check and I Set Caution: Award Dt not always reliable.
M_INV_RECV_INV_RG Ranges of days between the invoice 

received and invoice dates
I Set

M_CHK_INV_RG Ranges of days between the check and I Set
M_CHK_INV_RECV_RG Ranges of days between the cehck and 

invoice received dates
I Set

M_STE1_OR_BOX1 STE flag =1 or POBOX flag =1 or I Flag
M_DBOF1_OR_NDFAR1 DBOF flag = 1 OR NOT_DFAR flag = 1 I Flag
M_DBOF0_OR_NDFAR1 DBOF flag = 1 and NOT_DFAR flag = 0 I Flag
M_DBOF1_AND_NDFAR1 DBOF flag = 1 and NOT_DFAR flag = 1 I Flag
M_DBOF0_AND_NDFAR1 DBOF flag = 0 and NOT_DFAR flag = 1 I Flag
M_MADRK1_OR_MEFTK1 I Flag
M_MADR1_OR_EADR1 MULTI_ADR = 1 or EFT_ADR = 1 I Flag
M_AGG_ADR_RG Ranges of AGGREG_ADR amounts I Set
M_AGG_PAYEE_RG Ranges of AGGREG_PAYEE amounts I Set
M_DOVAMT_RG Ranges of DOV_AMT amounts I Set
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Figure 27   SQL Node Dialog Box for NO2_STA_POP2000 Database 
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APPENDIX B. NO2 POPULATION UNSUPERVISED MODELING 
IMPLEMENTATION AND DETAILED RESULTS 

1.  BASIC FILTER & TYPE SUPERNODE 

As described in Chapter V, this Supernode pre-

processes the data in preparation for clustering.   

 

Figure 28   Basic Filter Node Dialog Box 
 

Figure 28 is an example of a Filter Node dialog, where 

the modeler can remove or rename fields from the modeling 

stream.  The other Filter Node dialogs in this Supernode 

are very similar so are not shown. 
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Figure 29   To String Filler Node Dialog Box 

 

Figure 29 is an example of a Filler Node dialog.  This 

particular one converts all fields to String storage prior 

to the Basic Type Node to prevent modeling problems 

downstream.  The PMT_METH and PMT_TYPE Filler Nodes are 

similar, used to replace $null$ values with a new Set 

value, “Blank.”   
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Figure 30   Basic Type Node Dialog Box 

 

Figure 30 is an example of a Type Node, which 

specifies the variable storage, Type, and Values of each 

field, as well as the “Direction” of the field for 

modeling.  The four possible Direction settings are In 

(used as an input or independent variable for modeling), 

Out (used as an response or dependent variable for 

modeling), Both (input and response), and None (not used 

for modeling).  In this node all fields are initially set 

to “In.”  The Final Type Node sets the Direction of all 

fields marked “A” in Appendix A to “None.”  All other 

fields remain as “In.”  
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Figure 31   Distributions and Statistics Supernode 

 

The Distributions and Statistics Supernode creates 

plots of the distribution of categorical variables as shown 

in Figure 33.  This plot allows the modeler to determine 

the qualtity of categorical fields, which might contain all 

one value, for example, and thus be useless and inputs for 

modeling.  Figure 32 is an example of a Distribution Node 

Dialog Box.  All the other Distribution Nodes in this 

Supernode and their outputs are similar. 
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Figure 32   PMT_METH Distribution Node Dialog Box 

 

 

Figure 33   PMT_METH Distribution Plot 
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Figure 34   Numeric Statistics Node Dialog Box 

 

As another check on quality of numeric (Range Type) 

fields, the Numeric Statistics Node (shown in Figure 34) 

produces output as shown in Figure 35, showing the modeler 

various statistics and correlation information about all 

these fields. 
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Figure 35   Numeric Statistics Node Output 

 

The two Derive Nodes, shown in Figure 36 and Figure 

37, are used to add new fields to the data stream for model 
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analysis.  The ValSet Derive Node assigns Validation Set 

membership of A or B depending on the value of RNDM_NUM, a 

random number field generated in Access that comes from the 

database.  Its purpose is to allow the modeler to divide 

the data set into two equally-sized random subsets for A/B 

validation of K-Means and Two Step cluster models.  The 

Contract derive node creates a new field to identify 

specific contracts and enable analysis of clustering 

results with regard to contract distributions. 

 

 

Figure 36   ValSet Derive Node Dialog Box 
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Figure 37   Contract Derive Node Dialog Box 

 

2.  KMEANS_UNSUP_POP_GWR MODELING STREAM 

The purpose of this stream is to construct K-Means 

cluster models and produce output to be used to select the 

appropriate number of clusters and validate generated 

models. 

a. Implementation 

 All K-Means models are built using the K-Means Model 

Dialog Box, shown in Figure 38.  No Expert Options were 

selected.  Figure 39 shows the PCA Modeling Dialog Box, 
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which was used to create the Principal Components Analysis 

model for the AB30 series clustering.   

 

 
Figure 38   K-Means Model Node Dialog Box 

 

 
Figure 39   PCA Model Node Dialog Box 
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Figure 40 shows the end result of creating the 

multiple K-Means models required to evaluate the optimum 

number of clusters using the Sum of Squares method 

described in Chapter V.  The AB20 Models Supernode and the 

AB30 PCA Models Supernode are both similar to the one 

shown. 

