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ABSTRACT

The Set Partitioning Problem (SPP) is one of the most extensively researched models in
integer optimization, and is widely applied in operations research. SPP is used for crew
scheduling, vehicle routing, stock cutting, production scheduling, and many other
combinatorial problems. The power and generality of SPP come at a price: An SPP can
be very difficult to solve. A real-world SPP often has columns, or rows, with long strings
of consecutive ones. We exploit this with a new preprocessing reduction that can
eliminate some variables. We also introduce a column-splitting technique to render a
model that can be solved directly or used to bound SPP with Lagrangian relaxation or an
exterior penalty method. We develop an SPP row-splitting method that yields a special
model that Bender's decomposition may then solve faster than the monolithic SPP. We
demonstrate these techniques with well-known test problems from airlines and other
researchers. We also contribute a new U.S. Navy aircraft carrier long-term deployment
scheduling model, using our new techniques to plan with weekly fidelity over a ten-year
planning horizon. This improved time fidelity increases planned deployment coverage of

areas of responsibility by about ten carrier weeks.
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I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Among all special structures in pure integer programming, three have the most
widespread applications: set partitioning, set covering, and set packing. Using set
notation, these problems can be expressed as follows.

Lefc M ={l,..,m} and N={l,..n}. Let M, be a subset of M with an associated
weight of ¢, for all je N. A subset S of Nis a cover of M if UjsM; =M. Sisa
packing of M if M, (\M is empty for all j,keS,j#k. Sisa partition of M if it is both

a cover and a packing of M. The weight of a subset S of NV is defined as Zc .- Figure L1

jes

illustrates a cover, a partition, and a packing of a set with six objects.

9 © .
"

(a) (b) (c)

Figure L.1. A Cover, a Partition, and a Packing. Figure 1.1.(a) is a cover, (b) is a
partition, and (c) is a packing of a set with six objects, say M. The collection of objects
covered by each oval border forms a subset of M. In Figure (a), each object in M is
covered at least once. The third and fifth ojects are covered twice. In (b), each object is
covered exactly once. In (c), the third and sixth objects are not covered and the two
subsets are disjoint.




In the set covering problem, the objective is finding a cover S of M with the
minimum weight, whereas in the set packing problem, the objective is finding a packing §
with the maximum weight. For the set partitioning problem both minimization and
maximization versions are possible.

To formulate these problems as integer programming problems, we introduce the

mxn incidence matrix A of the family {M | j € N}, whose entries are given by a; =1 if
ieM; and g = O otherwise. We also define a decision variable x;,j=1,...,n,that is

equal to 1 if jeS, and O otherwise. Let x=(x,,...,x,). Then S is a cover, pack, or
partition if and only if, respectively:
Ax> e, Ax <e,orAx =e,
where e is a column vector of size m consisting of all ones. In a more general case in
which e has all its entries equal to a scalar %, S is named k-cover, k-pack, or k-partition,
respectively.
The set partitioning, set packing, and set covering problems are proven to be NP-

Complete ([Lenstra and Rinnooy Kan 1979], [Garey and Johnson 1979]).

In the following subsections, we provide motivation for the set partitioning, set
packing and set covering problems with special emphasis on a variety of subordinate
topics including: problem formulations, applications, algorithms, and the inter-

relationships between these problems.




1. Set Partitioning Problem (SPP)

The integer programming formulation of SPP is:

minimize c'x (L1.2)
(SPP) st Ax=e (L1.b)
x binary (I1.c)

where ¢ is a column vector of size n and ¢’ denotes its transpose. Using standard notation

(e.g., [Bertsimas and Tsitsiklis 1997]), column j of matrix 4 is denoted as 4, and row ¢

of 4 is denoted as a,'. In Equation (I.1.b), Ax is referred to as the left-hand side of the

equality, and e as the right-hand side. All vectors are assumed to be column vectors.

a. Applications Of SPP

A wide variety of practical applications have been modeled as SPPs. A
partial list of applications described in the literature includes: crew scheduling ([Charnes
and Miller 1956], [Marsten and Shepardson 1980], [Hoffman and Padberg 1993]), vehicle
routing ([Brown et al. 1987a]), ;vtock cutting ([Pierce 1970]), political districting
([Garfinkel and Nemhauser 1970]), and circuit partitioning ([Eben-Chaime et al. 1996]).
References to further applications can be found in [Garfinkel and Nemhauser 1972,
Chapter 8], [Balas and Padberg 1976], and [El-Darzi and Mitra 1990].

Well-known military applications of SPP include a variety of ship
scheduling problems. Wing [1986] schedules surface combatants for inspections,
training, and other events. Brown et al. [1990] schedule U.S. Atlantic Fleet combatants

to deployments and naval exercises. Ayik [1998] presents a set partitioning model, also




involving set packing and set covering constraints, to schedule the U.S. aircraft carriers
for deployment and maintenance.

The best-known application of SPP is airline crew scheduling. >The costs
associated with assigning personnel to flights are the second highest operating
expenditure in the airline industry [Hoffman and Padberg 1993], hence the financial
significance of crew scheduling.

b Solution Algorithms For SPP

Linear programming (LP) based branch and bound (B&B) (e.g., Bertsimas
and Tsitsiklis 1997]) is the most common approach used to solve an integer programming
problem. B&B is used as an infrastructure in most of the efficient SPP algorithms.

The most frequently published approaches for solving SPP other than by
outright B&B are implicit enumeration and cutting plane methods. Balas and Padberg
[1976] provide a survey of these and other approaches. Implicit enumeration takes
advantage of the special structure of SPP. Systematic search of the solution space
generates partial solutions (assigning zero-one values to variables taken one at a time) and
explores the logical implications of these value assignments.

Hoffman and Padberg [1993] present a branch-and-cut’ approach to solve

large scale SPPs. A branch-and-cut solver generates cutting planes based on the

underlying structure of the polytopeT defined by the convex hull’ of the feasible integer

TThis terminology is defined in basic texts such as Bertsimas and Tsitsiklis [1997], and Nembhauser and
Wolsey [1988].




points, and incorporates these cuts into a B&B tree-search that uses automatic
reformulation procedures, heuristics and LP technology to assist in the solution. There
are four components to a branch-and-cut optimizer: a preprocessor that tightens the user-
supplied formulation; a heuristic that yields good integer feasible solutions quickly; a cut
generation procedure (the engine of this overall approach that tightens the LP relaxation),
and a branching strategy that selects the next branching variable and determines the
search-tree. Hoffman and Padberg claim to be very efficient at solving SPPs.

c. Problem Size Reduction

Problem size reduction techniques are implemented on SPP to reduce the
number of variables and/or constraints through logical implications without eliminating
optimal solutions to the original problem. Problem size reduction, also called presolve or
prereduce, is an effective and inexpensive tool used by all efficient SPP algorithms today.

Hoffman and Padberg’s branch-and-cut optimizer uses size reduction
before at each node of the branch-tree that is associated with a non-trivial problem
restriction, say fixing a binary variable to one. The idea is to propagate and amplify the
effects of variable fixing based on reduced costs and branching decisions. They report
that these techniques are highly effective in reducing the solution times of the LP
subproblems within branch-and-cut.

Problem reductions are typically based on recognition of duplicate
columns, redundant rows, and conflicting variables ([Balas and Padberg 1976], and
[Hoffman and Padberg 1993]). Ali et al. [1995] present variable reductions based on

hidden network structure in SPP.




Problem reductions are discussed in Chapter V.

d. Use Of Special Structures

The identification of special structures within the incidence matrix, 4, can
play a central role in the solution procedures for SPP. In LP-based B&B of SPP, special
structures are used to aid in fathoming and branching. For instance, to aid in branching,
Marsten [1974] uses a reordering of the columns and rows, and Avis [1980] identifies
dominance relations in the incidence matrix, 4.

Special structures, either inherent or enforced (artificially extracted), are
also used in SPP solution techniques. Embedded structure in the incidence matrix, such
as generalized upper bounds, network rows, and generalized networks can be recognized
with very little effort (e.g., [Brown and Thomen 1980], [Brown and Wright 1984],
[Brown et al. 1985]). Nemhauser and Weber [1979] enforce a bipartite matching to solve
the large-scale LP relaxations of SPPs (with an associated increase in the number of
variables and constraints).

Marsten and Shepardson [1980] present column splitting to reveal the
network structure of the two-duty period scheduling problem. (This technique is
described in Chapter II.) The two-duty scheduling problem, arising naturally in personnel
scheduling, is formulated as an SPP. The formulation of the problem is described as
follows.

Suppose there are a number of duty stations, each of which has minimum
staffing requirements at every period of the working day. The rows of the incidence

matrix, A, correspond to the hours of operation of each station. Note that the rows are in




natural order, arranged by station and ordered sequentially by time periods within each
station. Each column corresponds to a possible personnel schedule where an entry of 1 in
the matrix indicates that the column’s worker is assigned to the station of that row for the
corresponding time period. With the restrictions that a worker is assigned to no more
than one station during his morning duty period and no more than one (possibly different)
station during his afternoon duty period, each column will contain at most two strings of
ones in consecutive matrix rows. The problem is to find a minimal-cost set of personnel
schedules such that each station’s duty requirements will be satisfied.

In the case where each person is allowed to work exactly one duty period a
day (i.e., each column of the incidence matrix has one string of consecutive ones), the
problem is called a one-duty period scheduling problem. The one-duty period scheduling
problem can be transformed to a minimum cost network flow model, and thus be solved
in polynomial time (e.g., [Veinott and Wagner 1962], [Garfinkel and Nemhauser 1972]).
That is, the time needed to solve the problem is a polynomial function of the length of the
input data.

Circular ones in all columns permits SPP to be solved parametrically as a
bounded series of network flow problems (e.g., [Bartholdi et al. 1980]). A 0-1 column is
said to be circular if its ones occur consecutively, where the last and first entries are also
considered to be consecutive.

Ali and Thiagarajan [1989], and Ali et al. [1995] use hidden network
structures in SPP to transform the problem to a network with side constraints and side

columns, respectively.




2. Set Packing (SP) And Set Covering (SC)

The integer programming formulations of SP and SC problems are given by (SP)

and (SC), respectively:

maximize c'x (12.2)

SP) st. Ax<e , (I2.b)
x binary (1.2.c)

minimize c¢'x (1.3.2)

SO s.t. Ax>e (1.3.b)
x binary 13.c)

SP and SC problems are close relatives of SPP. An SPP can be formulated as an
SP or SC problem (e.g., [Balas and Padberg 1976]). Conversely, an SP problem can be
formulated as an SPP. However, we cannot formulate an SC problem as an equivalent
SPP.

The equivalence relationships between SP, SC, and SPP show that the
applications referenced in the previous section for SPP can also be listed for SP or SC
problems. For a partial list of SC problem specific applications, the reader is referred to
[Beasley 1987], [Fisher and Kedia 1990], and [Grossman and Wool 1997].

There is abundant literature on the SC problem, dealing with: exact algorithms
(e.g., [Beasley 1992], and [Fisher and Kedia 1990]), heuristics (e.g., [Beasley and Chu

1996], [Haddadi 1997], and [Caprara et al. 1999]), and surveys ([Garfinkel and

Nembhauser 1972] and [Christofides and Korman 1975]).




|

Caprara et al. [1999] present a Lagrangian-based heuristic for the SC problem that
we adapt for SPP. The algorithm is designed to solve large-scale SC problem instances
with up to 5,500 rows and 1,100,000 columns, arising from crew scheduling for an Italian
railway. The primary characteristics of the algorithm include: (1) a dynamic pricing
scheme for the variables, similar to that used for solving large-scale linear programs,
coupled with subgradient optimization and greedy heuristics, and (2) the systematic use
of column fixing to obtain improved solutions. Additionally, Caprara et al. present
several improvements on the standard way of defining the step-size and the ascent
direction within the subgradient optimization procedure. (For comprehensive information
on the Lagrangian relaxation problem and the subgradient optimization method see
[Parker and Rardin 1988]). Caprara et al. report this algorithm to be more efficient than
existing heuristics.

3. A Long-Term Aircraft Carrier Deployment Problem Incorporating
Set Partitioning, Set Packing, And Set Covering Constraints

A United States (U.S.) Navy aircraft carrier scheduling problem can be formulated
using a classical set partitioning model that also involves set covering and set packing
constraints ([Ayik 1998]). Many researchers have formulated the scheduling of
transportation vehicles (e.g., delivery trucks, buses, oil tankers and ships) as an SC or
SPP. Appelgren [1969, 1971] and Crawford and Sinclair [1977] suggest SC or SPP to
respectively schedule ships and tankers. Brown et al. [1987a] schedule crude oil super

tankers using a set partitioning formulation. Military applications of this approach




include the scheduling of the U.S. Navy combatants to deployments and naval exercises

(e.g., [Wing 1986], [Brown et al. 1990]).

The classical set partitioning approach first generates all possible schedules that
provide the period-by-period status of each carrier for the planning horizon while
satisfying operations and maintenance constraints. Next, an SPP is formulated to
maximize coverage (or minimizing uncovered periods) in areas of responsibility (AORs)
subject to the constraints that

@) exactly one alternate schedule is chosen for each carrier, and

(i)  each AOR should be covered in each period.

The algebraic formulation of the set partitioning model is as follows:

Indices:
c carriers
a Areas of Responsibility (AORs)
t periods (in weeks)
jeJ(c) set of possible schedules for each carrier ¢ (i.e. schedules that satisfy

the operations and maintenance constraints, and provide the period-by-

period status of this carrier for the planning horizon)

10




Data:
Aa

27

WEIGHT*®

MAXGAP

equals 1 if schedule ; of carrier ¢ covers AOR a in period ¢, 0 otherwise

weight of coverage in AOR a

maximum allowable number of consecutive uncovered periods in an

AOR

Decision Variables

X; equals 1 if schedule ; is selected, O otherwise
uncovered’ equals 1 if AOR a is not covered in period ¢, 0 otherwise
Formulation
minimize Y WEIGHT uncovered; (1.4.a)
a’j
st Y. x, =1 Ve (14.b)
JjelJ(c)
Z Ajx; +uncovered; 21 Vat 4.0
C,j
1+(MAXGAP-1)
uncovered, <(MAXGAP -1) Vat (14.9)
t'=t
x; €{0,1} V jeld(e),c (L4.e)
uncovered; 20 Va,t (14.9

11




In the above formulation, the objective is to minimize the uncovered periods in all
AORs. Partition constraints (I.4.b) ensure that exactly one schedule is selected for each
carrier. Constraints (L.4.c) express the intent that each AOR should be covered in each
period. Because covering all AORs is not possible with the current carrier force, this
constraint has an elastic variable for each uncovered period. Packing constraints (1.4.d)
ensure that uncovered periods for each AOR are no more than the maximum allowable
number of gap periods ( MAXGAP).

Table L1 shows the size of this SPP for twelve aircraft carriers, fixed maintenance
periods, weekly time increments, and a planning horizon of ten years. The number of
columns increases to several million if the maintenance periods are scheduled

synchronously with the deployment periods.

Number of Constraints Number of Variables
Partitioning Covering Packing x uncovered
14 1,046 1,046 222,293 1,046

Table I.1. Model Size for the Set Partitioning Formulation of the U.S. Navy Aircraft
Carrier Deployment Scheduling Problem with Twelve Aircraft Carriers, and Fixed
Maintenance Periods, Weekly Time Periods, and a Ten-Year Planning Horizon.

Set partitioning is attractive in ship scheduling because it is relatively easy to
generate, modify, and control. Although set partitioning has many advantages, it has not
been the preferred method for solving the carrier scheduling problem because the long

planning horizon yields an impractically large number of alternate schedules.

12




B. OUTLINE OF THE DISSERTATION

A real-world SPP often has columns, or rows, with long strings of consecutive
ones. This dissertation seeks methods to bound, or solve an SPP by exploiting the
consecutive ones structure in the incidence matrix, 4.

Chapter II presents some of the preliminaries that are applied throughout this
dissertation, including:

(1) a column splitting reformulation of SPP,

(ii))  total unimodularity, and

(ili)  Lagrangian relaxation.

Chapter III presents methods to solve the column split SPP reformulated problem.
We focus on finding a good lower bound that can be incorporated in branch-and-cut
[Hoffman and Padberg 1993] to solve the original SPP.

In Chapter IV, we present a new algorithm to solve binary programming problems
(e.g., SP, SC, or SPP) whose rows contain strings, or segments, of consecutive ones. This
algorithm can also solve general binary programming problems. However, the runtime of
the algorithm degrades as the number of ones segments in the problem increases.

Chapter V discusses problem size reduction in SPP. We first present the known
reduction techniques. Then, we show other reductions suggested by the network
constraints obtained by the reformulation of SPP using column splitting.

Chapter VI presents a new integer programming formulation for the aircraft
carrier scheduling problem. We first describe the scheduling factors and operations

constraints. Next, we present the previously suggested model, a two-commodity network

13




flow problem with side constraints. Then, we introduce the new formulation and compare

it with the previous models.
Finally, Chapter VII concludes this dissertation by summarizing the primary

findings, and offering suggestions for future research.

14



II. PRELIMINARIES

A column split reformulation of SPP proceeds as follows. Consider each existing
column in the SPP coefficient matrix 4. Identify each segment of rows with consecutive
ones in this column, and define a corresponding new binary column in the split
reformulation with these same consecutive ones. Also add coupling constraints to the
reformulation that all the new split binary columns associated with each original SPP
column must share the same value. This column split reformulation exhibits purely
consecutive ones columns in the rows it inherits from the seminal SPP, and thus is totally
unimodular in these original rows. In addition, the new coupling constraint rows are
trivially constructed with total unimodulatity. However, although the original rows are
now uﬁimodular, and the new rows are constructed to be unimodular, the union of these
two individually unimodular sets of rows is not unimodular. But, by moving the coupling
constraints to the objective function and implementing a well-known Lagrangian
relaxation procedure, we leave ourselves with the unimodular restatement of the original
constraints and can obtain lower bounds for SPP.

This chapter demonstrates the column splitting reformulation of SPP, reviews
total unimodularity, and Lagrangian relaxation to help us construct the methods presented
in the following chapters.

A. COLUMN SPLITTING TECHNIQUE
Marsten and Shepardson [1980] first introduce column (variable) splitting

(decoupling) to solve the two-duty period scheduling problem. Marsten and Shepardson
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use this technique to reformulate the two-duty period scheduling problem as a network
flow problem with side constraints.

Consider the following SPP:

minimize chx ; (I.1.a)
Jj=1

(SPP) st > oax; =1 i=l...m (I.1.b)
j=1

x; binary j=L..,n (I.l.c)

where c; represents the cost of variable x; forall j=1,..,n, and the scalar a; € {0,1} for

alli=1,...m and j=1,...,n.

In (SPP), for each column vector 4; we define a segment of ones as a consecutive
set of column elements a;, i=/,]; +L...;+p; =L+ p;, such that a;=1 for
i=l,..l;+p;, ;=0 ifl;>l,and q,,, ,,; =0 if I, +p;<m. Let K; be the set of
segments of ones for column j containing the information where each segment starts and
ends in terms of pairs of ordered row indices (e.g., K; ={(lj,lj+ ) ) e } ). [K i!
denotes the number of segments in column ;. Let I' be the set of columns that have
more than one segment of ones (i.e., ['= { K IK jl > 1} ). Let Af be a column vector of
size m , such that a; =1 if the i ™ element of column j is in the k™ segment of K in

(SPP), and a,;f =0 otherwise. Note that the sum of AJ'.‘ for all segments in K ; is equal to
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&
the vector 4; (ie., kZAJk =4;). Column A; is given a cost coefficient of d} =c,a;
=1

&
where > a* =1, and is associated with the variable y* €{0,1}. The y* are required to
J J J q

k=1

satisfy yjf = yjf“ for all k=1,...,]K jl—l and jel'. Thus, we obtain a problem

equivalent to (SPP) given by:

n |Kf|
minimize Y Y d}y (I.2.2)
Jj=1 k=1
n IK/'I
(SPP) st Y. > aiyi= Vi (IL.2.b)
J=1 k=1
Y-y =0 jel andk =1,...,|Kj{-1 (I.2.c)
¥} binary Vjand k (I1.2.d)

Using matrix notation, this problem can be written as:

minimize dYy (I1.3.a)
(SPP) st Ty=e (IL3.b)
Sy=0 (IL.3.c)

y binary (I.3.d)

where T and S are the coefficient matrices associated with equations (II.2.b) and (IL.2.c),
respectively. By construction, S has the node-arc incidence matrix structure of a network
(i.e., each column of S has either a +1 and a -1, only a +1, only a -1, or all zeros), and T
has exactly one segment of ones in each column.
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Example I1.1 illustrates the reformulation described thus far.
Example IL.1: Consider the following SPP where m=n=6.
minimize c'x
(SPP) s.t. Ax=e

x binary

4 4, 4 4, 45 A
1 0 1 0 1 0
1 0 0 1 0 1
4= |1 1 1 0 0 1
0o 0 1 0 1 0
0o 1 1 0 0 0
1 1 0 1 1 1

We split the columns of 4 to obtain one segment of ones in each column. T is the

resulting matrix.
A 4P 4 A A A A A A A A A A
1 o 0 0 1 o0 O O 1 O O O O
1 o0 0 0 O O 1 O O o0 O 1 O

T= 1 o0 1.0 0O 1t O O O O O 1 O
o 06 0 0 o0 1 O O O 1 O O O
o 0 0 1 o0 1 O O O O 0 0 O
o 1 0 1 o0 o O 1t o0 o0 1 0 1

Distributing the cost equally among the progeny of each split column, we obtain the
following cost coefficient vector d :

A A2 4 42 A AT A A A5 A A 4 A;
d=[2 2 1 1 3 3 4 4 1 1 1 2 2]
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Thus, the equivalent reformulation is as follows:

2

min 2y 42y +yl +y2 3y 435 +Ayl +4 Yl +y) +y; ty; A2y +2 v

st » +; + 5 = 1
» + + Y5 = 1
» +; +y; + Vs = 1

+; +; = 1

+y; + 5 = 1
ity N +y; Ay = 1
noW = 0
+y -y = 0

+y =¥ = 0

Vi =V = 0

+y; = ¥; = 0

+y: —; = 0

+ys —ve = 0

Yoy A VE V. ¥ Y Y v Vi v ve Y e {0l

End of Example II.1

Matrix 7T of formulation (SPP') has exactly one segment of consecutive ones in

each column. A matrix having this structure is called an interval matrix (e.g.,
[Nemhauser and Wolsey 1988]). T can be transformed to a node-arc incidence matrix of
a network (e.g., [Veinott and Wagner 1962]). To accomplish this transformation, we first
append a redundant (m+1%) constraint Ox=0 to the end of equation set (IL.3.b). We

next perform an elementary row operation for each i =m+1,m,...,,1, subtracting the im

constraint in (I.3.b) from the (i +1%) constraint. These operations create the formulation
below:
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minimize dY% (IL.4.2)

(NS) s.t. Ny =b (I.4.b)
Sy=0 (IL4.c)
y binary (IL.4.d)

A is the resulting network matrix consisting of exactly one +1, and one -1 in each

column. The number of rows of N is (m+1). Column vector b has +1 as its first entry,

is followed by zeroes, and has —1 as the last (m+1%) entry.

If we consider constraints Sy =0 as side constraints, then (NS) can be defined as
a constrained shortest path problem. Each row of constraints #j'=5 corresponds to a

node in the network. Every variable yf is represented by an arc directed from a node in
which yf has a +1 coefficient, to a node with a —1 coefficient. Hence, the network
corresponding to (NS) is called a directed network.