 
Figure 40   AB10 Models Supernode 

 

Figure 41 illustrates the use of the field ValSet to 

select the validation subset which is used for modeling.  

Figure 42 shows how the data is passed through the two 

validation models built on validation sets A and B.  
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Figure 41   ValSet Select Node (currently selects ValSet 

“B”) 
 

 
Figure 42   A/B Validation Models Supernode 

 

Figure 43 is an example of a Matrix Node Dialog Box, 

which is used to generate cross-tabulation of cluster 

assignments for the A/B validation process. 
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Figure 43   K-Means A30/B30 Matrix Dialog Box 

 

The Sum of Squares Supernode (Figure 44) produces a 

table of within-cluster sum of squares of the distance 

fields for each model contained in one of the AB Models 

Supernodes.   

The _Square Node (Figure 45) creates a field 

containing the square of the distance field $KMD-<Model 

Name> for each record.  The Within-Cluster Sum of Squares 

Set Globals Node (Figure 46) sums these squared values for 

each model and creates Global fields for each value.  This 

is the desired result, and it would be possible to stop at 

this point.  However, the following sequence of nodes 

produces data in a format that is much easier to use in 

producing a Wk vs. k graph such as shown in Chapter V. 
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Figure 44   Sum of Squares Supernode 

 

 
Figure 45   _Square Derive Node Dialog Box 
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Figure 46    Within-Cluster Sum of Squares Set Globals 

Dialog Box 

 

The _Sum_Square Derive Node (Figure 47) creates 

another field and assigns it the Global value that was 

created by the Set Globals Node described above.  These 

sums of squares are then compiled by the Aggregate Node 

shown in Figure 48, and this aggregation is sent through a 

Type Node to the Table Node which produces useable output.  

This table can be copied and pasted into Excel for easy 

production of a graph of Within-Cluster Sum of Squares vs. 

Number of Clusters to be used to evaluate the proper number 

of clusters for a particular model. 
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Figure 47   _Sum_Square Derive Node Dialog Box 

 

 
Figure 48   Sum of Squares Aggregate Node Dialog Box 
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b. Results 

Table 13 shows the Principal Components extraction of 

the numeric data used for the AB30 series of cluster 

models. 

 
 

Component Matrix(a)  
Component  

1 2 3 4 5 
CHK_AMT -.169 -.170 .329 -.370 .710

INV_AMT -6.161E-
02

-8.265E-
02 .170 -.140 .535

INV_RECV_INV_DT .767 4.962E-02 -.299 -.211 .116
CHK_INV_DT .908 6.193E-02 -.346 -.158 .142

CHK_INV_RECV_DT .526 3.950E-02 -.191 1.189E-
02 8.816E-02

NUMADR_K -.101 .943 4.190E-
02

4.378E-
02 .171

NUMEFT_K -7.134E-
02 .534 1.287E-

02
1.214E-

02 3.304E-02

NUMADREE 9.603E-02 -.129 -.101 .823 .323
NUMEFTEE 8.529E-02 -.123 -.105 .797 .396

NUM_EE_K -.105 .951 3.900E-
02

3.949E-
02 .159

MDELCKDT .922 6.323E-02 .334 3.592E-
02 

-3.029E-
02

MDELINDT 4.129E-02 3.345E-03 .924 .262 -.233

MDELIRDT .755 4.946E-02 .540 3.544E-
02 

-9.825E-
02

NUMCHEE -6.120E-
02 -.186 .250 -.320 .458

Extraction Method: Principal Component Analysis.  
a 5 components extracted.  

Table 13   PCA Factor Analysis Component Matrix 
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The K-Means model selected for use in further analysis 

was K-Means06AB20, built with six clusters on the numeric 

fields only.  Figure 50 and Figure 49 show the input fields 

and cluster distribution, respectively, for this model.  

Table 14 shows the co-clustering matrix for the A and B 

validation models, resulting in Cramer’s Coefficient = 

83.23%. 

 

 

Figure 49   K-Means06AB20 Generated Model Node, Summary Tab 
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Figure 50  K-Means06AB20 Generated Model Node, Model Tab 

 

    K-Means06B20   
K-Means06A20   cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6 
 cluster-1 63558 0 0 0 0 11292
 cluster-2 957 1007 0 252 0 55
 cluster-3 0 268 0 0 0 0
 cluster-4 19 0 0 19166 0 1419
 cluster-5 0 0 0 0 283 0
 cluster-6 0 0 1032 0 0 0

Table 14   A/B Validation Matrix for K-Means06AB20 

 

The following sequence of figures and tables 

illustrates the effect of changing the order of data for a 

K-Means clustering model, comparing the results of using 

numeric fields only to using categorical fields only.  The 

model K-Means06AB50 was generated using numeric fields 

only, with the data sorted by RNDM_NUM.  Figure 51 shows 

the cluster distribution of this model, and Table 15 shows 

the cross-tabulation of cluster assignments, resulting in 

Cramer’s Coefficient = 83.03%.  Figure 52, Figure 53, and 
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Table 16 show the same process for categorical fields only, 

resulting in Cramer’s Coefficient = 72.12%. 

 

 
Figure 51   K-Means06AB50 Generated Model Node, Model Tab 

 
  cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6

cluster-1 126885 0 2136 38 0 0 
cluster-2 4 598 1890 3 0 0 
cluster-3 0 0 0 0 0 2043 
cluster-4 0 0 536 38293 0 0 
cluster-5 0 0 0 0 580 0 
cluster-6 22628 0 133 2849 0 0 

Table 15  Cross-Tabulation of Cluster Assignment, K-
Means06AB20 vs. K-Means06AB50 Models 

 

 
Figure 52   K-Means06AB60 Generated Model Node, Model Tab 
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Figure 53   K-Means06AB70 Generated Model Node, Model Tab 

 
  cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6

cluster-1 4 350 99 14147 6 31886 
cluster-2 5 15552 12746 24739 4407 337 
cluster-3 18404 31 9 32 0 0 
cluster-4 124 24273 2799 5156 0 1771 
cluster-5 1 224 112 5 272 23765 
cluster-6 6 71 65 692 16526 0 

Table 16   Cross-Tabulation of Cluster Assignment, K-
Means06AB60 vs. K-Means06AB70 Models 

 
3.  TWOSTEP_UNSUP_POP_GWR MODELING STREAM 

Figure 54 shows the dialog used to create the Two Step 

clustering model used for analysis.  Figure 55 shows the 

cluster distribution for the generated model, and  Table 17 

shows the co-clustering matrix for the A and B validation 

models, resulting in Cramer’s Coefficient = 91.96%. 
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Figure 54   TwoStep Model Node Dialog Box 

 

Figure 55   TwoStep07AutoAB20 Generated Models Dialog Box, 
Model Tab 

 

 



  105 

   TwoStep07B20     
TwoStep07A20 cluster-1 cluster-2 cluster-3 cluster-4 cluster-5 cluster-6 cluster-7

cluster-1 7477 33 0 0 0 0 0 
cluster-2 0 0 0 0 17 0 5022 
cluster-3 0 139 990 504 11080 0 99 
cluster-4 10 443 19686 1800 401 0 0 
cluster-5 0 10 34 16987 5044 0 2 
cluster-6 0 0 1 0 1 9058 0 
cluster-7 190 20157 54 0 69 0 0 

Table 17   A/B Validation Matrix for TwoStep07AutoAB20 
 
4.  KOHONEN_UNSUP_POP_GWR MODELING STREAM 

Figure 56 and Figure 57 show the Model Node settings 

used in building the KSOM10x11AB02 model used for analysis.  

The only Expert settings used were to adjust the dimensions 

of the Kohonen map.  Figure 58 is used to create the two-

dimensional plot of the Kohonen prototypes and record 

assignments for evaluation.  Figure 59 shows the input and 

output layers for the generated model. 

 

Figure 56   Kohonen Model Node Dialog Box, Model Tab 
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Figure 57   Kohonen Model Node Dialog Box, Expert Tab 

 

Figure 58   Kohonen Model Plot Dialog Box 
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Figure 59   Kohonen Generated Model Dialog Box, Summary Tab 
5.  MODEL_ANALYSIS_POP_GWR ANALYSIS STREAM 

a.  Implementation 

The model analysis stream produces a table of 

transactions that have been identified as orphans in all 

three of the generated models.  There is also the option to 

identify sparse prototypes in the Kohonen map, accomplished 

by the Sparse Prototypes Supernode (Figure 60).  Figure 61 

shows the aggregation on Kohonen prototype fields, which 

after sorting produces a table showing each prototype and 

the number of records it contains (Figure 62 is an 

example).  This table is used to identify the sparse 

prototypes. 
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Figure 60   Sparse Prototypes Supernode 

 

Figure 61   Aggregate Node Settings 
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Figure 62   Table of Kohonen Prototypes Sorted in Descending 
Order by Number of Transactions 

 

After selection of the appropriate metric for 

determining a sparse prototype, a Derive Node can be 

generated from the generated table.  An example is shown in 

Figure 63, which identifies records belonging to one of the 

ten sparsest nodes.  The other two Derive Nodes in the 

Supernode perform the same function. 
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Figure 63   KSOM_10 Derive Node Settings 

 

The Contract Count Supernode (Figure 64) produces a 

field containing the number of transactions in the contract 

to which each record belongs, which is essential to 

identifying orphan transactions.  
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Figure 64   Contract Count Supernode 

 

The data is first aggregated by contract, and then the 

Merge Node (Figure 65 and Figure 66) creates a new field 

with the number of contracts for each transaction. 

 

Figure 65   Merge Node Dialog Box, Merge Tab 
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Figure 66   Merge Node Dialog Box, Filter Tab 

 

The Orphans Supernode (Figure 67) accomplishes the 

important task of creating fields identifying records as 

orphans for one or more of the generated models.  For each 

type of model, Two Step, K-Means, and Kohonen, the data is 

first merged on contract and cluster number (prototype 

number in the Kohonen case), then merged back to create a 

field identifying the number of transactions in each 

cluster from each contract.  Figure 68 shows an example 

Merge Node Filter Tab, with the new field TS_Cluster_Count.  