Cost coefficient d; of variable yf is assigned as the length of the arc

corresponding to yf . One unit of flow is sent from the first node (i =1) to the last node

(i=m+1). By construction, every arc in the network is forward (i.e., if an arc is incident

from node 7 to node i,, then i <i,). Hence, the network corresponding to (NS) is

acyclic. Side constraints Sy =0 ensure that if we use arc yj. in the network, then we also

use arc y} forall ke {1,...,|Kjl}\l.
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Observe that the shortest path of the network corresponding to (NS) is a lower

bound on (SPP). Further, the longest path of the same network is an upper bound on the
objective value of (SPP).

Example I1.2 illustrates the reformulation (NS) for the set partitioning problem

presented in Example II.1.

Example I1.2:

By appending a row of zeros to matrix T in Example I.1, and subtracting the i™ row

from the (i +1%) row, we obtain the following matrix, N.

A A2 A 42 A A A A A A A A A

$1 o 0 0 1 0 O O 1t O O O O

o 0 o0 0 -1 0 1 O0-1 O O 1 O
=0 0 1 0 0 1 -1 0 O O O 0 0
-1 0 -1 0 0 0 O O O 1 0 -1 0

o 0 0 1.0 0 0 O O0O-1 0 0 O

o 1 0 0 0-1 o0 1 0 O 1 0 1

o -1 0-1 0 0 O0-1 0 0 -1 0 -1
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Thus, the equivalent reformulation (NS) 1s:

2

min 2y 42y +y) 432 43y 43 )5 +Ay, +4yl +ys Tyl +ys 2y +2 v

s.t. +y, +y, +y, = 1

-5 + 4 -¥s + Vg = 0

+ ¥ -y = 0

-3 - +y; s = 0

+3; - = 0

+y; -y +y; +y; +y2 = 0
R s e N N s Y= 1

n - = 0

+y, =¥, = 0

TV =W = 0

+y -~V = 0

+y; —Vi = 0

+y; —¥: = 0

+y, —¥s = 0

yll’ ylz’ y;’ J’§= y?l>’ y32’ y};a yia y;> ysza J’;; J’é, yé e {0:1}

End of Example I1.2

Proposition II.1 is a result of the operations shown thus far.

Proposition II.1: yf * is an optimal solution of (NS) if and only if x;*= y}* is an

optimal solution to (SPP) for all j=1,...,n.
Different equivalent reformulations of (SPP) can also be derived using the column
splitting technique. Side constraints (IL.4.c) may be formulated as any equivalent set of

&b _

equalities that together imply that y, = y; =.....= | il

y;"'. For instance:
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« Y= v ke({l,...,|Kj!}\r) and jel  (IL5.2)

o ¥ =y V r=1..,|K)|, k=1,.,|K;| suchthat r=k and jeT  (IL5.b)
o (K]-Dyi- X K=0 V jel (IL5.)

Note that constraints (II.5.c) do not yield as strong of an LP relaxation as the other
equivalent reformulations of SPP.

The arguments stated in this section for the reformulation of SPP also hold for SC
and SP with minor adjustments. Moreover, any linear program can be reformulated using
the column splitting technique to obtain special structures in each split column. For
instance, Schrage [1997] shows that any linear program can be converted to one with no
more than three non-zero coefficients per column, and we can use column splitting to
render this into a generalized network with side constraints.

Matrices & and S of reformulation (NS) both have the node-arc incidence
matrix structure of a network. Next, we show that the matrices with this structure are
members of a class called totally unimodular (TU) Matrices.

B. TOTAL UNIMODULARITY

First, we define TU and list some of the well-known properties of TU matrices

that are used throughout this dissertation. For comprehensive information on total

unimodularity and related theorems, see [Nemhauser and Wolsey 1988].
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Definition I1.1: An (mxn) integral matrix A is totally unimodular if the determinant of

each square submatrix of 4 is equalto 0, 1, or —1.

It is evident that @; =0, 1, or -1 if 4 is TU, because every entry of the matrix is

a (I1x1) square submatrix.
Proposition IL.3: An (mxn) matrix A4 is TU if and only if the matrix (4,7,) is TU
(where I, is an (mxm) identity matrix). |
Proposition IL4: A matrix 4 is TU if and only if the transpose matrix 4" is TU.

Next, we present a significant theorem of integer programming developed by

Hoffman and Kruskal [1956].

Theorem IL5: If 4 is TU, and if b, b, [, and u are integral, then every basic feasible

solution defined by the constraints b < Ax < b,l<x<u is integral.
Proposition I1.6: The node-arc incidence matrix N of a directed network is TU.
Thus, we complete our brief tour of the relevant properties of TU matrices and

observe that matrices " and S of reformulation (SPP”) are TU.

C. LAGRANGIAN RELAXATION

Lagrangian relaxation dates to the eighteenth century. More recent use of this
method in discrete optimization appears in the seminal papers by Held and Karp [1970,
1971] that éddress the “traveling salesman problem.” Fisher [1981, 1985], Geoffrion

[1974], and Shapiro [1979] provide insightful surveys of the Lagrangian relaxation and its

uses in integer programming.




Lagrangian relaxation is often used for integer programming problems
(IP) z*=min{c'x: Ax =b, x integral}
for which the constraints Ax =5 can be split into two parts, 4x=>5, and 4,x =b, such
that relaxed problems of the form min {c’x :4x=b, x integral} can be solved efficiently.

The Lagrangian relaxation method uses the idea of relaxing the explicit linear
constraints by bringing them into the objective function with associated Lagrange

multipliers p. The resulting problem

minimize c'x+ u(4,x-b,)
s.t. Ax=b
x integral

is referred to as a Lagrangian relaxation or Lagrangian subproblem of the original
problem (ZP), and the function

L(y)=min, {c'x+ p(4,x~b,): 4x=b,, x integral}
is referred to as Lagrangian function. The solution of the Lagrangian subproblem need

not be feasible for the original problem.

The Lagrangian relaxation method is motivated by the following observation:

Theorem IL.7 (Lagrangian Bounding Principle): For any vector u of Lagrange
multipliers, the value L(x) of the Lagrangian function is a lower bound on the optimal

objective function value z* of the original optimization problem (ZP). (e.g., Ahuja et al.

[1993, Chapter 16, pp. 605-6061)
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To obtain the highest possible lower bound, we need to solve the following

optimization problem
L*=max , I( )
which is referred to as the Lagrangian multiplier problem.

Most of the key results of Lagrangian relaxation (e.g., the bounding principle and
optimality conditions) are special cases of more general results in mathematical
programming duality theory. Rockafellar [1970] and Stoer and Witzgall [1970] provide
comprehensive treatments of this subject.

The preceding discussion of the Lagrangian bounding principle provides us with
valid bounds for comparing objective function values of the Lagrangian multiplier
problem and the original problem (IP) for any choices of the Lagrangian multipliers x,
and any feasible solution x of (ZP):

L(u)<L*¥<z%<c'x.
Hence, the Lagrangian bounding principle has the following implication:

Corollary IL8: If L(u)=c'x for some Lagrangian multiplier vector x, and for a

feasible solution x of (IP), then L(u)=L*=z*=c'x.

Furthermore, the following proposition defines more explicit bounds for the case
in which the Lagrangian subproblem yields intrinsically integer solutions.
Proposition IL9: If the Lagrangian subproblem yields intrinsically integer solutions, then

the optimal value L* of the Lagrangian multiplier problem is equal to the optimal

objective function value of the LP relaxation of (IP) [Geoffrion 1974].




III. SPP LOWER BOUND ALGORITHMS IMPLEMENTED WITH
THE COLUMN SPLITTING REFORMULATION

This chapter presents two algorithms to solve the column splitting reformulation
problem (NS):

(1) a Lagrangian relaxation method using subgradient optimization, and

(i)  an exterior penalty method.

We seek a good lower bound that can be computed with less effort than an LP
relaxation of (SPP) and could be incorporated in branch-and-cut [Hoffman and Padberg
1993] to solve the original SPP. We also investigate the reordering of rows to reduce the
number of segments of consecutive ones in the columns of an SPP.

A. LAGRANGIAN RELAXATION AND SUBGRADIENT OPTIMIZATION

Marsten and Shephardson [1980] form a Lagrangian relaxation on the
reformulated problem and use subgradient optimization. Marsten and Shepardson report
their computational experience on the two-duty problem and suggest further investigation
on three- or four-duty period problems.

Consider the reformulated problem (NS).

minimize dYy

(NS) s.t. N =b
Sy=0
y binary
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By moving constraints Sy=0 to the objective function, we obtain the following

Lagrangian subproblem:

minimize dy+ u(Sy)
y

(LS) s.t. Ny =b
y binary
Hence, the Lagrangian multiplier problem can be written as:
L*=max, {miny {dy+u(Sy): 2 =b,ye Binary}}

By Theorem IL5, the Lagrangian subproblem (LS) yields intrinsically integer
solutions for any choice of x. Thus, the optimal objective values of (LS) and its LP
relaxation are equal.

Furthermore, by Proposition 119, the optimal value L* of the Lagrangian
multiplier problem is equal to the optimal objective function value of the LP relaxation of
(NS). Thus, even if we find an optimal value for u, we cannot improve on the LP lower
bound. However, the Lagrangian relaxation method may still be preferred if the
convergence is faster than solving the LP relaxation of the SPP by standard means. We
investigate this issue next.

Observe that the Lagrangian subproblem (LS) can be formulated as a directed
acyclic shortest path problem. Hence, (LS) can be solved very efficiently with special
network algorithms (e.g., [Ahuja et al. 1993, pp. 107-108]).

By assumption, for any given vector 4 we can easily compute L(x), so what is

needed is a way to find a good u (i.e., one that gives a strong upper bound L(x)). This
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can be accomplished with a general iterative technique called subgradient optimization.

The k™ step of the subgradient method is the following: Fixing the vector u*, we
compute an optimal solution y* to the Lagrangian subproblem
min, {d’y+,u"(Sy) ‘Ny=b,y Binary} .
Now, for a specified step size §,, we let
w50 = 4 +6,(SY°)
and go to the (k+1%) step.
Poljak [1967] provides a convergent step length sequence, but in practice this

sequence is very slow to converge and heuristic sequences are used. One such sequence

(e.g., [Bertsimas and Orlin 1991], [Caprara et al. 1999]) for selecting the step length 6, is

defined by:

_A[UB-L(#)]
Y

where UB is an upper bound on the optimal objective function value of (NS), and 4, is a
scalar chosen between 0 and 2. Parameter A, controls the step-size along the subgradient
direction (Sy*).

The classical Held-Karp approach (e.g., [Held and Karp 1971]) halves parameter

A, if for p consecutive iterations no lower bound improvement occurs. Caprara et al.
[1999] implement the following alternate strategy: A, is set to 0.1. For every p=20

subgradient iterations, the best and worst lower bounds computed on the last p
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operations are compared. If these two values differ by more than 1%, the current value of
A is halved. If, on the other hand, the two values are within 0.1% of each other, the
current value of A is multiplied by 1.5. This last decision is motivated by the

observation that either the current u is almost optimal, or the smaller lower bound

difference is a result of an excessively small step-size. Caprara et al. [1999] claim that
compared with classical Held-Karp, this new approach leads to faster convergence to
near-optimal multipliers.

Caprara et al. [1999] terminate subgradient optimization as soon as they estimate
that the procedure converges to a near-optimal Lagrangian vector. This convergence
occurs when the lower bound improvement obtained in the last 300 subgradient iterations
is smaller than 1.0, and, in percentage, below 0.1%.

Marsten and Shephardson [1980] form a Lagrangian relaxation on the
reformulated problem (NS) and use subgradient optimization (incorporated with the Held-
Karp approach) to maximize the Lagrangian multiplier problem. Marsten and
Shepardson report their computational experience on the two-duty problem and suggest
further investigation on three- or four-duty period problems.

We also implement the Lagrangian relaxation on the reformulated problem (NS) .
The Lagrangian multiplier problem is solved using subgradient optimization, and the

improvements reported by Caprara et al. [1999] are incorporated. Our computational

results are presented in Section IIL.D.




B. EXTERIOR PENALTY METHOD

This section presents an exterior penalty method implemented on the column split
SPP reformulation to obtain a good lower bound that can be computed with less effort
than an LP relaxation of (SPP).

Courant by Bazaraa et al. [1993] suggest the use of penalty methods to solve
constrained problems. Subsequently, Camp [1955] and Pietrgykowski [1962] discuss this
approach to solve nonlinear problems. The latter reference also gives a convergence
proof. Fiacco and McCormick [e.g., 1968] solve practical problems.

Let (NS, ) denote the LP relaxation of the reformulated problem (NS). By

moving constraints Sy =0 to the objective function with a penalty parameter, we obtain

the following penalty function:
P(a) =min {dy+a(Sy)(Sy): 2 =b,y 20}
For a fixed value of «, the optimization problem in the right-hand side of the first

equality is called the penalty subproblem (PS). By expressing a(Sy)(Sy) algebraically,

&}
a(S)'(Sy) =2 >, ai(vh -y

jel k=1
we can see that (PS) is clearly a convex non-separable quadratic programming problem
with linear network flow constraints.

As a goes to infinity, a(Sy)'(Sy) goes to zero and constraints Sy=0 are
satisfied. Hence, the penalty function P(a) converges to the optimal objective function

value of (NS, ). In theory, the solution to the penalty problem can be made arbitrarily
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close to the LP relaxation of the original SPP by choosing sufficiently large «z. However,
in reality if we choose a very large « and attempt to solve the penalty problem, we may
have computational difficulties from the ill-conditioning we have induced. With a large
«, more emphasis is placed on feasibility, and most procedures solving the penalty
problem will quickly progress toward a feasible point. Even though this point may be far
from the optimum, premature termination could occur [Bazaraa et al. 1993].

As a result of the above difficulties associated with very large penalty parameters,
most algorithms using penalty functions employ a sequence of increasing penalty
parameters such as the approach we take:

Initialization Step: Let £>0 be a termination scalar. Choose an initial point y,, a
penalty parameter ¢, >0, and a scalar #>1. Let k=1, and proceed to the main step.
Main Step:

1. Starting from y,, solve the following penalty subproblem:
min, , {d'y +a(Sy) () 9 = b}
Let y,,, be an optimal solution and go to Step 2.
2. If a,(Sy)(Sy) <, stop; otherwise, let «,,, = B, , replace k by k+1, and go to

Step 1.
The convex quadratic non-separable continuous problem can be solved in

polynomial time. However, with the integrality requirement, the problem becomes NP-

Hard [Hochbaum 1993].
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(PS) can be solved using specialized nonlinear network algorithms (e.g., Dembo
[1987], Hearn et al. [1987]). Our attempts to obtain a quadratic network solver from
these and other sources have been unsuccessful. We implement our penalty method using
the CPLEX 6.6 [ILOG 2000] quadratic programming solver. The CPLEX quadratic
programming solver uses a barrier method (see, Bazaraa et al. [1993, Chapter 9]) that is
not specially designed for solving quadratic network flow problems. Nevertheless, we
still obtain satisfactory performance from the CPLEX solver.

C. ROW REORDERING

By reordering the rows, we may reduce the number of consecutive ones segments
in the columns of an SPP. Hence, the Lagrangian subproblem or the penalty subproblem
will be smaller and this may improve solution efficiency.

The optimal reordering of the rows to minimize the number of segments of
consecutive ones in an SPP is a combinatorial optimization problem. Enumerating all
row permutations and choosing the one with the minimum number of segments of
consecutive ones is optimal. However, there are m! row permutations, and computing
the number of segments for each of these m! orderings may be more difficult than
solving the original SPP.

A more elegant way to state the row-ordering problem is as follows:

For each pair of rows (i, j), we find the number of columns that have a +1 entry

in one row, but not the other. Let ¢; denote such a number for rows i/ and j. For

. ! ’
instance, for row vectors ¢; and q; :
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a/= 1 0001 1]
a/= [0 0 0 11 0]

Next, we form an undirected graph G, =(N,E), and define a node ie N for

each row a, of A. We also define an artificial starting node s € V. We join all nodes
i# je N byanedge (i, /) € E, and assign the arc length ¢;. Let ¢;=0 forall jeN.
Note that G, is a complete graph (i.e., every pair of nodes in G, is connected by an
edge).

Given G,, we determine a four W (i.c., a cycle that visits each node in the

network exactly once) with the smallest possible value of the tour length, Z c; . The
(i, j)eW

order of the rows associated with ordered nodes ie N \{s} in tour W is the optimal

ordering that minimizes the number of segments of ones in an SPP.

Given a complete graph G, =(XN,F), determining a tour /¥ with the smallest

possible value of the tour length, Z ¢; » is known as the Traveling Salesman Problem
(i, )W

(TSP). TSP is perhaps the most famous problem in all of network and combinatorial
optimization. In a colloguial description of the problem, a salesman must visit each of z
cities exactly once and then return to his starting point. The time taken to travel from city

i tojis c;. Find the order in which the salesman should make his tour so as to finish as

quickly as possible.
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A collection of papers tracing the history and research on TSP can be found in
Lawler et al. [1985]. TSP belongs to the class of NP-Complete problems.

Solving the row-reordering problem to optimality is computationally expensive.
However, some of the polynomial-time TSP heuristics can be used to obtain near-optimal
results quickly.

A simple greedy approach for TSP (and hence the row-ordering problem) is the
nearest neighbor heuristic. We start from node s, and at each iteration we reach a node
that does not close a cycle and minimizes the new path constructed. In particular, after &

iterations, we have a path {s,il,...,ik} consisting of distinct nodes, and the next iteration,
we add an arc (i,i,,) that minimizes c,, over all arcs with i#s,i,....i,. After m

iterations, all nodes are included in the path, which is then converted to a tour by adding
the final arc (i,,,s) .

Given a tour, we may try to improve its length by using a method that changes the
tour incrementally. A popular method for TSP with c; =c;, Vi, j, is the &-OPT heuristic.
The k-OPT heuristic creates a new tour by exchanging k arcs of the current tour with
another k arcs that do not belong to the tour. The k arcs are chosen to optimize the length
of the new tour with O(m*). The method stops when no improvement of the current tour

is possible through a k-interchange. For comprehensive information on the k-OPT
heuristic and other TSP heuristics that can be incorporated to the row-reordering problem,

the reader is referred to Cook et al. [1998].
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D. COMPUTATIONAL RESULTS FOR THE SPP LOWER BOUND
ALGORITHMS IMPLEMENTED WITH THE COLUMN SPLITTING

REFORMULATION

In this section, we investigate the Lagrangian relaxation and the exterior penalty
method with the column split reformulation for various problems including:

) an instance of the aircraft carrier problem,

(i)  sample data from two-, three-, and four-duty period problems, and

(i)  a subset of real-world airline crew scheduling problems.

We also explore the impact of row reordering on the solution times and lower

“bounds obtained using the Lagrangian relaxation and the penalty method.

All sample problems are solved using the CPLEX 6.6 [ILOG 2000] optimization
solver on a Pentium III 650Mhz personal computer with 192Mb RAM. The Lagrangian
relaxation procedure is implemented using the Compaq Visual Fortran [1999]
programming language. The Lagrangian subproblems are solved using the network
simplex solver GNET [Bradley et al. 1975].

Table 1.1 shows computational results obtained for the Lagrangian relaxation
procedure and the penalty method implemented on the reformulated problem (NS) .

The test data with the SPPNW prefix are a subset of real-world airline crew
scheduling problems (also used by Hoffman and Padberg [1993]) obtained from the
online OR;Library [2000] presented by J.E. Beasley. Our computational experience
shows that the number of consecutive ones segments for an airline crew scheduling
problem is proportional to problem size (i.c., the number of consecutive ones segments

increases as the numbers of rows and columns increase). The airline crew scheduling
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problems tested in this chapter are small in size so that we can obtain modest numbers of
consecutive ones segments, and consequently, we can demonstrate the convergence speed
of our algorithms, using real-world data.

The sample data named Carrier is an instance of the aircraft carrier scheduling
problem presented in Chapter VI. The rest of the data are generated randomly to obtain
two-, three-, and four-duty period scheduling problems. The starting time, the length of
each duty period in an alternate schedule, and the corresponding cost coefficient are
generated from a uniform distribution with associated parameters. For a k-duty period
scheduling problem, each alternate schedule is generated to contain at most k segments of
consecutive ones.

Table III.1 lists the solution times and the lower bound values for each example
obtained using the penalty method and Lagrangian relaxation, as well as the simplex, dual

simplex, and barrier methods.
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Data Cols {Rows| Segs | LPLB| IP |[Simplex|Dual| Bar | Penalty Lagrangian Relaxation
Iters 10 100 | 1,000} 10,000

SPPNW23 | 711| 19 | 1,427 {12,317[12,534| 0.03 | 0.04 | 0.06 0.60 [Time | 0.01 0.61 4.61 | 40.59
LB 5238 | 7,409| 8,507| 9,977
Iters 10 100 | 1,000 | 10,000
SPPNW26 | 771| 23 | 1,685} 6,796] 6,796 | 0.04 |0.03 | 0.06 0.52 [Time | 0.01 0.71 6.70 [ 52.00
LB 3,799 | 5,326 | 5,531 6,098
Iters 10 100 | 1,000 | 10,000
SPPNW28 |1,210{ 18 [ 3,905| 8,169| 8,298 | 0.05 |0.05| 0.08 0.98 [Time | 0.17 1.32] 11.20] 29.00
LB 4,736 | 6,504| 6,903 7,092
Iters 10 100 | 1,000 | 10,000

SPPNW31 2,662 26 [11,470| 7,980 | 8,038 [ 0.14 |0.10| 040 229 [Time [ 0.55 4.72 | 40.21 ] 391.00
LB 2,917 | 3,851 | 4,122 4,827

. Iters 4 10 | 1,000 | 10,000
Carrier 2,248| 622 544 | 447 460 | 0.18 [0.13]0.25 0.70 |Time | 0.04 0.09| 7.69| 83.00
LB 305 418 440 440
Iters 2 4 100 | 10,000

Two-
Duty [ 2,612 129 60 423 431 0.84 |0.64 | 0.90 0.45 |{Time | 0.01 002 042{ 39.00
LB 398 407 | 416.3 | 422.20
Iters 3 10| 1,000] 10,000
1,244 | 1,318 1.10 [ 0.89 | 1.52 0.63 |[Time 0.05 0.10 8.00| 96.00
) LB 1,136 1,198 { 1,239| 1,239
Three- Iters 4 10 100 | 10,000
Duty 1 44341 523 313 | 6,236 | 6,353 2.16 [0.88| 1.40 0.83 [Time 0.07 0.09 0.93 | 105.00
LB 4,513 5,192 6,205| 6,228
Three- Iters 5 10 100 | 10,000
Duty I 6,158| 541 367 | 4,622 1 4,953 263 11.16 ] 1.83 1.01 |Time 0.10 0.34 370 43.00
LB 4,236 4,449 | 4,513| 4,615
Four- Iters 10 100 | 1,000 ] 10,000

Duty I 8,032 541 | 2,187112,243 12,450 | 14.17 |2.78 | 2.86 2.89 |[Time | 0.25 1.60} 17.00 ] 163.00
LB 7,215 | 8,133 110,098 11,917

Two-
Duty II 5,896] 256 5

—

Four- Not  [iters 2 3 100 | 10,000
Duty Il 5,845| 503 929 133 133 6.15 | 1.55{ 2.34 |converged{Time 0.04 0.04 1.23]122.00

LB 119 | 132.65 | 132.65| 132.65
Four- Iters 2 5 100 | 10,000

Duty III 5,845 541 | 1,758 4,155 | 4,432 | 29.16 |7.27 | 3.15 2.68 |Time 0.08 0.10} 1.47 |150.00
LB 3,533 | 3,823 3,823 | 3,852

Table II.1. Comparison of Lagrangian Relaxation and Exterior Penalty Methods
with Linear Programming Solvers. From left to right, Cols, Rows, and Segs refer to
the numbers of columns, rows, and consecutive ones segments, respectively. LPLB
denotes the lower bound value obtained by solving the LP relaxation of the original SPP.
IP is the optimal objective value of the original SPP. Simplex, Dual, and Bar refer to LP
relaxation solution times using the simplex, dual simplex, and barrier methods,
respectively. Iters denotes the number of subgradient iterations. LB is an abbreviation
for lower bound. Time and lower bound results are listed for various numbers of
subgradient iterations. The Not converged statement for the Four Duty II sample problem
means that the penalty method does not converge to the optimal solution, due to ill-
conditioning. All times in the table are in 650Mhz Pentium III seconds.
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For airline crew scheduling sample problems that do not exhibit a consecutive
ones structure, the convergence of Lagrangian relaxation is not satisfactory. By contrast,
for most of the sample duty scheduling problems, Lagrangian relaxation yields a lower
bound faster than the other methods. However, obtaining a lower bound within 1% of the
LP relaxation lower bound using Lagrangian relaxation usually requires an excessive
number of iterations and long solution times.