The other two merge nodes are very similar and produce the 

new fields KM_Cluster_Count and KSOM_Prototype_Count. 
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Figure 67   Orphans Supernode 

 

 

Figure 68   Merge Node Filter Settings 

 

The three Derive Nodes create new Flag fields to 

identify orphan transactions.  Figure 69 shows an example 

for the Two Step orphans; the other two derive nodes are 

very similar. 
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Figure 69   TS_Orphan Derive Node Settings 

 

The final step in this stream is to select the 

“multiple orphans,” which is accomplished by the Triple 

Orphans Select Node (Figure 70).  A table of these records 

is then produced that identifies transactions for audit. 

 

Figure 70   Triple Orphans Select Node Settings 
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b.  Results 

In addition to identifying the transactions that are 

“triple orphans,” analysis of the distribution of orphan 

transactions by cluster can give some insight into the 

structure of the data.  The orphan distribution by cluster 

for the K-Means and Two Step models are shown in Figure 71 

and Figure 72 respectively. 

 

Figure 71   Distribution of Orphan Transactions by K-Means 
Cluster 

 

 

Figure 72   Distribution of Orphan Transactions by Two Step 
Cluster 
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APPENDIX C. SPREADSHEET TOOLS FOR UNSUPERVISED 
MODELING 

1.  SUM OF SQUARES 

The spreadsheet tool shown in Figure 73 is used to 

construct the Sum of Squares vs. Number of Clusters plot 

for determination of the appropriate number of clusters for 

K-Means modeling.  It is self-explanatory and automatically 

produces the plot. 

 

Figure 73   Sum of Squares Spreadsheet Tool 

 

2.  CLUSTER CORRESPONDENCE ANALYSIS TEMPLATE 

The spreadsheet tool shown in Figure 74 and Figure 75 

is used to calculate Cramer’s Coefficient for selected 
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models.  It accepts models with up to ten clusters, and 

automatically calculates Cramer’s Coefficient and displays 

results for multiple models on the Analysis page.  It is 

self-explanatory, automatic, and easy to use. 

 

Figure 74   Cluster Correspondence Analysis Template 
Analysis Worksheet 
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Figure 75   Cluster Correspondence Analysis Template 6 
Clusters Worksheet 
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APPENDIX D. TREE CLUSTERING SPLUS IMPLEMENTATION 

1.  S-PLUS IRIS DATA 

The S-PLUS Iris data set consists of fifty samples 

each of three Iris species, Setosa, Versicolor, and 

Virginica, with measurements of sepal length and width and 

petal length and width.  A sample of this data is show in 

Table 18.  To evaluate the automatic variable selection 

capability of the Tree Clustering method, we add five 

random or “noise” variables, and multiply the values of 

Sepal Width and the first noise variable by ten, as shown 

in Table 19. 

  
 

    Species   Sepal.L Sepal.W Petal.L Petal.W 

1     Setosa     5.1     3.5     1.4     0.2 

2     Setosa     4.9     3.0     1.4     0.2 

3     Setosa     4.7     3.2     1.3     0.2 

… 

51 Versicolor    7.0     3.2     4.7     1.4 

52 Versicolor    6.4     3.2     4.5     1.5 

53 Versicolor    6.9     3.1     4.9     1.5 

… 

101  Virginica   6.3     3.3     6.0     2.5 

102  Virginica   5.8     2.7     5.1     1.9 

103  Virginica   7.1     3.0     5.9     2.1 

… 

Table 18  Example of Original Iris Data 
 
 

  Species  Sepal.L Sepal.W Petal.L Petal.W N1 N2  N3  N4  N5     

1  Setosa     5.1   35      1.4     0.2    64 4.8 6.8 5.5 5.4 

2  Setosa     4.9   30      1.4     0.2    49 4.9 5.9 4.9 6.0 

3  Setosa     4.7   32      1.3     0.2    72 4.9 4.3 5.5 6.3 

… 

Table 19  Example of Scaled Iris Data With Noise Variables 
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2.  S-PLUS IMPLEMENTATION 

a.  Function tree.clust() 

The following S-PLUS function takes as input a data 

frame with the observations as rows and the variables as 

columns, and returns a list containing a list of variables 

retained, the size and deviance of the tree for each of 

those variables, and a dissimilarity matrix suitable for 

clustering by any S-PLUS clustering algorithm.  The 

arguments are structured to allow flexibility in 

application and debugging of the function. 

 

> tree.clust 
function(df, fancy.dist = T, rank.y = F, verbose = F, debug = F) 
{ 
 if(!is.data.frame(df)) 
  stop("This function requires a data frame") 
 if(version$major < 6) 
  oldClass <- class 
 out <- as.data.frame(matrix(0, nrow(df), ncol(df))) # Deal with 
columns whose names have embedded spaces. They suck, by the way. 
# 
 dimnames(out) <- dimnames(df) 
 nm <- names(df) 
 first.space <- first.occurrence(nm, " ") 
 which <- first.space != nchar(nm) 
 if(any(which)) { 
  nm[which] <- substring(nm[which], 1, first.space[which] - 
1) 
  if(length(nm) != length(unique(nm))) 
   stop("Truncating embedded spaces in names leads to 
ambiguity. I give up.") 
  names(df)[which] <- nm[which] 
 } 
# 
# Handy function to convert "where" entries to leaf numbers 
# 
 leaf.numbers <- function(tree) 
 { 
  where <- tree$where 
  leaves <- as.numeric(dimnames(tree$frame)[[1]]) 
  leaves[where] 
 } 
# 
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 assign("df", df, frame = 1) 
 df.name <- deparse(substitute(df)) 
 results <- matrix(0, nrow = ncol(df), ncol = 2) 
 dimnames(results) <- list(dimnames(df)[[2]], c("Dev", "Size")) 
 big.list <- vector("list", ncol(df)) 
 if(fancy.dist) { 
  big.dist.mat <- matrix(0, nrow(df), nrow(df)) 
 } 
 for(i in 1:ncol(df)) { 
  if(verbose > 0) 
   cat("Creating tree with column", i, "\n") 
  if(rank.y) 
   str <- paste("tree (rank(", names(df)[i], ") ~ ., 
data = df)", sep = "") 
  else str <- paste("tree (", names(df)[i], " ~ ., data = 
df)", sep = "") 
  mytree <- eval(parse(text = str)) 
  if(oldClass(mytree) == "singlenode") 
   next 
  my.cv <- cv.tree(mytree, FUN = prune.tree) 
  my.size <- my.cv$size[my.cv$dev == min(my.cv$dev)][1] 
  if(my.size == 1) { 
   results[i, "Dev"] <- 0 
   results[i, "Size"] <- 1 
   next 
  } 
  mytree <- prune.tree(mytree, best = my.size) 
  big.list[[i]] <- mytree # 
# When "fancydist" is FALSE, we simply use the leaf identifier for each 
# observations. By our making it factor, daisy() will compute the 
distance 
# as a 0 or 1. When fancydist is TRUE, we compute the distance from 
each 
# observation to all the others in terms of... 
# 
  if(fancy.dist) { 
   leaves <- leaf.numbers(mytree) 
   node.numbers <- 
as.numeric(dimnames(mytree$frame)[[1]]) 
   non.leaves <- node.numbers[!is.element(node.numbers, 
leaves)] 
   if(length(non.leaves) == 1) { 
    dev.at.node <- mytree$frame["1", "dev"] 
    names(dev.at.node) <- "1" 
    subtree.dev <- deviance(mytree) 
    names(subtree.dev) <- "1" 
   } 
   else { 
    dev.at.node <- mytree$frame[mytree$frame$var != 
"<leaf>", "dev", drop = F] 
    nm <- dimnames(dev.at.node)[[1]] 
    dev.at.node <- as.vector(dev.at.node[, 1, drop 
= T]) 
    names(dev.at.node) <- nm 
    subtree.dev <- sapply(select.tree(mytree, 
non.leaves), deviance) 
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   } 
   u.leaves <- unique(leaves) 
   lul <- length(u.leaves) 
   dmat <- matrix(0, lul, lul) 
   dimnames(dmat) <- list(u.leaves, u.leaves) 
   for(u in 1:(lul - 1)) { 
    this <- u.leaves[u] # leaf number 
    ind <- leaves == this # logical 
    for(other in (u + 1):lul) { 
      that <- u.leaves[other] # leaf number 
      o.ind <- leaves == that 
      parent <- as.character(max(leaf.paths[this,  
][match(leaf.paths[that,  ], leaf.paths[this,  ], 0)])) # 
##cat("Distance between", this, " and ", that,  
## " is ", subtree.dev[parent],  
## ", since parent is", parent, "\n") 
      dmat[u, other] <- subtree.dev[parent] # 
# 
# Old egad:      egad <- try(big.dist.mat[o.ind, ind] <-  
#        big.dist.mat[o.ind, other] + subtree.dev[ 
#        parent]/subtree.dev["1"]) 
# 
      egad <- try(big.dist.mat[o.ind, ind] <- 
big.dist.mat[o.ind, other] + 1 - (subtree.dev[parent]/dev.at.node[ 
        parent])) 
      if(any(is.na(big.dist.mat))) 
        if(debug) 
          browser() 
        else stop("NA's are gonna get you") 
      if(length(class(egad)) > 0 && class(egad) == 
"Error") { 
        if(debug) 
          browser() 
        else stop("Dammit, I don't know what to do, 
and debug is FALSE.") 
      } 
    } 
   } 
   dmat <- dmat + t(dmat) 
  } 
  out[, i] <- factor(mytree$where) 
  orig.dev <- dev(df[, i]) 
  new.dev <- summary(mytree)$dev 
  results[i, "Dev"] <- orig.dev - new.dev 
  results[i, "Size"] <- my.size 
  if(!is.factor(df[, i])) 
   results[i, "Dev"] <- results[i, "Dev"]/var(df[, i]) 
 } 
 if(!any(results[, "Size"] > 1)) 
  stop("Egad! No tree produced anything!") 
 out <- out[, results[, "Size"] > 1] 
 big.list <- big.list[results[, "Size"] > 1] 
 results <- results[results[, "Size"] > 1,  ] 
 if(fancy.dist) { 
  dists <- big.dist.mat[row(big.dist.mat) > 
col(big.dist.mat)] 
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  attr(dists, "Size") <- nrow(df) 
  attr(dists, "Labels") <- as.character(1:nrow(df)) 
  attr(dists, "Metric") <- "euclidean" 
  oldClass(dists) <- "dissimilarity" 
 } 
 else dists <- daisy(out) 
 out <- list(mat = out, call = match.call(), tbl = results, trees 
= big.list, dists = dists) 
 oldClass(out) <- "treeclust" 
 return(out) 
} 

 
b.  Application to Iris Noise Data 

The following S-PLUS code was executed to produce the 

results shown in Chapter VI, Section D. 