Fo.r all sample problems except Four-Duty II, the penalty method converges to the
LP lower bound in at most three iterations. It fails to converge for Four-Duty IL.

Our computational experience shows that, for certain problems with consecutive
ones structure, the Penalty method presented yields lower bound values faster than the
simplex, dual simplex, and barrier methods. Using a specialized quadratic network solver
would presumably result in even further improvements in the penalty subproblem
solution times. | However, the reliability of this technique, especially on larger problems,
is suspect.

Next, we investigate the impact of row reordering on the solution times and lower
bounds obtained using the penalty method and the Lagrangian relaxation. Because the
carrier model and the k-duty period problems in Table III.1 are generated with intrinsic
row ordering that exhibit columns with consecutive ones, we exclude these examples
from our experimentation. The airline crew scheduling sample problems that do not
exhibit a consecutive ones structure are of special interest. Given the existing row order,
a 2-OPT TSP heuristic is used to minimize the number of segments of consecutive ones

for each sample problem.
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Table III.2 lists the solution times for each sample problem using the penalty
method before and after implementing a 2-OPT row-reordering heuristic. The sample
problems are obtained from the online OR-Library [2000] presented by J.E. Beasley.
Because the number of airline crew scheduling samples in Table III.1 is only four, we

include additional samples of various sizes.

Data Cols |Rows |OrgSegs| ReordSegs |%DecSegs|ReordTime|LPRel|OrgPen|ReordPen|%DecTime
SPPNWO6 [6,774] 50 | 32,566 | 20,161 38 0.50 0391672 | 12.86 23
SPPNWO07 [5,172| 36 [ 20,360 | 13,954 31 0.22 023 | 6.65 4.44 33
SPPNWO09 {3,103] 40 | 11,354 7,748 32 0.11 0.25] 5.20 2.59 50
SPPNW11 [8,820] 39 | 33,065 | 24,786 25 0.38 0.39 | 21.12 | 11.65 45
SPPNW23| 711 19 1,427 1,013 29 0.00 0.03 ] 0.60 0.31 48
SPPNW26| 771| 23 1,685 1,222 27 0.00 0.04 | 0.52 0.33 37
SPPNW2711,355| 22 | 4,372 2,634 40 0.00 0.14 | 1.25 0.83 34
SPPNW28|1,210| 18 | 3,905 2,450 37 0.00 0.05| 0.92 0.60 35
SPPNW29 [2,540{ 18 7,322 5,516 25 0.05 0.13 | 4.43 2.87 35
SPPNW31(2,662| 26 | 11,470 7,112 38 0.05 0.14 | 4.59 2.21 52
SPPNW33 [3,068] 23 | 11,117 8,243 26 0.11 0.26 | 5.83 2.81 52
SPPNW35 /1,709 23 | 4,839 3,887 20 0.06 0.18 | 2.26 1.12 50
SPPNW36 (1,783 20 | 6,823 3,883 43 0.06 0.27 | 2.92 1.70 42
SPPNW38 11,220{ 23 | 3,975 2,258 43 0.00 0.16 | 1.72 0.73 58
SPPNW43 [1,072] 18 | 2,443 1,899 22 0.00 0.56 | 0.70 0.54 23

Table I11.2. Comparison of the Solution Times Obtained Using the Exterior Penalty
Method before and after Row Reordering. From left to right, Cols, Rows, OrgSegs,
and ReordSegs refer to the numbers of columns, rows, and consecutive ones segments
before and after row reordering, respectively. %DecSegs denotes the percent decrease in
the number of consecutive ones segments after row reordering. Reordtime is the time to
implement the 2-OPT row-reordering heuristic. LPRel denotes the LP relaxation solution
time using the simplex method. OrgPen and ReordPen refer to the solution times using
the exterior penalty method before and after row reordering, respectively. %DecTime
denotes the percent decrease in the solution time after row reordering. All times in the
table are in 650Mhz Pentium III seconds.

By reordering the rows of each sample problem using a 2-OPT TSP heuristic, we
obtain a 32% average decrease in the number of segments of consecutive ones.

Furthermore, the solution times obtained using the exterior penalty method before and
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after reordering the rows improve an average of 41%. For SPPNW43, after reordering,
we obtain a better solution time using the exterior penalty method than solving the
; original LP relaxation using the simplex method.
k Table II.3 lists the solution times and the lower bound values obtained using the

Lagrangian relaxation before and after reordering the rows for each example in Table

Im.2.
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Before Reordering After Reordering

Data LPLB IP |LPRellters 10, 100| 1,000, 10,000 10 100/ 1,000, 10,000
SPPNWO06 | 7,640.0f 7,810| 0.39 {Time | 2.09] 15.16|128.00 1278 1.21] 10.00] 99.69] 870.00
LB |1,897| 3,128] 3,385 3,949| 1,972] 3,399 3,687 4,507
SPPNWO07 | 5,476.00 5,476 0.23 |Time | 1.26] 10.22] 84.00 797 0.82] 6.26] 52.00] 558.00
LB [2,484] 3,854| 4,073] 4,630] 2,948 4,311 4,650 5,002
SPPNWO09 | 67,760.0] 67,760 0.25 Time | 0.72| 5.44| 49.27 460{ 0.39] 3.29] 28.34] 252.00
LB [7,263)13,130| 14,268 16,451|10,029] 14,165] 15,841 16,947
SPPNW11 [11,6254.5116,256| 0.39 {Time| 2.20] 14.89|117.00| 1,184.00| 2.03| 13.96/113.00] 1,080.00
‘ LB 19,252/ 13,375/ 14,422] 17,936/ 10,155/ 14,717}16,336 21,631
SPPNW23 | 12,317.0{ 12,534| 0.03 Time| 0.01| 0.61] 4.61] 40.59| 0.00] 044 422 33.00
. LB 15,238] 7,409 8,507 9,977| 5,959 7,715| 8,922 10,062
SPPNW26 | 6,796.0f 6,796 0.04 Time | 0.01} 0.71} 6.70{ 52.00 0.00] 0.44| 3.73| 31.00
LB |3,799] 5,326 5,531 6,098 4,725 5,526 5,933 6,456
SPPNW27 | 9,877.5 9,933{0.14 [Time| 0.22| 1.59] 1230 38.72| 0.11] 0.94] 3.46 3.46
LB 4,303] 7,200 7,996] 8,562| 6,274| 8,270| 8,562 8,562
SPPNW28 8,169.0 8,298/ 0.05 |Time | 0.17] 1.32] 11.20f 29.00{ 0.05( 0.77; 1.00 1.00
LB 4,736 6,501] 6,903] 7,092| 6,624| 6,954] 7,092 7,092
SPPNW29 | 4,185.3| 4,274| 0.13 [Time| 0.33| 3.13| 27.79] 284.00; 0.28 2.04| 17.74] 178.00
LB [2,441| 2,834] 2,943 3,201| 2,596{ 2,859 3,076 3,262
SPPNW31 7,980.0 8,038] 0.14 Time| 0.55] 4.72| 40.21] 391.00[ 0.27| 2.58| 24.22] 230.00
LB [2,917] 3,851] 4,122| 4,827 3,253 4,284] 4,564 5,829
SPPNW33 6,484.0 6,678 0.26 [Time| 0.72| 5.27| 42.62| 42337 049 4.17) 33.00 367.00
LB [2,574] 3,687] 3,896| 4,286 2,700| 3,875 4,132{ 4,836
SPPNW35 7,206.0f 7,216| 0.18 [Time| 0.22] 1.81] 14.34] 127.00{ 0.17| 1.26] 10.77|  52.00
LB 14,488) 5,727 6,158 7,138 5,140[ 5,940 6,537 7,141
SPPNW36 | 7,260.0| 7,314| 0.27 [Time| 0.27| 2.63| 24.55 209.00| 0.17| 1.42| 12.46] 100.00
LB [2,568] 4,137| 4,434 5,061] 3,217| 4,505] 4,819 5318
SPPNW38 5,552.0 5,558/ 0.16 [Time| 0.16] 1.42| 10.71] 125.00( 0.11] 0.77] 4.94 5.00
LB [3,540| 4,370] 4,561 4,798| 4,072| 4,727] 4,798 4,798

SPPNW43 8,897.0] 8,904/ 0.56 [Time| 0.11] 0.88] 7.08] 69.00] 0.06| 0.66| 5.55 53.00
LB |5,513] 7,283 7,847 8,438| 6,013 7,617 8,125 8438

Table IIL.3. Comparison of the Solution Times and Lower Bound Values Obtained
Using the Lagrangian relaxation before and after Row Reordering. LPLB denotes
the lower bound value obtained by solving the LP relaxation of the original SPP. IP is the
optimal objective value of the original SPP. LPRel denotes the LP relaxation solution
time using the simplex method. Iters denotes the number of subgradient iterations. LB is
an abbreviation for lower bound. Solution times and lower bound values obtained using
the Lagrangian relaxation before and after row-reordering are displayed for various
numbers of subgradient iterations. All times in the table are in 650Mhz Pentium III

seconds.
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After reordering the rows, the solution times and the lower bound values obtained
using the Lagrangian relaxation improve an average of 41% and 13%, respectively.

Our computational results show that, by using a row reordering heuristic, or by
logically ordering the rows of the seminal SPP (e.g., Bausch et al. [1995, pg. 7]) to obtain
minimal consecutive ones segments, the SPP lower bound algorithms presented here can
be implemented with significantly less computational effort.

We also observe that the convergence rate of the Lagrangian relaxation and the
exterior penalty methods are inversely proportional to the number of consecutive ones
segments. That is, the efficiency decreases as the number of ones segments increases.

" The airline crew scheduling problems tested here are small. However, the ratio of
the number of segments to the number of columns is relatively high. Because the size of
each sample problem is small, the LP relaxation of each sample SPP can be solved in a
short amount of time.

On the other hand, the convergence rate of the exterior penalty method and the
Lagrangian relaxation are more dependent to the number of consecutive ones segments
than on the size of the seminal SPP. When we reorder the rows of each sample problem
using a 2-OPT heuristic, the size of the sample does not change, but we reduce the
number of consecutive ones segments. Moreover, when we reduce the number of
consecutive ones segments for each sample problem, the exterior penalty method and the

Lagrangian relaxation converge faster.
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IV. INTEGRATING A ROW SPLIT TECHNIQUE WITH BENDERS
DECOMPOSITION

This chapter presents a new algorithm to solve binary programming problems
(e.g., SP, SC, or SPP) whose rows contain segments of consecutive ones. The algorithm
first constructs a reformulation of the original binary problem by splitting each row to
obtain exactly one segment of consecutive ones and additional auxiliary variables in the
newly formed rows. The auxiliary variables are used to link the split rows so that they
collectively represent equivalent feasible solutions. The special structure in the
reformulated problem invites the use of Benders decomposition to solve, or at least bound
the solution of SP, SC or SPP. The performance of the new algorithm is tested on a
subset of the U.S. Navy aircraft carrier scheduling problem, and the airline crew
scheduling data obtained from OR-Library {2000].
A. ROW SPLITTING TECHNIQUE

Consider the SPP given by (SPP) in Chapter II.

! .
In (SPP), for each row vector a; we define a segment of ones as a consecutive set

of column elements a j=L0+.,+p,-LL+p,, such that a;=1 for

i]"

j=l,..l;+p;, where a;, , =0 if [;>1 and a =0 if [+ p,<n. Let K, be the set

i+ p;+1

of segments of ones for row i containing the information where each segment starts and

ends in terms of pairs of ordered column indices (e.g., K;={(};,};+ p;)s-reeom-. H. K]
denotes the number of segments in row i. Let @ be the set of rows that have more than

one segment of ones (i.e., ®={i:|K,| >1} ). Let a' be a vector of size n, such that
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a; =1 if the 7™ element of row i is in the k™ segment of X in (SPP), and a; =0

Ii|
otherwise. Note that the sum of a* for all & is equal to the vector a; (ie., Y af =a;).
k=1

Using the split vectors al , (SPP) can be equivalently formulated as:

minimize Zc X (IV.l.a)
Jj=1
(RS) st Za,jxj =1 Vigd (IV.1.b)
k|-
Zay 1+Zs =1 Vied (IV.l.c)
J=1
Zayxj —st Vie®,k=2,..,|K| (IV.1.d)
Jj=1
x,,s{ binary Vied,jand k=1,..,|K;|-1 (IV.l.e)

Binary variables s* are used to bind the split vectors a/ , k=1,...,
ary i P i

that the original constraints of (SPP) are preserved.
Using matrix notation, (RS) can be written as:
minimize c'x

(RS) st Fx+Gs=b

x,s binary
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Proposition IV.1: If (x",s") is an optimal solution to (RS), then x™ is an optimal

solution to (SPP).

Proof: The objective functions of (SPP) and (RS) are the same. We need to show that

the feasibility of each original constraint in (SPP) is preserved in the reformulated

problem (RS). If |K,.|=1 for some row i of (SPP), then row i is unchanged in (RS).

K.

However, if |K,.|>1, then row vector ai' is split into vectors af for all k=1,...,
Suppose that [K,.| >1 for some row i in (SPP). Let N, be the set of column indices that
have non-zero entries in row i. To satisfy constraint i, exactly one of the variables x;
must be equal to one for all j e N,. Suppose, x, =1 for a feasible solution to (SPP). Let
the non-zero entry corresponding to x, be in segment » of row i (i.e., a; =1).

If  is the first segment, then s =0 in (RS) for all % =1,...,|K‘.|—1.
Consequently, variables x; =0 for all je N, \/. If r>1, then s/ =1 implying that

sk =0 forall k={L,...,

K,.|—1}\r, and x; =0 forall jeN,\/.
Hence, we have shown that the reformulated problem forces x <1. Now we need

to show x>1 is forced as well. Suppose x,=0 for all jeN,. Then, to satisfy

constraint i of (IV.1.c), exactly one of s} must be equal to one for all £ =1,...,|K ,.| -1, say
s/ =1. However, this result violates constraint i, k=(r+1) of (IV.1.d). Thus, x2>1 1S

also forced in (RS). QED
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Using a similar logic it can be shown that the LP relaxation of (RS) and (SPP) are
also equivalent.

Because matrix F of (RS) has exactly one segment of consecutive ones in each
row, then the transpose matrix F’ has exactly one segment of consecutive ones in each
column. Hence, F' is an interval matrix. Interval matrices are TU (Corollary 2.10,
[Nemhauser and Wolsey 1988, pg. 544]). By Proposition IL.4, a matrix is TU if and only
if the transpose of this matrix is also TU. Thus, F is a TU matrix.

Matrix G of (RS) has exactly one +1, and one —1 in each column. Therefore, by
Proposition IL6, G is also a TU matrix.

Observe that the dual of the LP relaxation of (RS) can be solved using the
Lagrangian relaxation or the exterior penalty method to obtain lower bound values on
(RS) or (SPP).

The following example illustrates row splitting of a numerical SPP.

Example IV.2: Consider the following SPP where m =6, and n=38.
minimize c¢'x
(SPP) s.t. Ax=e

x binary

d= [3 2 5 6 9 4 3 5]




We split the rows of 4 to obtain the following matrix, F.

a;, |1 1 1 0 0 0 0 0
al 1o 0o 0 0 0 0 1 1
a3 |1 0 0 0 0 0 0 0
a o 0 0 1 1 1 0 0
a; o 0 1 1 0 0 0 0
F=a |0 0 0 0 0 0 0 1
ay o 1 1 1 1 0 0 0
as |1 0 0 0 0 0 0 0
a 1o o 0 1 1 0 0 0
@i 1o o0 0 0 0 0 0 1
a¢ |1 1 1 1 0 0 0 0
ai o 0o 0 0 0 0 0 1

Thus, the equivalent reformulation is as follows:

min  3x +2x, +5x;, +6x, +9x; +4x; +3x; +5 x5

s.t. x, tx, +tx i+ 5] = 1
+x, +Xxi-s = 0

: 1 =
X, +s, = 1
tx, Txs X E -5, = 0

i

+x3 +x4 +Ss = 1
+x85 —S; = O
+x, tXx; +x, + X = 1

12 _
ba +85 +8; = 1
+x, : -5 = 0
+ X! -3 = 0

: 1

X tx, tx tx, E tse = 1
+ ! —sg = 0

H i 1 1 1 2 1
xl’ x2’ x3’ x4> x5= x6’ x7’ x8’: S]: Sz: 53: 55: Ss: S6 S {0,1}
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For instance, if x, = 1, then s} and s must equal zero. Consequently, x,, x, and x

must equal zero as well. Hence, the original constraint,

X +x, + X+ x5 =1
is satisfied. If x, =1, then s = 1. Consequently, s; =x =x, =x; =0, and the original
constraint above is still satisfied. Observe that x, = x, =x; =x; =0 is infeasible in the

reformulated problem.

End of Example IV.1
Different equivalent reformulations of (SPP) can also be derived using the row

splitting technique. For instance, Constraints (IV.1.c) and (IV.1.d) can also be written as:

D ax; +s, =1 Vied (IV.2.2)
Jj=1

K|-1 (IvV.2.b)

vy

n
Za{‘.x.—sl.k—1+sf=0 Yied,k=2,..,
=

n

3 alflx, — s =0 Vie® AV.2.c)

Note that the LP relaxation of the equivalent reformulation (IV.2) is equal to the LP

relaxation of (SPP).

With minor adjustments, the arguments stated in this section for the reformulation

of SPP also hold for SC and SP.
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B. IMPLEMENTING BENDERS DECOMPOSITION ON THE ROW SPLIT
REFORMULATION

The special structure in (RS) suggests the use of Benders decomposition.

Benders decomposition isolates and exploits special problem structure by fixing
some of the variables. Benders decomposition for mixed-integer programming 1s
described in Benders [1962]. For an expository review of Benders decomposition the
reader is referred to Parker and Rardin [1988, pp. 237-249].

Consider the reformulated problem (RS).

minimize ¢'x (Iv.3.3)
(RS) s.t. Fx+Gs=b (IV.3.b)
x,s binary (IV.3.c)

In Section A, we have shown that F is a TU matrix. To identify the special
structure of F, we fix variable s in (RS) to a 0-1 vector §, and move GS§ to the right-hand

side of the equality (II1.3.b). Thus, we obtain the following formulation:

minimize c¢'x (IvV.4.a)
(RSF) st Fx=b-Gs (IV.4.b)
x binary (IV.id.c)

The column vector (b—GS) is integral. By Theorem II.5, the LP relaxation of

(RSF), obtained by relaxing (IV.4.c) to 0<x <1, yields integral solutions. Moreover, we
can ignore the upper bound x <1 for an SPP, because x intrinsically cannot be greater

than one. Thus, (RSF) can be equivalently written as:
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minimize ¢'x (Iv.5.a)

X

(RSF) s.t. Fx=b-GS$ IV.5.b)

x>0 (IV.5.0)

Because variables s are fixed to §, (RSF) is a restriction of (RS). Hence, the
objective function value of (RSD) is an upper bound on the objective value of (RS).

Taking the dualt of (RSF), we obtain the following problem:

maximize p'(b- GS) (Iv.6.2)

P
(RSD) s.t. pF<c (IV.6.b)
p free (IV.6.c)

where the row vector p represents the dual variables. We may assume that ¢ is an
integral vector: by scaling ¢ with a sufficiently large number, we can truncate ¢ to an
integral vector. This transformation does not appreciably affect the optimal value of x in
(RSF). Thus, by Theorem ILS5, if there exists a finite optimal solution to (RSD), then
(RSD) will yield integral solutions.

Moreover, (RSD) can be transformed to a minimum cost network flow problem?.
Observe that the constraint coefficient matrix F' of (RSD) is an interval matrix. In
Chapter II Section A, we show that an interval matrix can be transformed to a network

matrix using elementary matrix operations.

TDuals and duality theory are introduced in introductory texts such as Bertsimas and Tsitsiklis [1997].
iNetwork flow problems are introduced in introductory texts, e.g. Ahuja et al. [1993, Chapters 9, 10, 11]
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Primal problem (RSF) is bounded; however it may be infeasible for some values
of 5. Without loss of generality, we may assume that there exists a feasible solution to
(RSF) for some value of s. This assumption holds because (RSF) can be elasticized using
artificial variables with sufficiently high cost coefficients in the objective function. If
(RSF) is infeasible for some value of s, then (RSD) is either unbounded or infeasible by a
corollary of the duality theorem of LP. Because p is a free variable and F'is a 0-1 matrix,
(RSD) cannot be infeasible. Thus, (RSD) can only be unbounded. We may avoid this

problem either by elasticizing (RSF), or by forcing bounds on p in (RSD). Let us define

some bounds on p in (RSD).
maximize = p'(b - GS) (IV.7.3)
(RSD) st pF<c (IV.7.b)
I<p<u. (IV.7.c)

Hence, by the strong duality theorem of LP, if (RSF) has an optimal solution, then so

does (RSD), and the respective optimal costs are equal.

Let {p',pz,...,pg} be the set of extreme points of {{<p<u:p'F<c}. Let

H < Q. Then the problem,

minimize z (IvV.8.a)
z free, se{0,1}
(RSREL) st z2(p")(b-Gs) h=1,..H (IV.8.b)

is a relaxation of problem (RS). Problem (RSREL) is called Benders relaxation and

problem (RSF) is called Benders restriction.
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For fixed values of variable p, Benders relaxation problem yields a lower bound
for the reformulated problem (RS). And, for fixed values of dual variable s, Benders
restriction yields an upper bound. Benders decomposition algorithm solves Benders
relaxation and Benders restriction problems alternately to obtain monotonically

improving lower bounds (if the relaxation is solved exactly) and non-monotonic upper

bounds, respectively. Because polyhedron {l <pLu:pF< c} has a finite number of

extreme points, improved upper and lower bound values in Benders decomposition
converge to an optimal solution in a finite number of iterations.

We present below an iteration diagram of the Benders decomposition algorithm
implemented on the reformulated problem (RS).
Initialization Step: Select a convergence tolerance parameter £ >0, and an integrality
tolerance & >0 (i.e., in the optimal solution to a B&B subproblem, the value of a
variable is considered integral if it lies within & of an integer) for the solution of Benders
relaxation problems. Specify a termination scalar X that limits the number of iterations
required. Let the initial upper bound (UB) be +c, and the initial lower bound (LB) be

—o0. Choose an initial point §. Let k=1, and proceed to the main step.
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Main Step:
1. Solve the Benders restriction problem with the fixed values of s obtained
either from the initialization step, or from the solution of the last Benders

relaxation problem.