> iris.noise.scale.pam_pam(iris.noise.scale[,-1],3,diss=F,stand=T) 
> table(iris.noise[,1],iris.noise.scale.pam$clustering) 
            1  2  3  
    Setosa 48  2  0 
Versicolor  0 17 33 
 Virginica  0  7 43 
> iris.noise.scale.tc_tree.clust(df=iris.noise.scale[,-1]) 
> iris.noise.scale.tc 
              Dev Size  
Sepal.L 132.69178   10 
Sepal.W  85.93450    4 
Petal.L 144.87745    6 
Petal.W 141.61504    6 
Noise 1  40.08875    6 
Noise 2  13.74929    2 
> iris.noise.scale.tc.pam_pam(iris.noise.scale.tc$dists,3,diss=T) 
> table (iris.noise[,1], iris.noise.scale.tc.pam$cluster) 
            1  2  3  
    Setosa 50  0  0 
Versicolor  3 47  0 
 Virginica  2  3 45 
 

b.  Application to Vendor Payment Data 

The following S-PLUS code was executed to produce the 

results shown in Chapter VI, Section E. 

> KB.tc_tree.clust(df=KBData[,-5]) 
> KB.tc 
                      Dev Size  
        CHK.AMT 321.42728    4 
       PMT.METH 146.32514    7 
       PMT.TYPE 704.36352   14 
        INV.AMT 372.58038    6 
INV.RECV.INV.DT 410.56259    7 
     CHK.INV.DT 421.59578   10 
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CHK.INV.RECV.DT 415.87393   10 
       INTEREST 269.51651    4 
           DBOF 436.75056    3 
         OTHERX 436.47283    3 
           ALLX 408.59796    8 
       Y1.PRIOR 366.13269    4 
         Y1.CUR 389.61332    4 
     Y2.CUR.2ND 305.11099    3 
        Y3.PLUS 204.30980    4 
  ENHANCE.PAYEE 375.51852    8 
            STE 382.90927    6 
          POBOX 412.31105   15 
      INV.PAYEE 220.28978    8 
        INV.CNT 332.77792    7 
      DOVAMT.2K 441.00000    2 
      DOVAMT.1K 441.00000    2 
         AVG.5K 385.83321    3 
   PAYEE.4.PYMT 355.60706   10 
        INV.SEQ  67.82436    3 
    PMT.FREQ.HI 434.38967    8 
    PMT.FREQ.LO 392.99234   10 
           TINS 360.78780    7 
     MULTI.TINS 433.48543    5 
  MULTI.PAYEE.K 441.00000    2 
   MULTI.ADDR.K 441.00000    2 
       DISCOUNT 269.79951    4 
         M.PYMT 428.76615    6 
     MISC.OBLIG 315.41648    5 
       NOT.DFAR 350.46514   27 
       NUMADR.K 439.12694    3 
       NUMADREE 378.58206   14 
       NUM.EE.K 441.00000    3 
          DP109 358.23176    9 
          DP111 214.10555   11 
       MDELCKDT 379.81641   10 
       MDELINDT 400.30045    9 
       MDELIRDT 378.21893    8 
> KB.tc.pam_pam(KB.tc$dists,4,diss=T) 
> table(KBData[,5],KB.tc.pam$clustering) 
                1   2  3 4  
       Bigsys 144 107 29 2 
Opportunistic  40   3  1 1 
        Piggy   9   2 20 0 
     Smallsys  46  17 20 1 
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APPENDIX E. PROPOSED STANDARD OPERATING PROCEDURES 
FOR UNSUPERVISED MODELING TO DETECT FRAUD IN VENDOR 

PAYMENTS 

1.  PURPOSE AND OVERVIEW 

This is a recommended Standard Operating Procedure 

(SOP) for Unsupervised Modeling, designed as a supplement 

to the Internal Review Seaside Datamining SOP.  The intent 

of this SOP is to provide a more rigorous and standardized 

process for selection of unsupervised candidates in the 

Internal Review Datamining process.  It is based on the 

idea that transactions that belong to the same contract are 

somehow similar, and thus should fall into the same cluster 

of a clustering model.  Transactions that fall into 

clusters other than the one containing the majority of 

transactions for their contract are considered “orphans.”  

Selection of orphan transactions is the ultimate result of 

this procedure. 

This Recommended SOP is organized into three sections:  

Data Pre-Processing, Model Building and Selection, and 

Model Analysis.  Familiarity with Clementine on the part of 

the reader is assumed, so some of the specific details of 

Clementine implementation are omitted.  For more detail on 

any area of this SOP, refer to the Naval Postgraduate 

School Master’s Thesis “An Improved Unsupervised Modeling 

Methodology for Detecting Fraud in Vendor Payment 

Transactions,” June 2003, by Major Gregory W. Rouillard. 

Q:\Mongoose\Unsupervised_Modeling contains the example 

streams, supernodes, and spreadsheet tools referred to in 

this SOP. 
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2.  DATA PRE-PROCESSING 

a.  Source Data and SPSS Analysis 

Obtaining and opening the population database and SPSS 

analysis should be conducted as always, as detailed in the 

Datamining SOP.  The procedures described in this document 

assume that the population database and an ODBC connection 

have been established, and that the Fields to Use 

spreadsheet has been completed. 

b.  The Basic Filter & Type Supernode 

The Basic Filter & Type Supernode, shown in Figure 76, 

can be used for additional data pre-processing if desired.  

Note that Two Step cluster models do not admit fields with 

missing values, so some consideration might be given to 

conducting this analysis and either using filler nodes to 

correct missing values, or eliminating fields with a high 

percentage of missing values. 

 

 

Figure 76   Basic Filter & Type Supernode 
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The To String Filler node is necessary to be able to 

browse constructed K-Means models (this is a quirk of 

Clementine’s).  The Quality node, as well as the 

Distributions and Statistics Supernode (Figure 77), are 

used to analyze fields for inclusion or filtering.  The 

ValSet Derive Node assigns Validation Set membership of A 

or B depending on the value of RNDM_NUM.  Its purpose is to 

allow the modeler to divide the data set into two equally-

sized random subsets for A/B validation of K-Means and Two 

Step cluster models.  The Contract derive node creates a 

new field to identify specific contracts and enable 

analysis of clustering results with regard to contract 

distributions. 

 

 

Figure 77   Distributions and Statistics Supernode 
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The Final Type Node is used to assign the Direction to 

each unfiltered field. 

3.  MODEL BUILDING AND SELECTION 

Clementine’s unsupervised modeling choices are K-

Means, Two Step, and Kohonen.  Refer to the Clementine 7.0 

User’s Guide or online Help for more details on the basic 

functioning and uses of these models. 

a.  K-Means Model Building 

K-Means model building and selection is the most 

complicated part of the unsupervised modeling process, 

primarily because the modeler must select the number of 

clusters for model building.  The procedure outlined here 

provides a rigorous method for selecting the correct number 

of clusters and validating constructed models.  The stream 

KMeans_NO2pop, shown in Figure 78, can be used as a 

reference for this section. 

The procedures outlined here are based on theory that 

is fully detailed and explained in Chapter III of Major 

Rouillard’s thesis.  It is not necessary to understand this 

theory to successfully apply these procedures. 

Note: although Clementine’s K-Means modeling algorithm 

will accept categorical (Set and Flag Type) fields, it is 

not recommended.  Clustering results on categorical fields 

tend to be arbitrary and are very sensitive to the order of 

the data.  Always filter non-numeric fields or set their 

direction to “none” for K-Means clustering. 
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Figure 78   Kmeans_NO2pop Stream 

 

1. Build a stream with an SQL node for the source data, 

the Basic Filter & Type Supernode, and a Type Node 

setting only the numeric fields as “In.”  All others 

should be set to “None.” 

2. Add a K-Means modeling node downstream of the 

Numeric Type Node.  This modeling node should only 

require the Simple settings, and will be used to 

generate all of the K-Means models. 

3. Add a Select Node, shown in Figure 79, to select the 

appropriate Validation Set for model validation, 

detailed in Step 10. 
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Figure 79   ValSet Select Node 

 

4. Build models with number of clusters k = 1, 2, 3, …, 

15.  Stopping at k = 10 is usually acceptable.  If 

you are familiar with Clementine scripting, a script 

such as shown in Figure 80 can be used to streamline 

this process.  Otherwise, the models must be built 

by hand, changing the number of clusters and the 

name for each model. 

5. Once all of the models have been built, connect them 

to the stream between the Numeric Type Node and the 

Sum of Squares Supernode.  Figure 81 shows an 

example, with the models organized in a Supernode. 
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Figure 80   K-Means Model Building Script (Script Tab of the 
Stream Properties Dialog Box) 

 

 

Figure 81   Generated K-Means Models 
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6. The Sum of Squares Supernode (Figure 82) produces a 

table of values that is used in the spreadsheet Sum 

Of Squares to help determine the correct number of 

clusters for K-Means modeling.   

 

 

Figure 82   Sum of Squares Supernode 

 

7. The four nodes boxed in the above figure must be 

edited to select the correct fields.  Figure 83, 

Figure 84, Figure 85, and Figure 86 show examples of 

this step. 
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Figure 83   _Square Derive Node Dialog Box 

 

 
Figure 84    Within-Cluster Sum of Squares Set Globals 

Dialog Box 



  136 

 

 
Figure 85   _Sum_Square Derive Node Dialog Box 

 

 
Figure 86   Sum of Squares Aggregate Node Dialog Box 
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8. When the Table Node is executed, it produces a table 

containing a field for each model that is its 

Within-Cluster Sum of Squares.  In this table, 

select Edit-Select All, then Edit-Copy (inc. field 

names).  Open the Sum of Squares spreadsheet, and 

then follow the directions given therein.  The end 

result is a graph similar to the one shown in Figure 

87, and the correct number of clusters is at the 

“kink” or flat spot in the curve. 