Let UB = min {UB, optimal value of Benders' restriction} .

2. If k<K and UB-LB> ¢, then
Use optimal dual variables from the solution of the last Benders
restriction problem to define a new constraint (cut) in the Benders
relaxation problem.

Solve Benders relaxation problem using 6 > 0.

Let LB = max {LB, Optimal value of Benders' relaxation} .

Let k=k+1
Go to Step 1.
Else,
Stop.
End of if statement.

The Bender's restriction problem (RSD) is a minimum-cost pure network flow
problem. Hence, (RSD) can be solved very efficiently with special network flow

algorithms (e.g., [Ahuja et al. 1993, Chapters 9, 10, 11]).
The number of columns in (RSD) is the same as the number of columns in the

original (SPP). The number of rows in (RSD) is equal to the total number of segments of
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ones in (SPP). The number of binary variables in the Benders relaxation problem
(RSREL) is equal to the sum of segments of ones minus one, for each row in (SPP).

By reordering the columns, we may reduce the number of consecutive ones
segments in the rows of an SP, SC, or SPP. Hence, the Bender’s relaxation problem has
smaller sizes that may further yield improved solution performance. The arguments
stated in Chapter II, Section C for row reordering can similarly be used for column
reordering, simply by replacing rows with columns.

C. GENERATING IMPROVED FEASIBLE SOLUTIONS FOR SP AND SC
PROBLEMS

1. SP Problem

Using the same notation for (SPP), the row split reformulation problem for (SP)

can be written as:

maximize c¢'x (IvV.9.2)
(RSSP) s.t. Fx+Gs<b (IV.9.b)
x,s binary Iv.9.c)
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The Benders restriction and Benders relaxation problems for (RSSP) are given by

(RESSP) and (RELSP), respectively:

maximize c¢'x (IV.10.2)
(RESSP) s.t. Fx<b-Gs (IV.10.b)
x20 (Iv.10.c)
maximize z (Iv.11.a)
z free, se{0,1}

(RELSP) s.t. z<(p")(b-Gs) h=1,.,H (IV.11.b)

|Ki|-1
> st<l Vied (IV.11.0)

k=1

where p” is the dual price vector obtained from (RESSP) in iteration 4 of the Benders
decomposition algorithm.

Constraints (IV.11.c) ensure that (RESSP) is feasible for any value of § obtained
from (RELSP). Every feasible solution x to (RESSP) is also feasible to (SP). Hence,
by using the Benders decomposition algorithm, we can generate improved feasible
solutions (i.e., feasible solutions having an improved objective value) for an SP problem.

2. SC Problem

Consider the following row split reformulation problem for (SC).

minimize c'x (IV.12.3)
(RSSC) st Fx+Gs2b (Iv.12.b)
x,s binary (IV.12.c)
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The Benders restriction and Benders relaxation problems for (RSSC) are given by

(RESSC) and (RELSC) , respectively:

minimize ¢'x (IV.13.2)
(RESSC)  s.t. Fx2b-Gs (IV.13.b)
x20 (Iv.13.c)

I:l?rz(eligl{%zl}e z (IV.14.2)
(RELSC) s.t. z2(p")(b-Gs) h=1..H (IV.14.b)

Note that (RESSC) is feasible for any value of § obtained from (RELSC).
Every feasible solution x to (RESSC) is also feasible to (SC). Hence, the Benders
decomposition algorithm can be used to generate improved feasible solutions for an SC

problem.

(RELSP) and (RELSC) are integer programming problems which can be
expensive to solve to optimality during the implementation of the Benders
decomposition. By solving (RELSP) and (RELSC) to feasibility within a required
optimality tolerance 6 >0 (i.e., the objective value of the admissible feasible solution is
within about 100.8 % of the optimum), we may still obtain improved feasible solutions

for an SP or SC problem, respectively (e.g., [Brown et al. 1987b]).
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D. COMPUTATIONAL RESULTS FOR THE NEW ROW SPLIT BENDERS
DECOMPOSITION (RSBD) ALGORITHM

The U.S. Navy aircraft carrier scheduling problem is one of many that inherently
have long segments of consecutive ones in their rows. A partial list of other applications
in the literature includes: Brownell and Lowerre [1976], Baker [1976], Bartholdi et al.
[1980], Wing [1986], Brown et al. [1987a], Brown et al. [1990], Bausch et al. [1998].
Table IV.1 shows results with real data and the new row split Benders decomposition
algorithm.

The sample problems are generated for twelve carriers and for various
maintenance period skifting scenarios, using the ten-year schedule data taken from
OPNAV Report 4710 [1996a). Maintenance period shifting of an aircraft carrier is
described in detail in Chapter V1.

Because it takes only one day for an aircraft carrier to transit from the Persian
Gulf to the Mediterranean, sample problems are generated from a scenario that unifies the
coverage of CENTCOM and EUCOM AORs. That is, the two AORs are considered as
one, and the coverage is maximized (or the uncovered periods are minimized) for the
unified AOR. We adapt this scenario to obtain various numbers of consecutive ones
segments for each sample problem.

Table IV.1 shows the solution times for both the original SPP model and the new
algorithm. Additionally, the number of Benders iterations is provided for each sample

problem to indicate the convergence rate of the decomposition.
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Problem Cols Rows Segs Ratio: Segs/Cols | Iters |CPLEXB&B| RSBD
1 877 579 30 0.03 2 1.1 0.1
2 896 581 43 0.05 4 1.2 0.2
3 914 582 60 0.07 1 1.2 0.1
4 932 609 93 010 4 1.4 0.3
5 945 621 114 0.12 4 1.7 0.3
6 925 629 155 0.17 3 1.5 0.2
7 954 638 162 0.17 5 1.7 0.3
8 960 643 173 0.18 5 1.7 03
9 972 643 189 0.19 4 1.6 04

10 1,024 667 230 0.22 5 1.9 04
11 1,113 676 244 0.21 5 1.9 1.7
12 1,168 682 431 0.37 17 2.3 34

Table IV.1. Computational Results for the Row Split Benders Decomposition. From
left to right, Cols, Rows, and Segs refer to the numbers of columns, rows, and
consecutive ones segments, respectively. Iters denotes the number of Benders iterations.
Solution times for both the original SPP model and the row split Benders decomposition
(RSBD) are listed as well as the number of Benders iterations (or cuts) generated by the
row split Benders decomposition. Each original SPP is solved directly using CPLEX 6.6
[ILOG 2000]. All computations are implemented on a Pentium III 550Mhz personal

computer with 384Mb RAM.

The new algorithm yields faster solution times for all sample problems but sample
12. Considering the numbers of Benders iterations, the convergence speed of the new
algorithm is satisfactory for all sample problems.

Table IV.1 shows some instances where the row split Benders decomposition
solves the set partition faster than conventional means. We conjecture that, given the
difficulty of solving set partitions, there exist instances that the row split Benders
decomposition will solve that defy conventional means.

Next, we investigate the impact of column reordering on the performance of our
new algorithm. We also test the performance of the new algorithm in generating

improved feasible solutions for some instances of SP, SC, or SPP.
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Because the carrier model is generated with intrinsic column ordering that
exhibits rows with consecutive ones, we omit it from our experimentation. Here, airline
crew scheduling problems that do not exhibit a consecutive ones structure are of more
interest. Our computational experience shows that the number of consecutive ones
segments in the rows of an airline crew scheduling problem is proportional to the problem
size (i.e., the number of consecutive ones segments increases as the numbers of rows and
columns increase). The airline crew scheduling problems tested in this chapter are small
so that we can obtain reasonable numbers of consecutive ones segments. Consequently,
we can isolate the structure we seek using real-world data, and actually solve the SPPs
with the row split Benders decomposition. The samples in Table IV.2 are even smaller
than those in Tables III.2 and III.3, where we merely seek a good lower bound that can be
computed with less effort than an LP relaxation of (SPP).

Here, we either attempt to solve the original integer programming problem to
optimality or to obtain a feasible solution for it, using our new algorithm. In either case,
the problems we try to solve are NP-Complete. Our computational experience shows that
the convergence speed of the new algorithm decreases as the number of consecutive ones
segments increases. Hence, to obtain modest numbers of consecutive ones segments, and
accordingly to allow the size of the binary Benders relaxation problem to be
computationally tractable, we choose smaller size airline crew scheduling problems in
this chapter than the samples tested in Chapter III.

Given the existing column order, a 2-OPT TSP heuristic is used to minimize the

number of segments of consecutive ones for each sample problem. Table IV.2 lists the
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number of consecutive ones segments before and after column reordering, as well as the

time to implement the 2-OPT heuristic.

Ratio: Ratio:
Data Cols [Rows|OrgSegs|ReordSegs | OrgSegs/Cols|ReordSegs/Cols| %DecSegs | ReordTime
SPPNWO8 | 435| 24 | 493 258 1.13 0.59 48 2.04
SPPNW23 | 711| 19 | 552 272 0.78 0.38 51 9.66
SPPNW26 | 771 | 23 611 359 0.79 0.47 41 . 9.33
SPPNW28 {1,210 18 | 971 538 0.80 0.44 45 42.00
SPPNW40 | 405| 19 | 524 248 1.29 0.61 53 2.42
SPPNW41 198 17 | 229 122 1.16 0.62 47 0.22

Table IV.2. Comparison of the Number of Consecutive ones segments before and
after Column Reordering. From left to right, Cols, Rows, OrgSegs, and ReordSegs
refer to the numbers of columns, rows, and consecutive ones segments before and after
column reordering, respectively. %DecSegs denotes the percent decrease in the number
of consecutive ones segments after column reordering. Reordtime is the time to
implement the 2-OPT column-reordering heuristic. All times in the table are in 650Mhz
Pentium I seconds. The column reordering is implemented using Compaq Visual
Fortran [1999].

By reordering the columns of each sample problem using a 2-OPT TSP heuristic,
we obtain a 48% average decrease in the number of segments of consecutive ones.

Next, we investigate the performance of the new algorithm in generating feasible
solutions for an SPP. Table IV.3 lists the solution times and the upper bound values
obtained using the row split Benders decomposition algorithm before and after reordering

the columns for each example in Table IV .2.
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Data IPObj {[PTime (% o Benders Decomposition

Iters 1 25 50 75 89 96 150
TimeBe 0.3 78.4 189.5 372.6 471.7 528.0f 1,112.0

SPPNWO0S | 35,894 { 1.21 | 0.5 | 0.25 [TimeAf 0.2 44.5 103.7 187.5 267.8 3104
UBBe {12,276,342|5,337,328| 3,657,892 2,345,726]  934,587| 934,587, 899,452

UBAf | 7,227,440[3,623,764| 1,345,687 957,484 75,394 38,613
Iters 1 25 50 75 100 111 150
TimeBe 0.4 90.2 183.5 4124 603.5 7204 1,321.0

SPPNW23 | 12,534 | 0.71 | 0.6 | 0.30 [TimeAf 0.3 49.9 1233 201.1 3242 342.6]
' UBBe [10,331,450{7,455,872| 5,385,912 3,713,900] 3,333,562| 3,087,375/1,004,562

UBAf | 9,173,058(6,386,058] 3,767,935| 1,528,487| 856,840 14,583
Iters i 25 50 75 100 125 150
TimeBe 0.2 100.3 199.4 476.5 631.3]  1,087.0{ 1,434.0
SPPNW26 | 6,796 | 0.44 | 0.6 | 0.35 [TimeAf 0.1 76.4 143.5 2894 403.1 634.7 923.6
' UBBe |11,325,755/6,325,207| 3,655,376 3,212,098] 3,080,354] 1,354,730] 999,423
UBAf | 8,436,754(6,234,967] 2,561,376| 2,222,435 1,452,789] 934,562 843,295
Iters 1 25 50, 75 100 125 150
TimeBe 0.5 145.6 254.9) 612.67 739.7 1,345 1,860
SPPNW28 | 8,298 | 0.51 | 0.8 | 0.40 [TimeAf 0.4 103.3 194 439.5 625.7 738 1,406
UBBe | 7,455,12716,513,538| 6,004,577] 4,987,002 3,056,276| 2,377,553{1,235,740
UBAf | 8,345,2656,345,850] 5,349,012| 4,333,587 3,265,290 1,458,873] 634,547
Iters 1 25 50! 75 84 92 150]
TimeBe 0.3 87.4 198.3 390.6 493.2 538.1 1,243

SPPNW40 | 10,809 | 0.30 [ 0.5 | 0.25 {TimeAf 0.1 39.5 94.6 169.5 241.3 294.1
UBBe {10,343,56616,341,846| 4,234,745 3,100,328| 1,349,162| 1,000,237 763,310

UBAf | 5,435,767]2,546,854] 1,875,045 878,098 53,234 14,207
[ters 1 23 26 28 30, 34 84
TimeBe 0.03 36.46 41.925 45.912 48.9 56.7 206.3

SPPNW41 | 11,307 | 0.25 | 0.4 | 0.10 [TimeAf 0.006] 6.6 7.65 8.41 9.21 10.89
(UBBe | 8,107,710/2,715,820| 1,821,430/ 1,816,550 1,816,550 1,816,550) 12,990

UBAf | 4,515,555] 30,039 26,235 16,803 12,870 11,307

Table IV.3. Comparison of the Solution Times and Upper Bound Values Obtained
Using the Row split Benders Decomposition before and after Column Reordering
for each SPP Sample. IPObj is the optimal objective value of the original SP problem.
[PTime is the time to solve the original SP problem. # and § refer to the optimality and
integrality tolerance parameters for Benders relaxation (RSREL), respectively.
denotes the number of Benders iterations. TimeBe and TimeAf refer to the times before
and after column ordering, respectively. UBBe and UBAf refer to the upper bound values
obtained using the new algorithm before and after column reordering, respectively. All
times in the table are in 650Mhz Pentium III seconds.
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Observe that when the number of consecutive ones segments is more than about
300, the row split Benders decomposition converges slowly for the airline crew
scheduling samples in Table IV.2. Experiments with other airline crew scheduling
problems from OR-Library [2000] behave similarly, and are not reported here.

As the number of cuts increases the time to solve the binary Benders relaxation
increases significantly. For each of the airline crew scheduling samples, in order to
obtain feasible solutions faster, we apply some heuristics (e.g., (i) during the initial
iterations solve the LP relaxation of (RSREL), (ii) keep no more than & cuts in (RSREL)
by eliminating the cuts having zero dual price for some number of iterations, (1ii) increase
the optimality tolerance 6, or the integrality tolerance & ).

After reordering the columns, the solution times and the upper bound values
obtained using the new algorithm improve an average of 63% and 61%, respectively.

Next, we relax each SPP listed in Table IV.2 to obtain an SC sample problem. By
using each sample problem, we investigate the performance of the row split Benders
decomposition algorithm in generating improved feasible solutions for an SC problem.
Table IV.4 lists the solution times and the upper bound values obtained using the new

algorithm before and after reordering the columns for each example in Table IV.2.
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Data IPObj |IPTime (% Benders Decomposition

Iters 1 2 3 5 10| 15 20 35 38 83

TimeBe 0.0l 0.05 0.10 021} 0.76] 143 2.30{ 10.85 12.79] 76.23
SPPNWO08|{ 7,758| 0.11 | 0.2 [TimeAf 0.0 0.05 0.07 027 0.63] 1.11 1.79] 4.59] 5.24

UBBe [275,346[275,346| 193,528] 62,038{ 20,220} 16,354] 16,354] 14,336| 13,480] 8,318

UBAf [248,150] 60,908 51,440[ 25,120] 19,660] 13,462 10,552] 9,458 8,154

Iters 1 2 3 5 10 16 18 45 47 86,

TimeBe 0.02 0.06 0.10 0.21 1.72|  5.42 5.87| 48.10] 61.78| 318.30
SPPNW23|10,062( 0.15 | 0.2 [TimeAf 0.02| 0.06 0.09 0.16] 1.05 2.55 2.79| 11.66| 12.10

UBBe [549,614]|529,712| 183,504| 118,916 56,034] 46,682| 36,696| 23,300] 23,198 11,088

UBAf [228,732/168,430| 72,002] 38,236 17,032| 15,644] 13,538| 11,810j 11,298

lters 1 2 3 5 10 16 27 56 73 93

TimeBe 0.02] 0.07 0.12 0.30] 1.64| 6.03] 1648 52.53] 83.67| 137.00
SPPNW26| 6,458| 0.20 | 0.3 [TimeAf 0.03] 0.06 0.10] 0.18] 0.86] 2.12 4.54] 18.99| 38.07

UBBe |759,040{361,338] 141,336] 33,824| 33,824] 29,012| 27,054| 18,686 18,028 7,560

UBAf  |285,438{118,244] 54,732| 24,252} 18,974 16,130 10,486 9,300 7,954

Iters 1 2 3 5 10 25 65 80 87, 113

TimeBe 0.02|  0.07 0.18 0.38] 1.12| 23.25| 313.80] 518.40] 580.74]1,196.00
SPPNW28! 7,092| 0.70 | 0.3 |TimeAf 0.02|  0.07 0.12 0.25] 0.92] 525 46.47 83.78] 106.62

[UBBe | 349,506/349,506| 349,506] 349,506} 55,215} 27,366 25,341| 12,477} 12,477 7,239

UBAf 1551,7511347,844] 303,552 74,256 25,005 13,956] 12,240/ 9,744 8,892

Iters 1 2 5 10 15 20 30 35 40 94

TimeBe 0.02[ 0.06 0.20 3.38] 12.02| 16.55| 22.26| 25.42] 28.31] 133.40
SPPNW40]/10,701| 0.16 | 0.3 [TimeAf 0.01 0.01 0.13 1.74] 2.16] 2.75 4.89] 6.331 7.77

UBBe [758,211{438,939] 107,748] 39,582} 37,044| 31,815] 29,529 29,529| 26,853| 13,275

UBAf ]357,525|119,706| 63,558 28,356 18,723| 18,723| 18,723| 15,827] 13,116

Iters - 2 5 7 100 13 15 18 19 39

TimeBe 0.03] 0.1 0.11 0.52| 2.68 17.85 9.32] 23.84] 30.75| 78.54
SPPNW41{10,539( 0.12 | 0.1 [TimeAf 0.00{  0.02 0.16 035 0731 1.20 226 3.04f 4.36

UBBe |400,464/184,668] 51,672 42,528 31,614 19,035 26,178| 19,035]| 19,035] 10,539

UBAf [177,720] 56,592| 37,728 30,903| 25,050 15,816] 15,816] 15,816 10,539,

Table IV.4. Comparison of the Solution Times and Improved KFeasible Solutions
Obtained Using the Row split Benders Decomposition before and after Column
Reordering for each SC Sample. IPOb;j is the optimal objective value of the original
SC problem. IPTime is the time to solve the original SC problem. & refers to the
optimality tolerance for Benders relaxation, (RELSC). The integrality tolerance & is set
to the CPLEX 6.6 [ILOG 2000] default value (1.0e-5). Iters denotes the number of
TimeBe and TimeAf refer to the times before and after column
ordering, respectively. UBBe and UBA(f refer to the upper bound values obtained using
the new algorithm before and after column reordering, respectively. All times in the table
are in 650Mhz Pentium III seconds

Benders iterations.
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By reordering the columns of each sample problem, the number of Benders
iterations required to obtain a feasible solution within a required optimality tolerance &
decreases an average of 42%. Furthermore, the solution times improve an average of
90%.

We also use the SPPs listed in Table IV.2 to obtain SP sample problems. By
using each sample problem, we investigate the performance of the row split Benders
decomposition algorithm in generating improved feasible solutions for an SP problem.
Table IV.5 lists the solution times and the lower bound values obtained using the new

algorithm before and after reordering the columns for each SP example.
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Data [PObj |IPTime 6 Benders Decomposition

Iters 1 2 3 4 5 6 8

TimeBe 0.03 0.04 0.08 0.11 0.14 0.16
SPPNWO08 |174,793] 0.26 | 0.05 [TimeAf 0.05 0.07, 0.09 0.12 0.15 0.17 0.24

LBBe 28,426] 28426 28,426 28,426 28,426/ 173,872

LBAf 34,614f 34,614 34,614 34,614 34,614 34,614] 173,330

Iters 1 24 35 40 50 60 94

TimeBe 0.03 5.86 15.59) 17.59 25.33 32.91
SPPNW23 | 28,644 0.67 | 0.20 |TimeAf 0.03 2.95 10.61 14.26 21.86 58.15|  199.70

LBBe 4,778] 19,080 22,628 24,256 24,256 28,360

LBAf 10,158; 13,338 16,052 18,200 19,190 21,186] 28,464

fters 1 6 40, 45 62 33 114

TimeBe 0.04 0.31 11.01 15.49 25.65 4532 121.54
SPPNW26 | 28,560 0.31 | 0.20 {TimeAf 0.05 0.27 6.59 7.69 14.61 37.22

LBBe 3,926 3,926 10,578 10,578 18,792 22,572 23,124

LBAf 9,162] 11,138 14,890 20,120 24,006 24,214

Iters 1 33 35 39 45 56 85

TimeBe 0.03 14.66 17.38 20.69 23.35 32.23 73.15
SPPNW28 | 30,744 0.45 | 0.30 {TimeAf 0.08 5.11 5.53 6.78 8.97 12.37

LBBe 7,593 12,351 12,351 17,589 17,589 20,169 28,122

LBAf 11,403 20,589 20,820 22,092 24,018 28,110

Iters 1 9 23 26 29 32 73

TimeBe 0.01 0.46) 15.67 20.36 20.10 21.66 42.90
SPPNW40 | 34,137 0.17 | 0.10 {TimeAf 0.01 0.41 2.16 2.87 3.21 4.77

LBBe 6,900 11,298 11,298 16,035 16,035 16,287 32,064

LBAf 5,265| 15,462 25,890 25,890 25,890 32,679

Tters 1 9 23 26 29 32 73

TimeBe 0.01 0.46) 15.67 20.36 20.99 21.66 42.90
SPPNW41 | 37,845( 0.10 | 0.05 |TimeAf 0.01 0.41 2.16 2.87 3.21 4.77

LBBe 6,900 11,298 11,298 16,035 16,035 16,287 32,064

LBAf 5,265|  15462| - 25,890 25,890 25,890 32,679,

Table IV.5. Comparison of the Solution Times and Improved Feasible Solutions
Obtained Using the Row split Benders Decomposition before and after Column
Reordering for each SP Sample. IPObj is the optimal objective value of the original SP
problem. IPTime is the time to solve the original SP problem. ¢ refers to the optimality
tolerance for Benders relaxation, (RELSP). The integrality tolerance & is set to the
CPLEX 6.6 [ILOG 2000] default value (1.0e-5). Iters denotes the number of Benders

iterations.

TimeBe and TimeAf refer to the times before and after column ordering,

respectively. LBBe and LBAf refer to the lower bound values obtained using the new
algorithm before and after column reordering, respectively. All times in the table are in
650Mhz Pentium III seconds.
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After column reordering, the numbers of Benders iterations and the times required
to obtain feasible solutions within an optimality gap 6 improve an average of 43% and
82%, respectively, for SPPNW26, SPPNW28, SPPNW40, and SPPNW41. However, for
SPPNWO08 and SPPNW23, the numbers of iterations and the solution times increase an
average of 31% and 58%, respectively.

For SPPNWO08, the row split Benders decomposition raises the lower bound
(hence, generating a feasible solution) within 5% of the optimal solution faster than
solving the seminal SP problem using CPLEX 6.6 [ILOG 1999].

In general, our computational results show that the convergence rate of the new
algorithm is inversely proportional to the number of consecutive ones segments. That is,
the efficiency decreases as the number of ones segments increases.

The airline crew scheduling problems tested here are small. However, the ratio of
the number of segments to the number of columns is relatively high. Because the size of
each sample problem is small, the seminal SP, SC, or SPP can be solved in a short
amount of time.

On the other hand, the size of the binary Benders relaxation problem, and hence
the convergence rate of the new algorithm is more dependent to the number of
consecutive ones segments than on the size of the original SP, SC, or SPP. When we
reorder the columns of each sample problem using a 2-OPT heuristic, the size of the
sample does not change, but we reduce the number of consecutive ones segments.
Moreover, in general, when we reduce the number of consecutive ones segments for each

sample problem, the new algorithm converges faster.
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We conjecture that a large SC, SP or SPP with a modest number of consecutive
ones segments can be solved faster with the row split Benders decomposition than by
conventional means.

The row splitting technique is implemented using Compaq Visual Fortran [1999],
and Benders decomposition is implemented using the AMPL Plus 1.6 [Fourer et al. 1999]
mathematical programming language and the CPLEX 6.6 [ILOG 2000].

Execution of an indirect solution method such as Benders decomposition is not
nearly as fast or efficient in a mathematical modeling language such as AMPL as it is in a
specialized, purpose-built code (e.g., [Brown et al. 1987b]). That is, solution times
obtained using the new algorithm could be improved by implementing Benders

decomposition using a specialized code.
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V. REDUCTIONS IN SPP

Problem size reduction is essential for efficient solution of SPPs. Preprocessing
finds “embedded special structure that can give significant insight to the model proponent
as well as greatly réduce solution effort.” [Brown et al. 1980]

In this chapter, we first present reduction operations established in the literature
for SPPs. Then, we introduce other reductions suggested by the network with side
constraints reformulation of SPP, using the column splitting technique. Next, we show
the relationship between these network reductions and the known SPP reductions. While
doing this, we discover a new reduction in the column split reformulation than has an
equivalent in SPP that is new to the literature. Applying this column split reduction to a
well-studied set of airline crew scheduling SPPs, we identify relations between binary
variables that lead to fixing many more of them than any preceding work. We also
discuss a variable probing method (i.e., tentatively setting the variable to one of its
bounds and observing the implications of this setting) for SPP that can be used to tighten
the LP relaxation lower bound, or reduce the problem size during B&B.

A. KNOWN REDUCTION OPERATIONS

We will begin with technical definitions used to describe reduction operations.

Consider the integer programming formulation (SPP) introduced in Chapter 1. Fixing a

variable x; to zero means that the variable, its objective function coefficient c;, and the

corresponding column j are permanently removed from the problem formulation.

Removing a row i means eliminating that row from the problem matrix along with the
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corresponding right-hand side entry, and fixing any variable to zero whose resulting

column now has only zero entries. Fixing a variable x; to one means that all its incident

rows are satisfied and can be removed. Moreover, all other columns incident with any of
these rows can be fixed to zero.

Sometimes columns are merged during reduction, which means that the
(orthogonal) columns of two variables are combined into one column, and the two
original columns are deleted from the formulation. The objective function coefficient of
the merged variable is the sum of the two original objective function coefficients.

In the following subsections we describe the published reduction methods (e.g.,
[Balas and Padberg 1976], and [Hoffman and Padberg 1993]).

1. Duplicate Columns

If two columns are identical, then the column with the larger cost coefficient can
be removed from the problem.

o A4,=4, forsome jkeN suchthat j=k=
If ¢; > ¢, , then x; is fixed to zero, else x, is fixed to zero.

Duplicate columns do arise especially in large-scale SPPs. For instance, in the
airline crew scheduling problem, because the number of feasible rotations is
astronomically large, a very large number of pairings is generated according to an
appropriate heuristic sieve. Bec»ause the process of generating such problems is both

random and heuristic, the same column may be generated more than once.
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2. A Column Is Equal To The Sum Of Other Columns
If the sum of a subset of columns in the formulation is equal to a single column,
and the total cost of the columns in the sum is smaller than the cost of the single column,

then this column can be removed from the problem.

° Aj=2Ak and chch forsome je N and K c N\{j} =

kek kek

X; is fixed to O.

3. Dominated Rows
If a row in (SPP) properly contains another row, then the longer row (i.e., the row
with more non-zero entries) can be removed from the problem along with the variables

that have non-zero coefficients in the longer row but not in the shorter row. Let N,
(cN) be the set of column indices that have non-zero entries in row i (i.e,
N, ={jeNl|a; =1}).
e N, cN, forsomeileMandi#l=
x; is fixed to 0 V j & (N;\N;), row [ 1s removed.

4. Two Rows Differ By Two Entries

corresponding to these entries can either be removed from the formulation (if they are

If two rows are identical except for two entries, then the two columns
|

| non-orthogonal) or merged into one column (if they are orthogonal). In either case, the
\
|

two rows will be identical after the variable reductions. Thus, one of the rows can be

removed from the formulation.
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o |N|=|N|, NAW,NN,)={j}, and N,\(N;N,) = {k} for some i,/ e M =

If A].'Ak >1thenx,, x, are both fixed to zero, else x; and x, are merged. One

of the rows is removed in each case.

5. Singleton Row

If a row has exactly one non-zero entry, then the variable corresponding to this
entry can be fixed to one.
e g;=1forjeN,andqg,; =0 Vke N\{j} forsomeie M =
x; is fixed to 1.

6. Clique Reduction

Let G, =(N,E) be an intersection graph associated with the incidence matrix A.
The intersection graph G, is obtained as follows.

We define a node je N ={1,2,..,n} for each column 4; of A4, and join two
nodes i # je N by an edge (i, j) € E if the columns 4; and 4; of 4 have at least one
entry equal to +1 in common in some row of 4 (i.e., if 4, and 4, are non-orthogonal).

Example V.1 illustrates the intersection graph for a 0-1 matrix, 4.

Example V.1: Consider the following 0-1 matrix.

—_ o o~ o O
o o= o o o
o - = o o o
S O = = O O

1
0
1
0
1
1

p— ik D O ke e
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Figure V.1 depicts the intersection graph of matrix 4.

@
~

o

Figure V.1 Intersection Graph G, for Sample Matrix 4. The nodes of G,
correspond to the columns of matrix 4. There exists an arc between two nodes if the
corresponding column vectors are non-orthogonal.

For every feasible solution x of (SPP) there corresponds a disjoint node set

S={jelej =1} in G,. No two nodes of S are joined by an edge of G, otherwise x

is not a feasible solution.

A cligue is a set of nodes with the property that every pair of nodes in the set is

connected by an edge. Then, if C is a clique in the intersection graph G, Zx <lisa
jeC

valid inequality for (SPP). That is, this inequality constraint is satisfied by all integer
solutions to (SPP). For instance, in Example V.1, nodes 1, 2, and 6 form a clique and
X+ X +x,<1
is a valid inequality for the associated SPP.
If a column with no intersection in row i is non-orthogonal to all the columns that
have a non-zero entry in row i, then the variable corresponding to this column can be

fixed to zero. In terms of the intersection graph, a node extending a row clique (i.e., the
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clique formed by the nodes associated with the non-zero entries in a row of SPP) can be
removed.

e Clique Reduction:

Letk € N be any column. 4;-4, 21V je N, forsomeic M =
x, is fixed to zero.
Finding a clique of a given size in some graph G is an NP-complete problem (e.g.,
[Parker and Rardin 1988, pg. 35]). However, given the definition above, finding clique
reductions in an SPP is polynomial in the input size of the SPP. Given row i in SPP and

the corresponding node set N, it is not difficult to determine the existence of a clique C

1

that properly contains ;. One simply scans all columns of 4 and distinguishes those
that are non-orthogonal to all columns in N,. Either this set is empty and a next row is

selected, or variables that can be fixed to zero are detected.

The worst-case complexity of finding clique reductions in an SPP is O(mxnx[),
where m is the number of constraints, » is the number 6f columns, and [ is the number
of non-zero entries in matrix 4. For each non-zero entry j inrow i (i.e., j€N,), we
scan all columns to distinguish those that are non-orthogonal to column j. In the worst-
case, this operation is done for each row i, adding up to (nx/) comparisons. The worst-
case complexity of comparing two columns to detect whether they are non-orthogonal is
O(m) . Thus, the overall worst-case complexity is O(mxnxI).

Clique reduction is used as a part of the column split reduction that is introduced

in Section V.D.
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Figure V.2 illustrates the reductions described in this section.

1
1

1

1
1

(¢) Duplicate columns j and &

~ |

J

(¢) Row i dominates row /, and
columnns jeJ are fixed to 0

1
i

(e) Singleton Row

(b) Column ; is equal to and dominated
by the sum of other columns

J

k

~ 11

(d) Rows i and / differ by two entries in
columns j and k&

J

i~

1
1

o=~

~

() Clique Reduction

Figure V.2. SPP Reduction Rules. In Figure (a), columns ; and & are the same. Column
7 has a higher cost. Thus, x; is fixed to zero. In Figure (b), column j is equal to the sum of

columns & and k,. The cost coefficient of column j is greater than the sum of the cost
coefficients of &, and ,. Hence, x, is fixed to zero. In Figure (c), row i is a proper subset
of row /. The variables that have non-zero coefficients in row /, but not in row i, are fixed

to zero. In Figure (d), rows i and [ share all the coefficients except the ones in columns j
and k. Thus, x, =x,. In Figure (¢), row i has exactly one non-zero entry at column j.

Hence, x; is fixed to one, and all incident rows are removed. In Figure (f), column j is
non-orthogonal to all the columns that have non-zero entries in row i . Consequently, x; is

fixed to zero.
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B. CORRESPONDENCE OF SPP REDUCTIONS IN REFORMULATIONS
In this section, we convert SPP to its equivalent network with side constraint (NS)

form, and then look for reductions in the network constraints Ay =b. Any such

reduction should be equivalent to a known reduction for SPP, or suggest a new one.

Consider the reformulation of SPP given by (NS),
minimize dy

NS) st M=b

Sy=0

y binary .
% is the node-arc incidence matrix of a network with one more row than SPP. The
right-hand side vector b has +1 as its first entry, is followed by zeros, and —1 as the last

entry. An arc in the network whose incident nodes are given by ( j" ,tj’f) represents each

variable y%. That is, arc y% is incident from node f} tonode t*. Notice that, aj_kj =1

and at’ij =—1 where a*, and at’z. are the non-zero coefficients of the variable yf . (For
J 7

1
ease of exposition, each element of the set of arcs is denoted by the corresponding

variable.) The set of arcs incident to node i is denoted by

i

T ={y;f |2} =i,jeN,ke{1,...,

and the set of arcs incident from node i is denoted by

Kjt}}.

F={y\f}=ijeNkell.,
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There is no arc from the last node (i =m+1) to the first node (i=1). Thus, all

entries at the first row of matrix % are non-negative, and all entries at the last row are
non-positive. Thatis, £ ={}, and %,,, =1{}.

Observe that the variable yjf is obtained from the variable x; in the original SPP.
Variable yf has a +1 coefficient at row fj" , and a —1 coefficient at row tj.‘ . This implies
that the variable x; has consecutive ones coefficients between the rows f; and (z‘jc -1) in

the original SPP (i.e., a

1 =af;‘+1,...,=atf_2 =a, =1).

1

Using the node-arc set notation of matrix %, the constraints of (SPP) can be

written as follows.

Let Y, ={yf | fF <i<tf,jeN,ke{1,...,IKJ.|}} for some row i in & . Let

J

_7;={j[ y e, for someke{l,..., Kjl}, andj e N}

]{’={j| yi e forsomeke{l,...,IKj[}, andjeN}

]1.'"={j| y: €%, for someke{l,..., Kj\}, andjeN}.

Rows (i—1) and i of the original SPP associated with some row i of % can be

expressed, respectively, as follows:

> x+) x; =1 (-1 (V.l.a)
jeg; jerr
x4y x=1 () (V.1b)
jeg; jes
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Set g/ indicates the columns of (SPP) which have non-zero entries both at row

iandi—-1. Set 7' indicates the columns that have non-zero entries at row

i, butnotatrowi—1. Set jim indicates the columns that have non-zero entries at row
i—1, butnotatrowi.

Example V.2 illustrates the sets defined in this section, and shows the
relationships between the matrix A of (SPP) and matrix & of (NS).
Example V.2: Consider the following SPP.

minimize c'x

s.t.

M 0011001110110 0] 7 [1]
111100011001111 1
111101101101 111{x|=1
110001101010110 1
1000010101100 0 0] | [1
x binary

First, add a redundant last row 0-x=0 to the set of constraints. Then, perform the

following elementary row operation for each i =5,4,3,2,1, in the stated order: Subtract
the i constraint from the (i+1)™ constraint. These operations create the following

problem:
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minimize c¢'x

s.t.

— * * — — g -
1 o0 0 1 1.0 0 1 1 1 0 1 1 0 O 1
o 1 1 0-1 0 0 0 0 -1 0 0 0 1 1 0
00 0 0 0 1 1 -1 0 1 0 0 0 0 O0jfx| |0
o 0 0 0 0 0 0 0 0 -1 1-1 0 0 -1 1o
0 0 -1 -1 0 0-1 1-1 1 0 0-1-1 0 0

-1 -1 0 0 0 -1 0-1 0-1-1 0 0 0 0] | [-1]

x binary

The constraint coefficient matrix of the above formulation has exactly one +1 and
one —1 in each column, except the distinguished columns eight and ten. When we split

these columns to obtain the reformulation (NS), variable x, will be replaced with the
variables y} and y?, and variable x,, will be replaced with the variables y),, 5, and y;, .
For all other columns, we will simply substitute x; with y} .
For the third row of matrix (NS), we have the following node-arc sets:
Y, = {358 V5 Voo Yoo Vs Vs Mo Vis§» 85 = (Vs s Yo} Ty = {3}
7,={1,2,3,4,9,12,13,14,15}, 77={6,7,10},,and 7,” ={8}.

Observe that substituting these sets in equations (V.1.a) and (V.1.b), we obtain the

second and third constraints of the given SPP.
The reduction procedures discussed in this section are based on network
feasibility and variable conflicts that become apparent with flow conditions in the

network with side constraints model, (VS).
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If the variable yj. is fixed to either zero or one using a network reduction rule,

then each variable yf can also be fixed to the same value for all k€ {L,...,|K; ]} \!. Thisis

true because yf is required to satisfy

y;:___yfq’ k=1,.., Kj‘—l,foreach jel,

by the side constraints Sy =0. Furthermore, the variable x; in the original SPP can also

be fixed to the same value by Proposition II.1.

Next, we present the reduction rules observed in the reformulated problem, (NS).
We also explore the relationships between these reductions and those that are presented in
the previous section. That is, we want to know whether the reformulation model yields
any different reductions in the original problem that are not detected by the known
reduction rules.

1. Singleton Transshipment Row

If a transshipment row i (i.e., b,=0) of & has exactly one non-zero entry, then
the variable corresponding to this entry can be fixed to the absolute value of the right-
hand side coefficient.
Reduction: For a node i with |5;|=1and |£;|=0, or |f;|=0 and |Z;| =1, ¥} is fixed to
|b.| where ! is the unique arcin §; or Z;.
Relationship with known reductions: Let i be a singleton transshipment row such that

7,|=0, and y! is the unique arc in ;. Using the above reduction rule, ¥} can

[l=1

be fixed to b, and accordingly, x; can also be fixed to b,.
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The network row i corresponds to the rows (i—1) and i in SPP. As described

earlier, the rows (i—1) and i of SPP can be written as follows:

dx+yx=1 (-]

jesi jesr
Jjegi Jjes;

For our case (where |§|=1, |Z;|=0, and y; is the unique arc in &), 7" = {j}

and jim = {}. Consequently, the rows (i—1) and i appear in SPP formulation as follows:

dox =1 (i-1)

jes:

ij-. +x; =1 @

Jeg;
Now, we investigate whether or not we can still obtain the same reduction (i.e., x;
can still be fixed to b,) after implementing the known reduction rules on these two rows.

For i=1, both the first row in (NVS) and SPP are singletons, and they yield the

same reduction. For 2<i<m, constraints (i—1) and i share all variables but x,. Thus,
using the row dominance reduction rule, x; can be fixed to zero (=5,).

Similar arguments hold for the case where |§;|=0 and |Z;|=1.

We therefore conclude that the outcome of this network reduction corresponds to

a known SPP reduction.
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2. A Transshipment Row Has All +1 Or All -1 Entries

If a transshipment row i has all +1 or all -1 entries, then the variables
corresponding to these entries can be fixed to zero.

Reduction: For a transshipment node i, if I&IZI and ]Z[ =0, or ]Z’,l >1 and |5j[= 0,
then variables yf can be fixed to zero for all j, & such that yjf € or yf eZ,.
Relationship with known reductions: Let |5§| >1 and |Z:! =0. Therows (i—1) and i

of (SPP) associated with row i of (NS) can be written as follows:

D% =1 (i-1)

jeg

Zx;+ij=1 @

jer; jes;

Row (i—1) dominates row i. Using the “dominated rows” reduction rule,

variables x; can be fixed to zero for je 9. Observe that the network reduction rule

presented in this section also yields the same reduction operations in (SPP).

Z|21.

Similar arguments hold for the case where l,}’j| =0 and

3. A Transshipment Row Has Exactly One +1 And One -1 Entry
If a transshipment row i has exactly one +1 and one -1 entry, then the two
columns associated with these entries can either be removed from the formulation (if the

corresponding variables in SPP are non-orthogonal) or merged into one column (if they

are orthogonal).
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Observe that this reduction rule and the “two rows differ by two entries” reduction
rule (presented in Section V.A.4) are identical in the sense that they yield the same

reductions in the original (SPP) formulation.

Reduction: For a transshipment node i, if |;|=1 and |Z;|=1, then yf =y} where
yf ef,amdyte,. If A]'Aj >1for j,jeN, thenyjf,yf are both fixed to zero, else

yf and yf are merged. In either case, the transshipment row i can be removed from the

formulation (NS).

4, A Transshipment Row In (NS) Is Dominated By A Row In (SPP)
For a transshipment node / in & and some row i in (SPP), if (]1." U ]im) cN;,
then yf can be fixed to zero for all j, k such that yf e(FUZ,). (Remember that N; is

the set of column indices that have non-zero entries in row 7 ).

Justification: Constraints (i —1) and i of (SPP) associated with the transshipment row i

can be written as follows:

x4y x=1 (-1

Jel; jer’
SxYx=l O,
Jjeg; Jjes;

Let i be some row in (SPP) such that (7, UJ," )< N;. Row i is given by:

Dxi+y x+ > ox=1 @).

jeJx Jjerr JeN; \(IiUI0)
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Columns je(UJg"UJ™) are non-orthogonal and their intersection graph forms a

clique. Thus, the following constraint is a valid inequality for (SPP).

ij+2xj+2xj31.

jes. — jegt  jer”
Both constraints (i—1) and i dominate this valid inequality. Using the “dominated

rows” reduction rule, variables x; can be fixed to zero for j € (7"UJ™). Consequently,

by Proposition II.1, the associated variables yjf of (NS) can also be fixed to zero for all

k=1,...,|1<.|.

Example V.3:

Consider the following three constraints taken from an SPP.

X +x, +X, X, X EX = 1 @)
X +x, +x, +x, +x; X = 1 (i1)
+x, +x, +Xs X Xy X X, X 1 (111)

Subtracting (i) from (ii), we obtain the following transshipment row:
+x, +x, +x -X; =X —X = 0 (i)
Now, consider constraints (ii') and (iii) together.

(i)
(iif)

X, X, X —X; =X —X =

i e

+x, +X, +X X, X X, AXy Xy
Constraint (iii) states that among the variables x,,x,,Xs,X;,%;, and x,, at most one
variable is equal to one. If one of x,,x,,Xs,X;,%,, OrX, is equal to one, then another of

these variables with an opposite sign must also be equal to one to satisfy constraint (i)
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(e.g., if x, =1, then one of x,,x,, orx, must also be equal to one). This is, however, not
feasible for constraint (iii). Thus, x,,x,,x;,X,,%;, and x, can be fixed to zero.

The same reduction can also be obtained by applying a combination of clique and
row dominance reduction rules on the three SPP constraints.

The columns 1,...,9 are non-orthogonal and their intersection graph forms a
clique. Thus, the following equation is a valid inequality for this SPP.

X, +xX, +x; +x, X, +xg +x, +xg +x <1 @)

Constraint (i) dominates constraint (iv), and they share all variables except
X,,%,,%;. Therefore, these variables can be fixed to zero. Constraint (ii) also dominates
constraint (iv) and they share all variables except x,,x;, and x,. Hence, x,,x,, and x,
can also be fixed to zero.

5. Clique Dominance

For a transshipment node i of matrix & and for some row i of (SPP), if

N; c( l-” U j,."') and ( 1." U jl.”')\N; - ]i" , then variables x; can be fixed to zero for all
je NN,). Onif N; < (3 UJ") and (5" U3")\N; < 5" , then variables x; can be

fixed to zero for all je (j,.'" N;). Consequently, the variables yf in (NS), associated

K.|.

with x;, can also be fixed to zero for all £ =1,..., ;

Justification: Constraints (i—1) and i of (SPP) associated with the transshipment row i

can be written as follows:
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Dx 4y x,=1 (-1

Jer Jest
SieTrel 0.
jeJ; jesl

Let 7 be some row in (SPP) such that N, = (4 UJ") and (5" UJ )\N; 3" Row 7
1s given by:

Yox+ Y x=1 (0).

jea” je(g; NN;)

Columns j e (7 U, NN;)U 9" are non-orthogonal and their intersection graph forms

a clique. Thus, the following constraint is a valid inequality for (SPP).

ij+2xj+ Z xjsl.

jes! jes” e/ NN;)
The valid inequality is dominated by the constraint (i—1). Using the “dominated rows”
reduction rule, variables x; can be fixed to zero for je( j,." (IN;). Consequently, by
Proposition II.1, the associated variables yf of (NS) can also be fixed to zero for all
k=1,...|K|.
After this reduction, the constraints (i—1) and / become identical, and one of

them can be removed from the formulation (SPP).

Example V. 4:

Consider the following three constraints taken from an SPP.

X +x, +x, +x; X +xg = 1 ®
X +x, +x, +x, X X = 1 (11)
+X5 +x, +x3 +x, = 1 (iii)
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Subtracting (i) from (ii), we obtain the following transshipment row.

-x, —x, -x, = 0 (i)

+x,  +x, +X;

Now, consider constraints (ii’) and (iii) together.

+x,  +x, +Xs -x;, =X -x, = 0 (")
+ X5 +x, +x, +x, = 1 (1i1)

If x, is equal to one, then one of the variables x,,x;, and x, must also be equal to
one to satisfy constraint (ii"). This is, however, not feasible for constraint (iii) . Thus, x;

is fixed to zero.
The same reduction can also be obtained by applying a combination of clique and
row dominance reduction rules to the three SPP constraints.
The columns 1,2,5,6,7,8, and 9 are non-orthogonal and their intersection graph
forms a clique. Thus, the following equation is a valid inequality for this SPP.
X +x, +X, +xg +x, +x, +x, < 1 (1v)
Constraint (i) dominates constraint (iv) and they share all variables except x;.

Theref ore, x, can be fixed to zero.