Figure 87   Example of Sum of Squares Plot 

 

9. After selecting the correct number of clusters for 

K-Means modeling, the next step is to validate that 

model for comparison with other generated models. 

10. Connect the K-Means Model Node to the ValSet Select 

Node, and build a model on the “A” Validation Set 

with the number of clusters selected in Step 8.  

Next, build a model with the same number of clusters 
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on the “B” Validation Set.  Finally, connect both 

models to the ValSet Node (still set to select 

Validation Set “B”) and connect a Matrix to compare 

the cluster fields $KM-<model name>, as shown in 

Figure 88. 

 

 

Figure 88   Matrix Node Settings Tab 

 

11. This matrix will show the cross-tabulation (co-

clustering) of the two models.  Select Edit-Select 

All and Edit-Copy (inc. field names), then paste 

into the appropriate workbook in the spreadsheet 

Cluster Correspondence Analysis Template.  Be sure 

to save your workbook under another name to keep the 

template clear.  Follow the instructions in that 
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spreadsheet, and you will have a single number 

(Cramer’s Coefficient, a measure of how good your 

clustering model is) to compare with other models. 

b.  Two Step Model Building 

Building a Two Step model is much easier than building 

the “right” K-Means model.  Two Step models are designed to 

work with all data types, so the Two Step modeling node may 

be connected directly to the Basic Filter & Type Node.  

Build a Two Step model with the simple (default) settings, 

then rename it to incorporate the number of clusters 

(automatically chosen by Two Step).  The validation 

procedure is the same as described in Steps 9, 10, and 11 

of the preceding section. 

c.  Kohonen Model Building 

Building a Kohonen model is not difficult, but it can 

be very time- and memory- intensive, and there are many 

expert options which can affect the results.  It is 

recommended to use the default settings of the Expert Model 

Tab, changing only the dimensions of the generated map 

(Figure 89). 

Trial and error may be required to determine 

appropriate dimensions for the Kohonen map.  Generally 

speaking, for a data set the size of the audit populations, 

a map of size 10x10 or larger should be considered for 

interpretability.   
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Figure 89   Kohonen Model Node Expert Tab 

 

4.  MODEL ANALYSIS AND RESULTS 

The stream Model_analysis_NO2pop (Figure 90) 

demonstrates the method described in this section.  In this 

stream, each generated model selects its own orphan 

transactions, and the transactions that are selected by all 

three models are forwarded for audit. 

The selection of orphans is highly dependent on 

determination of the threshold for contract concentration.  

For example, a model that selects as orphans only 

transactions falling in clusters containing 30% or fewer of 

the transactions in a contract will identify more orphans 

than one whose threshold is 10%.  This threshold is set in 

the Derive Nodes of the Orphans Supernode (Figure 94), 

discussed in detail below. 

The concept of orphan transactions in a Kohonen 

mapping is not as simple as for a K-Means or Two Step 
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cluster model, because by the nature of a Kohonen map there 

is not necessarily a “home” node for each contract.  

Therefore it might be desirable to evaluate a Kohonen map 

based on the concept of “sparse” nodes (ones with few 

records):  perhaps the transactions that occupy sparse 

nodes are more interesting than those in dense nodes.  The 

Sparse Prototypes Supernode facilitates this type of 

analysis. 

 

Figure 90   Model_analysis_NO2pop 

 

The Contract Count Supernode (Figure 91) produces a 

field containing the number of transactions in the contract 

to which each record belongs, which is essential to 

identifying orphan transactions.  
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Figure 91   Contract Count Supernode 

 

The data is first aggregated by contract, and then the 

Merge Node (Figure 92 and Figure 93) creates a new field 

with the number of contracts for each transaction. 

 

Figure 92   Merge Node Dialog Box, Merge Tab 
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Figure 93   Merge Node Dialog Box, Filter Tab 

 

The Orphans Supernode (Figure 94) accomplishes the 

important task of creating fields identifying records as 

orphans for one or more of the generated models.  For each 

type of model, Two Step, K-Means, and Kohonen, the data is 

first merged on contract and cluster number (prototype 

number in the Kohonen case), then merged back to create a 

field identifying the number of transactions in each 

cluster from each contract.  Figure 95 shows an example 

Merge Node Filter Tab, with the new field TS_Cluster_Count.  

The other two merge nodes are very similar and produce the 

new fields KM_Cluster_Count and KSOM_Prototype_Count. 
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Figure 94   Orphans Supernode 

 

 

Figure 95   Merge Node Filter Settings 

 

The three Derive Nodes create new Flag fields to 

identify orphan transactions.  Figure 96 shows an example 

for the Two Step orphans; the other two derive nodes are 

very similar.  As discussed at the beginning of this 
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section, selection of the orphan threshold (30% shown here) 

has a large impact on the number of orphans identified. 

 

Figure 96   TS_Orphan Derive Node Settings 

 

The final step in this stream is to select the 

“multiple orphans,” which is accomplished by the Triple 

Orphans Select Node (Figure 97).  A table of these records 

is then produced that identifies transactions for audit. 
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Figure 97   Triple Orphans Select Node Settings 

 

The final step is to generate a table of the selected 

transactions.  Alternatively, a Derive or Select Node can 

be generated from this table to select these transactions 

based on SEQ_ID or some other field. 
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