Figure V.3 illustrates the reductions described in this section.
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I~ ~ ~l+1]~ ~ ~|= 0 i[~J+1]~]+1]~]H1][~]= 0
~ -1 ~ ~
-1 ~ -1 ~
~ ~ ~ -1
(a) Singleton transshipment row i (b) Transshipment row 7 has all
+1 entries in columns j, &, and /
Jj k
~ +1
~ ~ j k.1 r_s
~ ~ i[~ -1 -1 ~ +1 +1 ~]= 0
I[~]+1]~ ~ ~]a]~]= o0
~ ~ Pler 1 41 ~ 41 41 ~]= 1
-1 ~
(c) Transshipment row i has exactly one (d) Transshipment row 7 in (NVS)
+1 in column j and one -1 in column & is dominated by row 7 in (SPP)
j k1 r st
i[+1 41 1 ~ -1 -1 -1]= 0
z’[~~+1~+1+1+1]= 1

(e) Clique dominance reduction resulting
from row i in (NS) and row i in (SPP)

Figure V.3. Network Reduction Rules. In Figure (a), row i has exactly one non-zero
entry at column j. Hence, x, is fixed to zero. In Figure (b), row i has all +1 entries at

columns j,k, and /. Thus, x;,x,, andx, are fixed to zero. In Figure (c), row i has exactly
one +1 entry at column ;, and one ~1 entry at column %. Hence, x; =x,. If columns ;
and & are non-orthogonal, then x, andx, are fixed to zero. Otherwise, columns ; and &

are merged. In Figure (d), for every non-zero entry in transshipment row i, there
corresponds a non-zero entry in (SPP) row 7. Variables x,,x,,x,, and x, are fixed to zero.

Consequently, x; is fixed to one. In Figure (), x, is fixed to zero. Because, if x, is equal
to one, then one of the variables x ,x,, or x, must also be equal to one to satisfy constraint
i . However, this solution does not satisfy constraint 7 .
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C. USE OF HIDDEN NETWORK STRUCTURE
By finding a hidden network row submatrix of matrix 4, (SPP) can be
transformed to a network flow problem with side constraints.

Let E, be an (m, xn) row submatrix of 4 that is transformable to a network, and
let E, denote the submatrix involving the rest of the rows of A. Thus, (SPP) can be
represented as:
minimize c¢'x

st. Ex=¢
E,x=e,
x binary
where ¢ and e, are conformable vectors consisting of all ones. Let I be a
transformation matrix of size (m, +1)xm, . That is, pre-multiplying both sides of Ex =¢,
by T, we obtain pure network constraints. The resulting reformulation of (SPP) is given
by:

minimize c¢x

(HN) st. MNe=r
E,x=e,
x binary
where # is an (m, +1)x#n node-arc incidence matrix corresponding to a network, » is

the integral vector of requirements at (, +1) nodes in the network.

91




Ali et al. [1995] suggest heuristic procedures that may (with some mathematical
repairs to their presentation) reveal a row submatrix of SPP that is transformable to a
network. Then, they formulate SPP as a pure network flow problem with side
constraints, and present some reduction rules for the original SPP based on the flow
conditions in the network.

The reduction rules suggested by Ali et al. are similar to those presented in the
previous §ection: (1) singleton network row, (2) a transshipment row has exactly one +1
and one -1 entry, and (3) a transshipment row in (NVS) is dominated by a transshipment
row in (SPP). The difference between the reductions suggested by Ali et al. and these
three reductions is that the former are implemented on the reformulation (HN), and the
latter are implemented on (NS). The other two reduction rules presented in the previous
section (i.e., (1) a transshipment row has all +1 or all ~1 entries, and (2) clique
dominance) can also be implemented on (HN) in addition to those suggested by Ali et al..

In the previous section, we have shown that the outcome of each network
reduction can also be detected by a combination of known SPP reduction rules. Using
similar arguments, we see that the reductions that Ali et al. present as new can actually be
detected by a combination of known SPP reduction rules presented in Section A.

Next, we introduce a new method to obtain additional reductions in SPP. This

method originated while we were experimenting with the relationship between the

reductions observed in the reformulations and the known SPP reductions.




D. A NEW SPP REDUCTION METHOD: COLUMN SPLIT REDUCTION

1. Generating Valid Equalities That Yield More New Clique Reductions
for SPP

Let i and k be two constraints in (SPP). Let 7, denote the set of column indices
that have non-zero entries in row i, but not in row k. Let J, denote the set of column
indices that have non-zero entries in row &, but not in row i. And, let 7, denote the set

of column indices that have non-zero entries in both rows. Thus, constraints i and £ can

be written as:

ij+2xj=1 @

JeJ; J€Ji
2%+ X =1 (k)
JeT J€Ju

Proposition V.1: For some constraint / of (SPP), if N, < (J;UJ,UJ,), V,N7) < 7,
and (N,NJ,)c J,, then the following constraint is a valid equality (i.e., this equality

constraint is satisfied by all integer solutions to (SPP)):

Do+ D o+ ) ox=l (V.2)

Je(3\Ny) je(IxNN;) Jje(T\N)

Proof: Columns je(J,\N,)UN, are non-orthogonal, and their intersection graph

forms a clique. Thus, the following constraint is a valid inequality for (SPP).

xj+2xjsl.

Je(Ty\Np) JeN;
Evidently, this valid inequality is dominated by row /. Using the “dominated rows”

reduction rule, the variables x; can be fixed to zero for j e (J; \N,).
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Sets 7, and J, can be expressed as (7, \N)U(J;NN,) and (J,\NHU(I, NN,),
respectively. By implementing the variable reductions above, and replacing J; and 7,
with the new expressions, constraints i and & can be written as follows:

>ox D, oxt Y x=l @)

Jje(J\Ny) Jje(INNy) Je(guNN;)

> oxt Y, x+ ) x=1 (k).

Je(J\Np) Jje(gNN) Je(IxNNY)
Set N, can be expressed as the union of three disjoint subsets: 1) (5NN, ()

(9,NN,), and (3) (5, NN,). Thus, constraint / can be written as follows:

S ox+ Y ox+ > x=1 0.

Jje(3:NNy) Jje(3NNy) Je(3 NNy

To satisfy constraint (/), exactly one of the variables x; must be equal to one for
jeN,. For the three disjoint subsets of N,, we have the following three cases to

consider:

Case (1): If x;=1 for some j €(J,NN,), then constraint i is satisfied. To satisfy
constraint k , exactly one of the variables x; must be equal to one for je(J,\N,).

Case (2): If x;=1 for some je(J, (\N,), then constraint k is satisfied. To satisfy
constraint i, exactly one of the variables x; must be equal to one for je(J,\N)).

Case (3): If x; =1 for some j €(J, NN,), then all three constraints i,k, and [ are

satisfied.
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Exactly one of the three disjoint cases must occur. This implies that exactly one
of the variables x; must be equal to one for je (J\N)), je(J,\N)),or je(J,NN,)
(e, je(T\NH)UU\N)UU,NN,)). Thus, Equation V.2 is a valid equality for

(SPP). Q.ED.

Equation V.2 states that each pair of columns A4, and 4. are non-orthogonal for
j'€(J\N,), and j"€(J,\N,). This relationship is not obvious if we do not generate

the valid equality given by Equation V.2.

Recall that when we construct the intersection graph G, =(N,F) of (SPP), we
define anode je N ={1,2,..,n} for each column 4; of 4, and join two nodes i # j € N
by an edge (i,j)€ £ if the columns 4 and 4; of 4 are non-orthogonal. Given the
subgraph of G, constructed by the constraints 7,k , and / only, there does not exist an
arc between a node ;' €(J,\N,) and anode ;" €(J,\N,). This is because columns 4,
and A4 have no common entry equal to +1 in rows i,k, and /. However, when we add

the valid equality obtained from constraints i,k , and / to the formulation (SPP), both
columns A, and A. will have +1 entries in common in this valid equality.
Consequently, we can add a new arc to the intersection graph G, for each pair of nodes
j' and j",suchthat j € (J,\N,) and j"€(J,\N,).

By extending the clique associated with the variables that have non-zero entries in

a valid equality, we may find new “clique reductions” for SPP. That is, if a column is

non-orthogonal to all columns with non-zero entries in a valid equality, then this column
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is fixed to zero. Note that after we fix some variables as a result of these new clique

reductions, some other variable and/or row reductions may also become apparent in

(SPP).

The worst-case complexity of finding valid equalities using this new method is
O(m* xI), where m is the number of constraints and / is the number of non-zero entries

in matrix A. We choose a pair of rows from matrix 4, and compare the non-zero entries
in these rows with the non-zero entries in the other rows. For each pair of rows, we make

at most / comparisons. The number of possible row pair combinations is:

m) m’-m
2) 2
m*l —ml

Thus, the number of comparisons is at most —~——2—, and the worst-case

complexity is O(m* x1).
As stated in Section A.6, the worst-case complexity of finding clique reductions in

an SPP is O(mxnx[). Assuming that the number of columns is greater than the number

of rows, the worst-case complexity of extending the intersection graph using the new
method and finding clique reductions in the extended graph is still O(mxnxI).

When we implement the comparisons to detect the valid equalities, we can also
detect the “dominated rows” and “two rows differ by two entries” reductions. The
network reductions described in Sections V.B.4 and V.B.5 can also be detected during
these comparisons. Recall that the outcomes of these network reductions correspond to

combinations of “dominated rows” and “clique” reductions.
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Example V.5: Consider the following three constraints taken from an SPP.

X, +xg X, X X, X, +x, = 1 @
X, X, X, 44X, X +Xg +X, =1 (k)
+x,  +X; +x, +x, +x, = 1 ()

7,={7,810,11}, 7, ={2,3,4,5}, 7, ={1,6,9} , and N, ={4,5,9,10,11};
N,NJg ={9,10,11}, N,NJ, ={4,5,9},
N, cU5UZ), NN g, NNT)<T,,
J\N,={7,8}, 5,\N,={2,3},and 7, NN, ={9}.
Thus, by Proposition V.1 the following equation is a valid equality for the given SPP.
+x, +x +x, X, X =1 )
If x, or x, is equal to one, then Xx,,x,,x;,%,, and x, are equal to zero. Hence, to
satisfy constraint /, either x,, or x,, must be equal to one. This implies x, and x; must

be equal to zero to satisfy constraint i.

If x, or x, is equal to one, then x;,x,,X,,X,,, and x,, are equal to zero. Hence, to
satisfy constraint /, either x, or x, must be equal to one. This implies x, and x; must

be equal to zero to satisfy constraint & .

If x, is equal to one, then all the other variables that have a non-zero entry n

constraints i, k,and [ are equal to zero.

For the case where all variables x,,x,x,,%;, and x, of the valid equality v are

equal to zero, the given SPP is infeasible.
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Consequently, we have justified that constraint v 1is satisfied for all integer
solutions to the given SPP, and therefore is a valid equality.

2. Computational Results For The Column Split Reduction

We test the column split reduction on a subset of real-world airline crew
scheduling problems that are also used by Hoffman and Padberg [1993]. The test data is
obtained from the online OR-Library [2000] presented by J.E. Beasley.

Table V.1 shows our computational results on twelve sample problems. Unlike
the algorithms presented in chapters I and IV for solving SPPs with special consecutive
ones structures, the column split reduction can be applied to any SPP. Consequently, in
this chapter we test the column split reduction with a wider diversity of airline crew

scheduling samples.

We report the maximal number of clique reductions obtained at the root node of
the B&B tree, and the maximal number of clique reductions obtained when the new
method is introduced.

These reductions are implemented with Compaq Visual Fortran [1999] on a
Pentium ITII 700Mhz personal computer with 1 Gb RAM. The largest problem SPPUS02
takes about three minutes to presolve with or without the new method. The small
problems take less than a second. Here, as in any commercial solver, efficiency dictates
that we cafeﬁllly implement the column split reduction and take care to avoid extensive

presolve times. We must balance presolve effort with the desirable reductions that

accrue.
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For test data SPPUS02, the column split reduction method yields a 38.4% increase
in the number of variables fixed. However, for test data SPP03, the percentage increase

is only 0.4%. .

Number of |% of Variables [Number of Arcs [Number of Clique [% of Variables [Number of (% of

Problem [Number [Number of |Number of gl';'qg;:al Fixed Before [Added to the Reductions After |Fixed After Additiona! |[Additional
Name Of Rows [Columns  (Non-zeros |Reductions [Adding Arcs grt;ﬁm (Adding New Arcs |Adding Arcs ;f;‘:;bles ;‘l;:;bles
SPPAAOL | 823 8,904 72,965 1,095 12.30 7,876,877 1,533 17.22 438 4.92
SPPAAO2 [ 531 5,198 36,359 1,015 19.52 50,949,975 1,328 25.55 313 6.03
SPPAAO3 | 825 8,627 70,806 1,614 18.71 10,321,196 1,964 22.77 350 4.06
SPPAAO4 | 426 7,195 52,121 780 10.84 4,563,495 1,075 14.95 295 4.11
SPPAAOS | 801 8,308 65,953 1,544 18.58 10,300,739 1,959 23.58 415 5.00
SPPAAOS | 646 7,292 51,728 1,074 14.73 5,955,250 1,425 19.54 351 4.81
SPPNW23 19 711 3,350 93 13.08 6,097 105 14.76 12 1.68
SPPNW26 23 m 4,215 123 15.95 2,390 130 16.86 7 091
SPPNW28 18 1,210 8,555 379 31.32 6,455 384 31.73 B 0.41
SPPNW35 23 1,709 10,494 256 14.97 18,810 310 18.14 54 3.17
SPPNW36 20 1,783 13,160 263 14.75 12,004 376 21.09 113 6.34
SPPUS02 100 13,635 192,716 100 0.73 34,632,043 5,339 39.16 5,239 38.43

Table V.1. Computational Results of the Column Split Reduction. The first column
shows the name of each sample problem as it appears in the online reference OR-Library
[2000]. The numbers of clique reductions obtained before and after implementing the
new method are displayed as well as the percentage of variables fixed using the clique
reduction rule. The last column displays the percentage of improvement achieved in the
number of reductions using the new method.

Our results show that the column split reduction can significantly increase the
number of reductions in an SPP. Moreover, we conjecture that finding such reductions

will improve the solution time and/or allow some unsolvable real-world SPP applications

to be solved (e.g., Hoffman and Padberg [1993, pp. 665-666]).
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E. EXTRACTING HIDDEN ARCS OF THE INTERSECTION GRAPH BY
PROBING

Another way of extending the intersection graph G, with the addition of new arcs
is fixing variables by probing. Probing has been used effectively in general mixed 0-1
integer programming (e.g., [Crowder et al. 1982], [Savelsbergh 1994], and [Atamturk et
al. 1995]). Probing a binary variable means tentatively setting the variable to one of its
bounds and observing the implications of this setting. For instance, if an infeasibility
occurs when the variable is fixed to one of its bounds, then the binary variable can be
fixed to the opposite bound. To the best of our knowledge, probing has not been used to

extend the intersection graph G,. In this section, we demonstrate but do not implement
how we can extend the intersection graph G, with the addition of new arcs by probing

variables.

If we fix a variable x; to one, all the incident rows are satisfied and can be
removed. Moreover, all other columns incident with any of these rows can be fixed to
zero. After removing all the incident rows and fixing the columns incident with these
rows to zero, a second pass through the resulting smaller matrix is initiated if any
additional variables are fixed using the known reduction operations. Let x, be the
variable that is fixed to zero during the second pass. Then, the following constraint is a
valid inequality for (SPP):

x;+x <1

Note that columns j and / are orthogonal in the original 4 matrix, and there does

not exist an arc between nodes j and / in the intersection graph G,. However, the valid
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inequality above allows us to connect nodes j and / with an arc in the intersection graph
G,. We call this a hidden arc.

In Example V.5, if we fix x, to one, constraint £ is removed and x,, x;, X, X;,

x,,and x, are fixed to zero. After these reductions, constraints i and & can be written as:

X+ X5+ X0+, =1 @)

X0+ %, =1 )]

Because constraint i is dominated by constraint /, x, and x, can be fixed to zero.
Therefore, if x, is equal to one, then x, and x, are equal to zero.

On the other hand, if x, is fixed to zero, then either one of x, or x; is equal to

one, or they are both equal to zero. Hence, the following constraint is a valid inequality
for the given SPP:
X, + +x,+ x5 <1.

The node corresponding to x, can be connected to nodes 7, and 8. Similarly, by
probing x, , we can connect node 3 to nodes 7, and 8.

By probing each variable in an SPP as discussed above, we can extract all the
hidden arcs of the intersection graph. The number of hidden arcs that can be extracted in
the intersection graph by probing is at least the number of arcs that can be extracted using

the row comparison technique, described in Section V.D.1.

The worst-case complexity of naively finding all the hidden arcs of the

intersection graph by probing is O(n* xmx1I). Each variable x . is fixed to one, all the
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incident rows are removed, and all the other columns incident with any of these rows are
fixed to zero. A second pass through the resulting smaller matrix is initiated if any
additional variables are fixed using the known reduction rules. This is done in

O(nxmxl) for a single variable, because the worst-case complexity of finding clique

reductions is O(nxmxI). Hence, for all variables the worst-case complexity is
O(n* xmxl).
Note that extending the intersection graph G, with the addition of new arcs

generated by probing may offer new valid inequalities for SPP (e.g., cligue or odd cycle
constraints discussed in [Hoffman and Padberg 1993]). However, extracting the hidden
arcs of the intersection graph by probing, and finding valid inequalities in the extended

intersection graph may be computationally very expensive.
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VI. A NEW FORMULATION FOR A LONG-TERM AIRCRAFT CARRIER
DEPLOYMENT SCHEDULING PROBLEM

A. BACKGROUND

Forward deployment of Navy aircraft carrier battle groups and amphibious ready
groups is a primary means for U.S. to advance overseas interests. As Department of the
Navy, Naval Doctrine Publication 1 [NDP 1, 1994] states: “Overseas presence promotes
national influence and access to global areas, builds regional coalitions and collective
security, furthers stability, deters aggression, and provides initial crisis-response
capability.”

Aircraft carriers are sovereign U.S. territories that navigate anywhere in
international waters (more than 70% of the earth's surface is ocean). This fact is not
overlooked by those U.S. officials who make political and strategic decisions to use naval
aircraft carriers as a powerful instrument of diplomacy to strengthen alliances and
respond to potential and developing c?rises. As President Bill Clinton said during a recent
visit to the aircraft carrier USS Theodore Roosevelt, “When word of crisis breaks out in
Washington, it's no accident the first question that comes to everyone's lips is: where is
the nearest carrier?” [U.S. Navy 1998]

At present the Navy attempts to maintain the forward presence of aircraft carriers
in three Areas of Responsibility (AORs): the Mediterranean under the European
Command (EUCOM), the Indian Ocean under the Central Command (CENTCOM), and
in the Western Pacific under Pacific Command (PACOM). Carriers from the Atlantic

Fleet (LANTFLT) fulfill forward presence requirements for the EUCOM (Mediterranean
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Sea) AOR. Pacific Fleet (PACFLT) carriers provide coverage for the CENTCOM (Indian
Ocean) and PACOM AORs. Occasionally, an Atlantic Fleet carrier will also assist in
covering the Indian Ocean. Finally, a PACOM carrier operating from Yokosuka, Japan,
is usually responsible for the Western Pacific.

Over the past decade or so, the Navy has tried to maintain a continuous forward
carrier presence in these principal AORs. Diminishing defense budgets have limited the
number of carriers available to meet this goal. Carrier availability is further constrained
by scheduled maintenance, training requirements, and Chief of Naval Operation (CNO)
policy on Personnel Tempo of Operations (PERSTEMPO). These restrictions, along with
limited available assets, have made continuous carrier coverage (i.c., the percentage of
time an AOR is covered by at least one carrier) essentially impossible.

Providing a sufficient amount of coverage in the AORs through forward presence
helps to decrease crisis response time. “Crisis response, the timely dispatch of naval
forces to a specific area, allows the U.S. to render assistance or exert military force.”
[Department of the Navy 1994, pg. 20] Herein, crisis response time is defined as the
expected time for the closest carrier to arrive at a crisis location.

A new nuclear powered carrier costs about five billion dollars, its aircraft cost at
least as much, and when deployed it is manned by 3,200 ship’s company and 2,480 air
wing personnel. The air wing consists of eight to nine squadrons (85 aircraft). A carrier
operates as the centerpiece of a carrier battle group. A carrier battle group, commanded
by a flag officer, normally consists of two guided missile cruisers, a guided missile

destroyer, a destroyer, a frigate, two attack submarines, and a combined ammunition,
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oiler, and supply ship (AOE). Figure VI.1 shows USS Nimitz (CVN 68), a nuclear

powered aircraft carrier in PACFLT.

Figure VI.1. USS Nimitz (CVN 68), launched in 1975, has 3,200 crew in the ship's
company and 2,480 for the air wing. The mission of Nimitz and her embarked air wing is
to conduct sustained combat air operations. The air wing consists of eight to nine
squadrons (85 aircraft). The ship normally operates as the centerpiece of a carrier battle
group. The carrier battle group, commanded by a flag officer, consists of two guided
missile cruisers, a guided missile destroyer, a destroyer, a frigate, two attack submarines,
and a combined ammunition, oiler, and supply ship. [U.S. Navy 1998]

The objective of the U.S. Navy aircraft carrier scheduling problem is to minimize

the number of uncovered periods across all AORs, subject to the constraints on the
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number of available carriers, scheduled maintenance, training requirements, and CNO
policy on PERSTEMPO, for a planning horizon of ten years.

To date, there have been two optimization-based approaches‘suggested for solving
the U.S. Navy aircraft carrier scheduling problem. The first one is the classical set
partitioning model introduced in Chapter I, Section A.3. The other one is a two-
commodity network flow model with side constraints, which is also an integer program.

The two-commodity network flow model with side constraints is introduced by
Schauppner [1996], and used by Brown et al. [1997] in an optimization-based model
called the Coverage and Response Estimation (CoRE). CoRE is developed to estimate
the level of forward presence sustainable by various numbers of carriers. CoRE honors
pre-determined, exogenous, fixed scheduled maintenance periods for each carrier, which
are stipulated by a long-range schedule published by the Planning and Engineering for
Repairs and Alterations Activity for the Aircraft Carriers (PERA CV). CoRE schedules
the Navy’s actual carriers for deployment around these fixed periods of availability in
order to maximize coverage in the AORs.

Ayik [1998] generalizes CoRE by incorporating the synchronous planning of
deployments and major maintenance availabilities. Ayik’s formulation is also a two-
commodity network flow model with side constraints.

This chapter presents a new integer programming formulation for the long-term
aircraft carrier scheduling problem. We first describe the scheduling factors and

operations constraints. Next, we present the previously suggested model, a two-
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commodity network flow problem with side constraints. Then, we introduce the new

formulation and compare it with the previous models.

B. AIRCRAFT CARRIER DEPLOYMENT SCHEDULING FACTORS AND
OPERATIONS CONSTRAINTS

The deployment scheduling of carriers depends on five factors:

) depot level maintenance,

(i)  work-up cycle,

(iii)  Personnel Tempo of Operations (PERSTEMPO),

(iv)  transit time, and

v) availability of LANTFLT carriers for CENTCOM.

Each of these factors is described below.

1. Depot Level Maintenance

Depot level maintenance is defined as “that maintenance which requires skills or
facilities beyond those of the organizational and intermediate levels and is performed by
naval shipyards, naval ship facilities, or item depot activities” [OPNAV 1992]. While at
depots, carriers undergo large-scale maintenance, repairs, approved alterations, and
modifications to update and improve the carrier's technical and military capabilities.
Each carrier periodically requires maintenance of differing durations. In general, these

maintenance periods are for
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(1) incremental maintenance lasting approximately six months,

(i)  incremental maintenance requiring dry docking, which lasts approximately

twelve months, or

(iii) complex overhaul and possibly nuclear refueling, with a duration

exceeding two years.

U.S. Navy ships accomplish depot maintenance at notional infervals, durations,
and repair man-days set forth in OPNAVNOTE 4700 [OPNAV 1996b, pg. 3]. “Interval
is defined as the period from the completion of one scheduled depot availability to the
start of the next scheduled depot availability. Duration is defined as the period from the
start of an availability to its completion. Repair man-days are those Type Commander
maintenance man-days typically accomplished by the executing activity to satisfactorily
complete the type of availability indicated.”

A sample notional depot maintenance cycle for a Nimitz class aircraft carrier is

provided in Figure VI.2:

Not in Notional
Maintenance Availability

—A
PSA| ISRA| IDSRA| ISRA| |COH|

0 18 21 39 445 62.5 65.5 84 102

PSA : Post Shakedown Availability
SRA : Selected Restricted Availability
DSRA : Docking SRA

COH : Complex Overhaul

Figure VL.2. Sample Notional Depot Maintenance Availability for a Nimitz Class
(CVN 68) Aircraft Carrier. The dashed time lines indicate periods not in maintenance.
The time line numbers indicate months (but not to scale). A Post Shakedown Availability
(PSA) may require only a few months, while 2 Complex Overhaul (COH) may take years.
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To ensure compatibility between a ship’s employment schedules and depot
workloads, CNO authorizes deviation from the notional depot availability interval as

shown in Table VI.1.

Months from Start of Maintenance |Allowable Months Deviation
Cycle to Start of Maintenance Period | of Start of Maintenance Period

0-36 mo +/- 3 mo

37-48 mo +/- 4 mo

49-60 mo +/- 5 mo

61-72 mo +/- 6 mo

73-84 mo +/- 7 mo

>84 mo +/- 7 mo

Table VI.1. CNO Guidelines for Altering Scheduled Maintenance Periods. During a
maintenance cycle, each scheduled maintenance period may be shifted forward, or
backward by a number of months increasing as we progress into the far future. A
maintenance cycle starts after the completion of a carrier's overhaul (or docking
availability, when no overhaul availabilities are included in the maintenance plan) and
ends after completion of the next overhaul or docking availability. For new construction
ships, the maintenance cycle starts after completion of the post shakedown availability.
[OPNAYV 1996b, pp. 3-4]

Figure V1.3 shows the allowable deviation durations corresponding to the notional
depot maintenance availabilities, provided in Figure V1.2, for a Nimitz Class (CVN-68)

aircraft carrier.
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Start of Start of
Maintenance Notional

Cfle Availabilitv
1N £ TV [E— IDSRA| [SRA| |COH|
0 18 21 39 445 62.5 65.5 84 102
Allowable
Deviation: +/-3 mo +/-4 mo +/- 6 mo +/-7 mo

Figure VL3. Allowable Deviations Corresponding to the Notional Depot
Maintenance Availabilities for the Nimitz Class (CVN 68). This maintenance cycle
begins at month 0. Notional start time for the first scheduled maintenance, a Selected
Restricted Availability (SRA), is 18 months from the beginning of the maintenance cycle,
and can be shifted forward or delayed by up to three months. The time line is not to
scale.

Depot maintenance of aircraft carriers is conducted at four major repair facilities:
(1) Puget Sound Naval Shipyard (PUGET),

(ii)  Norfolk Naval Shipyard NORVA) (Figure V1.4),

(iii)  Yokosuka Ship Repair Facility (YOKO), and

(iv)  Newport News Shipbuilding Company (NEWS).
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Figure VI.4. Norfolk Naval Shipyard Aerial View. The NORFOLK NAVAL
SHIPYARD in Portsmouth, Virginia, is one of the largest shipyards in the world
specializing in repairing, overhauling and modernizing ships and submarines. It is the
oldest and largest industrial facility belonging to the U.S. Navy, and is also the most
multifaceted. At the extreme lefi-center is an empty dry dock that can accommodate an
aircraft carrier.

Scheduling depot maintenance availabilities for aircraft —carriers requires
consideration of four factors:

(1 repair requirements for the ship,

(i)  forward deployment requirements by the Navy,

(ili)  availability of the shipyards, and

(iv)  capacity of the shipyards.

The limitations associated with shipyard capacity and availability are as follows:
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a. Dry docking Capacity And Availability

PUGET has two dry-docks that can handle aircraft carriers. There is one
large dry dock for all carriers (nuclear or non-nuclear), and a second slightly smaller one
that can handle only non-nuclear carriers. NORVA has one dry dock that can handle
either nuclear or non-nuclear carriers. NEWS has two dry docks available which can
handle any size carrier. NEWS also has several building docks that are used for carrier
construction.

“Drydocking can be conducted at any time during a docking

availability, and normally takes one quarter of the total

availability period to complete. By coordinating

drydocking schedules, a shipyard may be able to
accommodate simultaneous overhauls.” [Brown 1998]

b. Repair Man-day Availability

Repair man-days are an important secondary consideration when
scheduling maintenance. While there is no limitation on man-day availability, excessive
man-day requirements are avoided by staggering depot level maintenance periods to
minimize overlaps. Current scheduling practice is to limit the overlap of simultaneous
carrier maintenance periods at a given shipyard to 3 months or less in order to avoid man-
day shortfalls. [Brown 1998]

Figure VL5 depicts the overlap of maintenance periods in the same

shipyard.
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CVN 71 5/6/2004 DPIA 3/17/2005

NORVA
CVN 73 9/27/2004 DPIA 8/12/2005
NORVA
DPIA : Docking Planned Incremental Availability

NORVA: Norfolk Naval Shipyard

Figure VLS. Overlép of Two Carrier Maintenance Periods in the Same Shipyard
(taken from PERA CV schedule data [OPNAV Report 4710, 1996a]). Scheduled
DPIA for CVN 71 begins on May 6, 2004 and ends on March 17, 2005. The DPIA for
CVN 73 begins on September 27, 2004 and ends on August 12, 2005. There is an
overlap of approximately six months that may adversely affect the man-day availability in
the shipyard.
c Refueling Availability
Nuclear refueling must be conducted at NEWS: “Refueling of nuclear-
powered carriers must be conducted at NEWS. Due to the budget constraints, it is
preferable to refuel one carrier at a time. However an overlap of at most six months can
be accepted.” [Brown 1998]
2. Work-Up Cycle
After depot level maintenance and prior to deployment, all ships are required to
execute a Tactical Training Strategy (TTS) that takes place during the period known as
the work-up cycle. This work-up cycle ensures that the crew is properly trained and that
the ship is ready for deployment.
Conceptually, work-up begins after the completion of maintenance and lasts

approximately 11.5 months. However, the record of recent carrier deployments suggests

that operational exigencies often curtail pre-deployment work-up. ~Work-ups are
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scheduled according to the following criteria: When the maintenance period is six
months or less, the carrier can deploy fifteen months after the start of maintenance. If the
maintenance period is between six and twelve months, then the carrier can deploy
nineteen months after the start of maintenance. Finally, if the maintenance is a refueling
complex overhaul (RCOH), or the carrier has just been commissioned, it cannot deploy

for twelve months after the completion of maintenance or port-shakedown availability.

[Brown et al. 1997, pg. 37]

3. Personnel Tempo Of Operations

Navy policy restricts at-sea time in the interest of promising personnel a
reasonable amount of time stationed in home port with the families.

“In order to ensure a balance between the support of national
objectives and reasonable operating conditions for Naval
personnel, the CNO initiated the Personnel Tempo of Operations
(PERSTEMPO) program. The PERSTEMPO program achieves
this balance by placing peacetime utilization limitations on all
Navy units deployed from their homeport. There are three
utilization limitations:

(1) The maximum length of a deployment cannot exceed
six months (180 days).

(2) There must be a minimum of a 2-to-1 Turn Around
ratio (TAR) between deployments. This means that a
carrier must remain home for at least 12 months
following a six-month deployment.

(3) Over the course of a five-year cycle (three years
historical, two years projected), a carrier must spend a
minimum of 50% of its time in homeport.

A carrier cannot deploy unless it satisfies these PERSTEMPO
restrictions.” [OPNAYV 1990]
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A memorandum from N81 concludes that a TAR of 2.61 to 1 is more reasonable
[Brown et al. 1997, pg. 37].

4, Transit Time

Per OPNAYV guidance, the transit time between San Diego and the Persian Gulf is
45 days [Brown et al. 1997, pg. 37]. PACFLT carriers from Bremerton or Everett,
Washington must transit to San Diego to load the air wing before heading west toward
the Persian Gulf. This adds six days to the transit time in both directions. For LANTFLT
carriers, the transit time from Norfolk or Mayport to EUCOM is 13 days. However, it
takes only eleven days for LANTFLT carriers to return to their homeports.

5. Availability Of LANTFLT Carriers For CENTCOM

LANTFLT carriers can be deployed to CENTCOM to compensate for the loss of
coverage due to the longer tramsit time required for PACFLT carriers to reach
CENTCOM. A memorandum from N81 establishes that the LANTFLT carriers should
provide 24% of CENTCOM coverage [Brown et al. 1997, pg. 37].
C. SCHEDULE PERIODS

A carrier is in one of the following states during each period:

(1) maintenance,

(1))  work-up,

(iii)  deployable, or

(iv)  non-deployable.

When the amount of time between the end of one work-up period and the next

maintenance period is at least 180 days, then a deployment is possible. This block of
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time is referred to as a deployable period. If the total number of such intervening

available days is less than 180, it is a non-deployable period.
Figure V1.6 displays a sample two-year schedule for four carriers (A, B, C, and

D). For the purposes of illustration, the time resolution is chosen to be in months for each

period of the planning horizon.
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AIRCRAFT CARRIER

YEAR | MONTH A B C D

JAN

FEB

MAR

2 MAY

0 AUG | . ‘ SCHEDULED

SEP |- MAINTENANCE

OCT

Nov | WORK-UP

DEC CYCLE

JAN

FEB DEPLOYABLE

MAR PERIOD

NON-DEPLOYABLE

PERIOD

Figure VI.6. A Sample Two-Year Schedule for Aircraft Carriers. The dark shaded
cells represent time in maintenance. Following each maintenance period is a sequence of
light shaded cells to indicate the required work-up period. Blank cells represent
deployable periods, and vertical striped cells represent non-deployable periods.
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1. Shifting Maintenance Periods

Maintenance availabilities can be shifted to increase AOR coverage as follows.
Figure VL7 depicts a deployment cycle of an aircraft carrier. If we shift the former
maintenance period in Figure V1.7 one month earlier (to the left), then this maintenance
period will be completed at the end of the second month. Therefore, the work-up period,
and hence the deployable period, will also shift and begin one month earlier. Eventually,
the new deployable period will last for 8 months, beginning in month 15 and ending in
month 22. In addition, we can also increase the deployable period by one month by
shifting the later maintenance period (to the right) so that it begins one month later.

Figure V1.8 depicts the effects of such shifting.

MONTHS
2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

IIIIII

Deployment Cycle

Scheduled Maintenance

Work-up

D::j Deployable Period

Figure VLI.7. A Deployment Cycle for an Aircraft Carrier. The cycle begins with a
maintenance period of three months, followed by a work-up period of twelve months, and
ends with a deployable period of seven months beginning with month 16 and ending in
month 22, after which another maintenance is scheduled.

118




Figure VI.8. Shifting of Maintenance Periods. From Figure V1.7, the former (left)
maintenance period is shifted one month earlier (to the left), and the second period one
month later (to the right) increasing the length of the deployable period by two months.
Shifting maintenance periods may cause an undesirable overlap. This problem
will arise if we shift one or both of any two maintenance periods towards each other
causing an overlap that exceeds the allowable dry dock, refueling, or man-day availability
limits. Potentially overlapping maintenance periods are called critical maintenance pairs.
The maintenance period that starts earlier is called the first element of the pair, and the

other maintenance period is called the second element of the pair. Figure VI.9 depicts a

sample critical maintenance pair.

-
Carrier A 01/07/97 RCOH 01/07/98
Carrier B 01/01/97 RCOH 01/01/98
_>
RCOH : Refueling Complex Overhaul

Figure VI.9. A Sample Critical Maintenance Pair. The overlap between two
Refueling Complex Overhauls (RCOHs) is six months, which is the maximum allowable
limit for refueling nuclear-powered aircraft carriers. If we shift one or both RCOHs
towards each other, as shown with the arrows, then the overlap will exceed this limit.
However if we shift them in the same direction, the overlap will not change and the
refueling constraint will not be violated. The RCOH of Carrier B is the first element of
the pair, and the other RCOH is the second element.
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2. Possible Deployment Schedules In A Deployable Period

a. For PACFLT Carriers

If we assume the carrier in Figure V1.7 to be a PACFLT carrier, then it can

be deployed in only one possible way as shown in Figure VL10.

MONTHS

T 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ll i 1 11§
cccccc

C: CENTCOM

Figure VI.10. From Figure VL7, a Possible PACFLT Deployment Schedule for a
Deployable Period. The carrier can be deployed to CENTCOM from the beginning of
the month 16 to the end of the month 21. The carrier is not deployed in month 22,
because there should be at least a one-month delay between the end of a deployment
period and the start of a maintenance period [Brown et al. 1997, pg. 59].

After maintenance shifts of Figure VL8, we can deploy this carrier in three

alternate ways (Figure VI.11).

MONTHS

1 23 456 7 8 91011 1213141516171819202122232425|

S : Schedule C : CENTCOM

Figure VI.11. Alternate Candidate Schedules for the PACFLT Carrier in the
Shifted Deployable Period of Figure VI.8. Sl is an early deployment, S2 is a normal
deployment, and S3 is a late deployment.




The first deployment schedule (S1) in Figure VI.11 is defined as an early
deployment. It becomes available by shifting the preceding maintenance period one
month earlier. The second schedule (S2) is called a normal deployment. This
deployment schedule requires no maintenance shifting. The third schedule (S3), a late
deployment, is obtained by shifting the following maintenance period one month later.
For the special case of a seven-month deployable period, obtained by expanding a five-
month non-deployable period by two months (one month from each end), the result is
called an early-or-late deployment.

If we select an early deployment in an optimized solution, then the
preceding maintenance period must be shifted to begin one month earlier. If a normal
deployment is selected, no change is required. A late deployment requires that the
following maintenance period begin one month later. Finally, if an early-or-late
deployment is selected, both preceding and following maintenance periods must be
shifted away one month.

b. For LANTFLT Carriers

A LANTFLT carrier can deploy to EUCOM for twenty-one weeks, or
alternatively, to EUCOM for 15 weeks and CENTCOM for an additional six weeks.
Figure VI.12 depicts possible schedules for a sample deployment cycle of a LANTFLT
carrier, and also shows the scheme of EUCOM and CENTCOM coverage combinations.
(For purposes of illustration using monthly increments, it is assumed in the figure that

CENTCOM coverage is two months instead of six weeks.)
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12 3 4

5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

S1 E E E E E E

S2 E C CEEE

S3 E E CCEE

S4 E EE CCE
S : Schedule C : CENTCOM E : EUCOM

Figure VI.12. Possible Schedules for a Sample Deployment Cycle of a LANTFLT
Carrier. The carrier can be deployed either for six months in EUCOM, or for a
combination of two months of CENTCOM deployment and four months of EUCOM

deployment.

D. TWO-COMMODITY NETWORK FLOW PROBLEM WITH SIDE
CONSTRAINTS

1. Optimization Model Generation

Possible deployment schedules for each carrier and deployment cycle are
generated according to the criteria stated in the previous sections. After generating all
possible deployment schedules, the next step is to find all feasible combinations of these
schedules. The coverage gaps between each pair of schedules should not exceed a
specified length of time that is referred to as max-gap [Schauppner 1996, pg. 15].

When a feasible combination of schedules is sorted chronologically, every pair of
successive schedules must belong to different deployable periods. If two successive
schedules i and j belong to carriers 4 and B, respectively, in the same fleet, then carrier 4
should depart its homeport before carrier B. This ensures that the two carriers do not
cover an AOR for exactly the same period. Two deployment schedules are said to be

compatible when they satisfy these conditions.
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Table V1.2, Figure VI.13, and Figure VI1.14 illustrate compatible and incompatible
pairs of deployment schedules. Table VI.2 shows a sample two-year schedule for four
aircraft carriers. The first two are PACFLT carriers and the other two are from
LANTFLT. The deployable periods of the carriers in Table V1.2 are already increased by
shifting the associated maintenance and work-up periods. Figure VI.12 displays coverage
gaps and coverage overlaps (the length of time in which more than one carrier is in an
AOR) that will occur in CENTCOM for each pair of compatible deployment schedules.
Figure VI.15 displays coverage gaps for EUCOM. For purposes of illustration only, the
transit times to and from CENTCOM are assumed here to be 30 days each for PACFLT
carriers. For LANTFLT carriers, the transit times to and from EUCOM are assumed here
to be 15 days. The transit times between CENTCOM and EUCOM are not taken into

account here.
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Table VI.2. A Sample Two-year Schedule for Four Aircraft Carriers. Each row
represents a month, and each column represents a deployment schedule. The first column
is labeled AEl. A represents the carrier, E indicates that the schedule is an early
deployment, and 1 is the schedule number for the carrier in this deployable period. A
column label with second character N, represents a normal deployment, L means a late
deployment, and EL an early-or-late deployment.

AEI JAN2|AN3|AL4 [BEI |BL2 JCEL1|CE2 JCE3|CE4]CLS|CL6 |CL7]CLS8
AE] 7 8 4 5 6 b) 6 7
AN2 3 4 5 4 S 6
AN3 2 3 4 3 4 5
AL4 1 2 3 2 3 4
BE1
BL2
CE1l
CE2 1 2
CE3 0 1
CE4 -1 0
CLS
CL6 0 1
CL7 -1
CL8 -2 -1
DEL1
DEL2 -1 0 1 2 10 11 7 8 9 9 10 11
DEL3 - -1 1 9 10 6 7 8 8 9 10
DEL4 -3 -2 -1 0 3 9 3 6 7 7 3 9

Figure VI.13. Coverage Gaps and Overlaps that Accrue in CENTCOM for Each
Pair of Compatible Deployment Schedules. Each row indicates the first carrier in a
pair, and each column the second. For example, cell (AE1, BE1), has a value of 7: if we
first deploy carrier A with AE1, and then deploy carrier B with BE1, then there will be a
coverage gap of seven months in CENTCOM, starting from the beginning of AE1 and
ending at the end of BE1. A negative number indicates overlap periods. For example,
cell (DEL2, AE1) shows that carriers D and A will cover CENTCOM together for one
month. Blank cells represent incompatible pairs or pairs for which one or both schedules
do not provide any coverage of CENTCOM.
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First we calculate overlap values. Then, for the purposes of avoiding undesired
amounts of overlap, the values that are longer than a specific maximum overlap value are
eliminated. The remaining overlap values are assigned to zero, in order to restate them in

terms of coverage gaps.

CEIJCE2|CE3JCE4|CLS|{CL6JCL7|CLS

CE1l
CE2
CE3
CE4
CLS
CL6
CL7
CL8
DELI1
DEL2
DEL3
DEL4

(=23 E=2% {=Y B
||
(=21 Te fo ) BN
[=24 £o0 [= ] PN
N
NN
N fn
RN RNE RN LV

Figure VI.14. EUCOM Coverage Gaps for Each Pair of Compatible Deployment
Schedules. Unlike the situation shown in Figure VI1.13, there are no overlaps here.

Note that Figures VI.13 and VI.14 are node-node adjacency matrices of a network
(e.g., [Ahuja et al. 1993]). Figure VI.15 represents the network underlying Figure VI.14.
Nodes S1 and T1 are added to represent the starting and termination of the planning
horizon for EUCOM coverage. The other nodes co;respond to deployment schedules for
carriers. Costs associated with arcs originating from node S1 and terminating at schedules
DEL1 to DELA4 correspond to the coverage gap (in months) from the beginning of the
planning horizon to the start of EUCOM coverage by carrier D. To simplify Figure
VL15, arcs from S1 to nodes CE1 through CL8 are lnot shown. Similarly, costs
associated with arcs from schedules CE1 through CL8 to node T1 correspond to the

coverage gap evident from the end of coverage by carrier E to the end of the planning
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horizon. A network corresponding to Figure VI.13 is similarly constructed with nodes S2

and T2 added to represent the start and termination of the planning horizon for

CENTCOM.

Figure VI.15. Network Depicting Possible Sequencing of Deployment Schedules for
EUCOM. S1 is the start node, and T1 the termination node of the network indicating the
beginning and end of the planning horizon, respectively. Any other node in the network
represents a deployment schedule. Each arc length corresponds to the coverage gap
between the two associated deployment schedules. Nodes CE3, CE4, CLS5, and CL6

exist, but are not displayed in the figure.

For each of the two networks (one for CENTCOM and one for EUCOM)
described above, we can derive feasible paths beginning with S1 or S2, visiting at most

one node (or schedule) in each deployable period, and ending with T1 or T2. Figure
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VI.16 depicts two sample feasible paths, one derived from the CENTCOM network, and
the other from the EUCOM network. Because a LANTFLT carrier can cover both
CENTCOM and EUCOM in the same deployment schedule, a feasible path from the
CENTCOM network may have common nodes with another feasible path from the

EUCOM network.

EUCOM : Total Gap = 14 months

1.5 - 4 8.5
™ »&) »(E——)
CENTCOM : Total Gap = 14 months

O——E— : —®
> p((cz2 a
NI

Figure VI.16. Two Sample Feasible Paths: One Derived from the EUCOM
Network, and the Other from the CENTCOM Network. Node CE2 is common to
both paths, meaning that LANTFLT carrier covers both EUCOM and CENTCOM in the
same schedule. Each arc length corresponds to the coverage gap, in months, between the
two associated deployment schedules.

At this point, the carrier deployment problem is reduced to finding two paths that
satisfy the conditions discussed above, and that yield a minimum gap. This problem can
be formulated as a two-commodity network flow problem with side constraints.

2. Model Formulation

Using the two-commodity network model with side constraints, the mathematical
formulation for the long-term synchronous aircraft carrier deployment and major

maintenance scheduling problem is provided below:
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Indices:

a AORs (EUCOM and CENTCOM)

c carriers

d deployable periods (1, 2,..., D-1, D)

i,j nodes in the networks representing the schedules (Nodes $* and T* represent
the beginning and the end of the planning horizon, respectively)

s dry docking or refueling shipyards (Newport News, Puget Sound, and

Norfolk)

4 critical maintenance period pairs (i.e., maintenance periods that will
overlap more than the allowable dry docking, refueling, or man-day

availability limits when shifted towards each other).

Index Maps:
®® = {c: carrier ¢ can cover AOR a}
Q¢ = {i: schedule i belongs to deployable period d of carrier c}
©®¢ = {i: schedule i belongs to early deployments of period d of carrier c}
A? = {i: schedule i belongs to late deployments of period d of carrier c}
r = {i: schedule i covers both AORs}
N = {d: period d of carrier ¢ is obtained as deployable by shifting

maintenance periods}
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E? = {i: schedule i belongs to early deployments of the deployable period right

after the second element of critical maintenance period pair p (i.e., the
maintenance period which starts later) for shipyard s }
r = {i: schedule i belongs to late deployments of the deployable period right

before the first element of critical maintenance period pair p ( 1.e. the

maintenance period which starts earlier) for shipyard s }

Data:

GAF/ gap length in AOR a if node j follows node i in a path
EXIST; equals 1 if there is an arc from node i to node j for AOR a
WEIGHT® weight for coverage gap in AOR a (e.g.,a CENTCOM weight of

3, and a EUCOM weight of 1)
CONST  sufficiently small number to penalize the early or late deployments
(units of months)

(Binary) Decision Variables

x; equals 1 if arc (i,7) belongs to the path from $° to T and 0 otherwise
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Formulation

minimize Y WEIGHT® ) GAFfx;  + > CONST x; (VL1.a)
a {6.5xExsTy =1} {(a,c,g,i,j):ce‘b”, }
ie(©%orAL ),EXIST] =1
s.t.
-1if i=5§°
>oxh- D xp=q lifi=T" Va,i (VL1b)
{rast=) - {pasry) 0 otherwise
D EES Va,d,andc e @ (VLL.c)
fie? {}EXZST“-I}
SixfreM - Y x>0 Viel (VL1.d)
{1 EXISTEUCOM —l} {] EXIST,CEVTCOM =]}
dxp + dxp <1 Va,s,andp (VL1.e)

{(i, J)iel? ,EXIST] =1} {(i, J):ieEL ,EXIST? =1}

Yxk o+ xi <1 Vade{l,.,D-1},andc e @ (VLL.f)

i,j):ieAs  EXISTS =1 i,j)ie®@? EXISTS =1
q ¥

Sxi + >x <1 Vade(A®and {2,....D}),and c € @ (VL1.g)
{ijviendT aste =1} {o.)yiend ExISTY =1}

xio+ >x <1 Vade(A®and {1,....D-1}),and c € ®° (VL1h)

{i.jyicod ,E)ﬂ.lsj‘ﬂf ) j):iee;f*‘,z)aysr,; =1}
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In the above formulation, the objective is to minimize the weighted coverage gaps

in CENTCOM and EUCOM with a very small penalty assessed for shifted maintenance
schedules. The optimization model employs a weighting scheme that accentuates
CENTCOM coverage more than EUCOM so as to generate deployment schedules in
which LANTFLT carriers provide approximately 24% of CENTCOM coverage.

Constraint (V1.1.b), a flow balance constraint, ensures that there is a path from §*
to T°. Constraint (VL.1.c) ensures that at most one schedule is selected from each
deployable period. Constraint (VI.1.d) ensures that the same schedule is selected, if it
covers both AORs. Constraint (V1.1.€) ensures that the dry docking or refueling capacity
of shipyard s is not exceeded. Constraint (VI.1.f) ensures that a maintenance period is
shifted in one direction only (i.e., a maintenance period cannot start one month late and
simultaneously end one month early).

Constraint (VI.1.g) ensures that a carrier cannot be deployed in deployable period
d that was obtained from a non-deployable period, and at the same time deployed in a late
deployment schedule of period (d-1). If we deploy a carrier in a late deployment schedule
of period (d-1), then this will preclude deployment in period d. Therefore, a late
deployment in (d-1) is mutuall‘y exclusive with any deployment in d. Constraint (VI.1.h)
ensures that a carrier cannot simultaneously be deployed in deployable period d that was
obtained from a non-deployable period, and in an early deployment schedule of period

(d+1).
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E. NEW FORMULATION: DECOUPLING DEPLOYABLE PERIODS |

The new formulation introduced in this section is conceptually similar to the
classical set partitioning formulation for ship scheduling problems that is presented in
Chapter I, Section A.3. However, unlike the classical approach, an alternate schedule
does not involve the period-by-period status of the carrier for the entire planning horizon.
Each carrier’s planning horizon is decoupled into its deployable periods, and possible
deployment schedules are generated for each of these deployable periods.

The algebraic formulation of the new formulation is as follows:

Indices:

c carriers

a AORs (CENTCOM, EUCOM)

d deployable periods (1, 2,..., D-1, D)

t periods (1,...,7)

s dry docking or refueling shipyards (Newport News, Puget Sound, and
Norfolk).

P critical maintenance period pairs (i.e., maintenance periods that
will overlap more than the allowable dry docking, refueling, or man-day
availability limits when shifted towards each other).

jeJ; set of possible schedules for deployable period d of carrier ¢ (i.e.,

schedules that satisfy the operations and maintenance constraints, and

provide the period-by-period status of this carrier for deployable period d).
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Index Maps:

©®, = {j: schedule j belongs to early deployments of period d of carrier c}
= {j: schedule j belongs to late deployments of period d of carrier c}
iy = {d: period d of carrier ¢ is obtained as deployable by shifting

maintenance periods}

E? = {j: schedule belongs to early deployments of the deployable period right

after the second element of critical maintenance period pair p (1i.e., the
maintenance period which starts later) for shipyard s }

ILr = {j: schedule j belongs to late deployments of the deployable period right
before the first element of critical maintenance period pair p ( i.e. the

o
T
1

maintenance period which starts earlier) for shipyard s }

Data:

Ay equals 1 if schedule j e J; covers AOR a in period ¢, O otherwise

WEIGHT® weight of coverage in AOR a

MAXGAP maximum allowable number of consecutive uncovered periods in an

AOR

Decision Variables (Binary)

uncovered! equals 1 if AOR a is not covered in period ¢, 0 otherwise

x; equals 1 if schedule j is selected, 0 otherwise
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Formulation

minimize Y WEIGHT “uncovered; (V1.2.2)
a’j
s.t.
> x; =1 Y oed (VI.2.b)
jeg
Z Ay:x; +uncovered; 21 Va,t (VI.2.c)
¢d,j
t+(MAXGAP-1)

uncovered; <(MAXGAP-1) Va, tefl,.., T —(MAXGAP-1)} (V12.d)

t'=t

>ox+ Y x; <1 Vs,andp (V12.)
jekf JjeE?

>ox+ ) x<1 V¢, defl,...D-1} (VI2.f)
JjeAg Jje®;

> x+ Y x<1 V¢, de(A€ and {2,...,D}) (VI1.2.g)
jehG Jjehg

> x+ ), %<1 Y ¢, de(A€ and {1,...,.D-1}) (V1.2.h)
Jjedq Jje9Gn

In the above formulation, the objective is to minimize the uncovered periods in
each AOR. Partition constraints (VL.2.b) ensure that exactly one schedule is selected for
each deployable period. Constraints (V1.2.c) express that each AOR should be covered in

each period. Because covering all AORs is not possible with the current carrier force,
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this constraint is elasticized using a penalized elastic variable for each uncovered period.
Packing constraints (VL.2.d) ensure that the uncovered period for each AOR is no more
than the maximum allowable number of gap periods (MAXGAP).

Constraints (VI.2.€) ensure that the dry docking or refueling capacity of shipyard s
is not exceeded. Constraints (VL.2.f) ensure that a maintenance period is shifted in one
direction only (i.e., a maintenance period cannot start one month late and simultaneously
end one month early). Constraints (VI.2.g) ensure that a carrier cannot be deployed in
deployable period d that was obtained from a non-deployable period, and at the same time
deployed in a late deployment schedule of period (d—1). Constraints (VI.2.h) ensure that a
carrier cannot simultaneously be deployed in deployable period d that was obtained from
a non-deployable period, and in an early deployment schedule of period (d+1).

Notice that constraints (VI1.2.b), .(VI.2.d), (V12.f), (VI.2.g) and (VI.2.h) have
exactly one segment of consecutive ones in each row, while constraints (VI.2.€) have two.
Each constraint of (VI1.2.c) has segments of consecutive ones in its rows, as well as in its
columns. In practice, the number of segments of ones in constraints (VI.2.c) are no more
than five in each row, representing that at any period of time at most four carriers are
évailable for coverage of each AOR (plus one segment for the elastic variable uncovered).
Additionally, the number of consecutive ones segments is no more than three in each
(VI.2.c) column. Because a LANTFLT carrier may cover more than one AOR for each

deployable period, there are three segments in each associated column.
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F. COMPARISON OF FORMULATIONS
Table V1.3 presents the problem size comparison of the two-commodity network

model with side constraints, and the new decoupled set partitioning formulation

introduced in the previous section.

Two-Commodity Network New Formulation: Decoupling
with Side Constraints Deployable Periods
Scenario and Number of Number of Number of Number of
Time Fidelity Constraints Columns Constraints Columns
Shifted Maintenance | (VI.1.b) 1,600 (VL2.b) 50
Four-week Periods | (VI.1.c) 50 (V1.2.c) 1,046
(VL1.d) 437 (V1.2.d) 1,028
(VL1le) 5 (V12e) 5
(VL1 50 (V1.2.f) 50
(V11.g) 9 (V12.g) 9
(VLLh) 9 (Vi2h) 9
Total 2,160 45,675 2,197 1,918
Shifted Maintenance | (VI.1.b) 14,979 (VI.2.b) 50
One-week Periods (VIL1l.c) 50 (V1.2.c) 1,046
(V1.1.d) 4,074 (V12.d) 1,028
(VLle) 5 (V12e) 5
(VL.1.f) 50 (V1.2.9) 50
(VL1.g) 9 (Vi2g) 9
(VL1h) 9 (VI.2h) 9
Total 19,176 2,282,015 2,197 9,210
Fixed Maintenance | (VI.1.b) 4,739 (V1.2.b) 41
One-week Periods (VL1.c) 41 (V12.c) 1,046
(V1.1.d) 1,289 (V1.2.d) 1,028
Total 6,078 258,490 2,115 3,629

Table VL.3. Problem Size Comparison of the Two-Commodity Network Model with
Side Constraints and the New Formulation: Decoupling Deployable Periods. The
two formulations are compared in the context of three scenarios using the ten-year PERA
CV schedule data taken from OPNAV Report 4710 [1996a] for twelve carriers. In the
shifted maintenance scenarios, the optimization model is allowed to advance or delay the
maintenance periods at most four weeks to obtain better coverage percentages. By
contrast, in the fixed maintenance scenario, coverage is maximized around fixed
maintenance availabilities. Four-week (or one-week) periods indicate that a carrier may
be scheduled to deploy at the beginning of every four-week (or one-week) interval. The
number of rows specified for each constraint type is provided next to the associated

equation numbers.
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To date, the two-commodity network with side constraints model has been
implemented for the aircraft carrier scheduling problem using a time resolution of four
weeks. That is, a carrier may be scheduled to deploy at the beginning of every four-week
interval. The reason for restricting with a four-week time resolution is to render the
scheduling problem computationally tractable. However, our computational results on
the PERA CV scheduling data for twelve carriers and fixed maintenance periods show
that if the time resolution is defined in weeks (a relaxation), then the coverage percentage
in CENTCOM AOR increases 1.88% or ten carrier weeks. Considering the cost of
carrier operations and the desire to maximize coverage in the AORs, such a percentage
increase is significant.

Table VI3 shows that if the time resolution of the aircraft carrier scheduling
problem is defined in weeks, the two-commodity network model with side constraints
becomes very difficult to solve for even the most basic fixed maintenance scenario.
However, the new decoupled set partitioning formulation generates reasonable problem
sizes that can be solved efficiently in all scenarios.

Another disadvantage of the two-commodity network model with side constraints
is the restriction that the CENTCOM coverage by LANTFLT carriers lasts six weeks.
This assumption has been made to reduce the number of possible schedules, and to make
the scheduling problem solvable. However, using the new decoupled set partitioning
formulation, the number of weeks a LANTFLT carrier should cover CENTCOM can be
determined by the optimization. This flexibility will increase the coverage in both AORs,

and still generate a reasonable problem size.
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Finally, we note that the LP relaxation lower bound obtained using the classical
set partitioning model is stronger than the respective LP relaxation lower bound obtained
using the two-commodity network model with side constraints, or the new decoupled set
partitioning formulation. When we relax the respective binary requirements in the two-
commodity network model with side constraints or in the new decoupled set partitioning
formulation, the mutually exclusive packing constraints (VI.1.e) through (VI.1.h), and
(V1.2.e) through (V. I.2.h) admit fractional (non-binary) alternate schedules with non-
uniform values adding to at most one. Although the decoupled set partition yields a
weaker LP relaxation lower bound, it has proven effective for solving the carrier
scheduling problem because, even over a long planning horizon, the number of alternate

schedules remains modest.
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VII. CONCLUSIONS, CONTRIBUTIONS, AND RECOMMENDED FUTURE
RESEARCH

Set partitioning problems arise in many applications of optimization-based
decision support. Perhaps the best-known of these is airline crew scheduling, where each
binary decision (syn. “variable,” or “column”) represents whether or not to assign a crew
to a duty period consisting of a set of (takeoff-to-landing) flights, and each constraint
(row) is a flight that must have a crew assigned. These models are deceptively easy to
state: find a set of columns that make exactly one (crew) assignment to each row. But,
these problems are quite difficult to solve. Even the continuous, linear programming
relaxation is not necessarily easy to solve, and even when it has been solved, there are
frequently many variables in the solution with fractional values, so that enumeration with
branch-and-bound or branch-and-cut becomes necessary.

Just getting a feasible solution for a set partition, let alone an optimal or near-
optimal one, is hard. In fact, even having a bound on such a solution can be a valuable
clue about how to actually solve it.

In this dissertation we have isolated a special structure exhibited by set partitions
that we call “consecutive ones.” A consecutive ones column in an airline crew
scheduling problem assigns a consecutive set of flights, and a consecutive ones row is
associated with a flight that can be assigned to a consecutive set of candidate columns.
Set partitions with consecutive ones columns can be reformulated into an equivalent

minimum-cost pure network flow problem, and thus solved easily. Consecutive ones
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rows also yield an easy reformulation that is the dual of a minimum-cost pure network
flow problem.

However, finding a set partition that has all consecutive ones rows or columns is a
lucky and rare event. Predominately, we find columns or rows composed of more than
one consecutive ones segment. If the number of consecutive ones segments per column
or row is small, we call this “near-consecutive ones.”

We have looked for, and found, intrinsic near-consecutive ones rows and/or
columns in many existing set partitions. We have shown how to reorder columns and/or
rows to minimize the respective number of consecutive ones segments in rows and/or
columns. We have also formulated set partitions, in particular a long-term US Navy
aircraft carrier deployment scheduling model, with the aim of minimizing the number of
consecutive ones segments in its rows and/or columns.

Having found near-consecutive ones columns, and perhaps having reciuced the
number of segments in them, we show how to algebraically reformulate, or “column
split” the set partition into two sets of rows with some additional columns such that one
set of rows has only consecutive ones columns. We show how each of these row sets is,
individually, equivalent to a pure network flow problem, so each is easy to solve quickly.
However, directly solving both sets simultaneously is not easy, so we retain the larger set
of network constraints and use Lagrangian relaxation with subgradient optimization to
attempt to satisfy the smaller set of network constraints by iterative means. This use of
column splitting has been suggested before for solving some special problems, such as

the two-duty period scheduling problem [Marsten and Shepardson 1980], but never
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reported for general set partitions. Our results show that it is important not to have too
many consecutive ones column segments, or it becomes very’ difficult to solve the
Lagrangian relaxation in a reasonable amount of time. Even in cases where a set partition
cannot be solved this way, the solution can be bounded, however.

We also find near-consecutive ones rows, and perhaps reduce the number of
segments in these, and show how to use this perspective to reformulate the set partition
into two sets of columns with some additional rows. One set of columns has only
consecutive ones rows. We show how each of these column sets is, individually,
equivalent to a pure network flow problem. We also show that if the variables in one set
ére fixed, the remaining set conditioned by this can be solved easily. We use this to
develop the row split Benders decomposition method to solve set partitions. The results
show that is important not to have too many consecutive ones row segments, or the
number of Benders iterations required for convergence grows alarmingly. Even in cases
where a set partition cannot be solved with row split Benders decomposition, the solution
can be bounded.

We do find cases where the column split and/or row split methods solve the set
partition faster than conventional means. We conjecture that, given the difficulty of
solving set partitions, there exist instances that these new techniques will solve that
would defy conventional means.

It is well known that linear programs and mixed integer linear programs (and set
partitions) usually exhibit redundant features that can be easily detected and exploited by

relaxing constraints and fixing variables. For instance, if a constraint restricts a set of
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binary variables to sum to one, and if another constraint restricts that same set of
variables and another set of binary variables to also sum to one, then the latter set of
variables can all be set to zero, and the latter constraint can be relaxed. These detection
features, called “presolve,” “prereduce,” or “preprocessing,” are standard features in
commercial optimization software packages and are well known to improve solution
efficiency, sometirﬁes dramatically.

There are also well known reductions applicable to pure network flow problems.
Finding that set partition features can be reformulated to equivalent network flow features
suggests that for every reduction applicable to a set partition, there might be. some
equivalent reduction in the equivalent pure network, and vice versa. We establish
equivalence between pairs of set partition and network reductions, and discover that some
that have been reported to be distinct are not. We also discover a new set partition
reduction from a known network reduction.

A. CONTRIBUTIONS

1. Column Splitting

We have investigated Lagrangian relaxation and subgradient optimizatioﬁ with the
column split reformulation for various problems including: (i) an instance of an aircraft
carrier problem, (ii) sample data from two-, three-, and four-duty period problems, and
(iii) a subset of real-world airline crew scheduling problems that exhibits a reasonable
degree of consecutive ones structure in the columns. During the implementation of

subgradient optimization, some of the recent improvements reported by Caprara et al.

[1999] are incorporated.
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For airline crew scheduling problems that do not have a significant consecutive
ones structure, the convergence of Lagrangian relaxation is unsatisfactory. However, for
instances of two-, three-, and four-duty scheduling scenarios, the Lagrangian relaxation
yields a respectable lower bound faster than the LP relaxation of the monolithic SPP.
But, obtaining a lower bound within 1% of the LP relaxation lower bound using
Lagrangian relaxation usually requires an excessive number of iterations and long
solution times. As the number of segments of consecutive ones increases, the
convergence speed of Lagrangian relaxation deteriorates.

We have also investigated an exterior penalty method on the column split
reformulation to find a lower bound that is equal to the LP relaxation of SPP. Our
penalty subproblem is a convex quadratic network flow problem. We have implemented
our penalty method using the CPLEX 6.6 [ILOG 2000] quadratic programming solver,
which is not specially designed for solving quadratic network flow problems.

For certain problems with near-consecutive ones, our exterior penalty method
yields lower bound values faster than the conventional means, including the simplex, dual
simplex, or barrier methods. A specialized quadratic network solver (e.g., that reported
by Dembo [1987] and Hearn et al. [1987] but not available from those authors) would
presumably improve solution times further.

By reordering the rows, we may reduce the number of consecutive ones segments
in the columns of an SPP: using a trivial row reordering heuristic on a subset of airline
crew scheduling problems, we obtain a 32% average decrease in the number of

consecutive ones segments. Furthermore, after reordering the rows, the solution times
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and the lower bound values obtained using the Lagrangian relaxation and the penalty
method improve significantly. For one of the sample problems, we obtain a better

solution time using the exterior penalty method than solving the original LP relaxation

using the simplex method.

2. Row Split Benders Decomposition

We have introduced a new algorithm to solve certain binary programming
problems (e.g. set partitions, their cousins set packs and set covers, and instances of these
with additional side constraints) whose rows contain segments of consecutive ones. We
reformulate using a row splitting technique that isolates a pure network enabling
application of Benders decomposition.

For some problems with near-consecutive ones in rows (e.g., the aircraft carrier
scheduling problem), the row split Benders decomposition yields faster solution times.
We conjecture that row split Benders decomposition will render some previously
unsolvable real-world applications tractable.

Further, we have investigated the impact of column reordering on the performance
of the row split Benders decomposition.

We have also tested the performance of the row split Benders decomposition in
generating improved feasible solutions for an SP, SC or SPP.

By reordering the columns of a subset of airline crew scheduling problems with a
simple heuristic, we obtain a 48% average decrease in the number of segments of
consecutive ones. Furthermore, after reordering the columns, the solution times and the

bound values obtained using row split Benders decomposition improve significantly
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improve. For one of the SP samples, we obtain a better solution time using the row split
Benders decomposition than solving the original integer program using CPLEX 6.6
[ILOG 2000].

In general, the convergence rate of the row split Benders decomposition degrades
as the number of consecutive ones segments increases.

3. Reductions In SPP

We have compared known preprocessing reductions for SPPs with known
reductions for network flow models extracted from our column split reformulation, and
have used the reformulation to establish one-to-one correspondence between reductions
heretofore viewed as distinct.

While doing this, we have discovered a new “column split” reduction for SPP.
Applying this to a well-studied set of airline crew scheduling SPPs, we identify relations
between binary variables that lead to fixing many more of those variables than any
preceding work. Moreover, finding so many new reductions may improve the solution
time and/or allow some unsolvable real-world SPPs to be solved.

We have also discussed extracting the hidden arcs of the intersection graph of an
SPP by probing variables. We note that extending the intersection graph with the
addition of new arcs generated by naive probing may offer new valid inequalities for SPP.
However, extracting the hidden arcs of the intersection graph by probing, and finding
valid inequalities in the extended intersection graph may be computationally very

expensive.
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4. A New Formulation For A Long-Term Aircraft Carrier Scheduling
Problem

We have introduced a new SPP-with-side-constraints formulation for a well-
known aircraft carrier deployment scheduling problem. This new formulation
significantly reduces problem size, and admits an improvement in time fidelity from
months to weeks over a ten-year planning horizon. We use US Navy data for twelve
carriers and fixed maintenance periods and show that, if the time resolution is defined in
weeks, the percentage of time we can patrol in areas of responsibility increases 1.88% or
ten carrier weeks. Considering the enormous cost of carrier operations and the goal of
maximizing such coverage, this is a significant improvement.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

There are several avenues for further research that may prove fruitful.

1. Augmented Lagrangian Penalty Method

For a sufficiently large penalty parameter, the penalty method presented in
Chapter III converges to the LP relaxation lower bound. However, if we choose too large
a parameter, the penalty method may not converge to the optimal solution because of the
ill conditioning we have induced. For certain problems, even if we iteratively increment
the penalty parameter value, convergence may not occur. For such problems, we
recommend investigating the augmented Lagrangian penalty method (e.g., [Bertsekas
1995]). This method is theoretically guaranteed to achieve an exact optimum for finite

penalty parameter values.
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2. Further Investigation Of The Column Split Reduction

We have only applied the new column split reduction to the initial linear program
relaxation, i.e., at the root node of the subsequent branch-and-bound tree. We
recommend applying this reduction periodically during branch-and-bound, and conjecture
that it will enhance such reductions at little computational cost.

3. A Variant Of The Simplex Method

Consider the reformulated problem (NS).

minimize dYy
(NS) s.t. N =b

Sy=0
y binary

Note that the optimal solution to (NS) is an extreme point of the following integral
polyhedron P:

P= { y20|M = b}

We have sought a restriction of the simplex method that searches for a feasible
solution to (NS) by moving from one basic feasible solution to another, along the edges of
P, always in a cost reducing direction. That is, we search for an extreme point of P that
also satisfies constraints Sy=0. It requires exponential time (i.e., the time needed to
implement an algorithm is an exponential function of the length of the input data) to find
such an extreme point. It remains to be seen whether a heuristic search method is

worthwhile.
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4. Fictitious Play

Consider the reformulated problem (NVS). We define the Lagrangian by:
L(y,p)={dy+u(Sy): % =b,y binary}

Consider the following game: player 1 chooses some y >0, and player 2 chooses
some u; then, player 1 pays to player 2 the amount L(y,). Player 1 would like to
minimize L(y, &), while player 2 would like to maximize it.

Avpair (y',4"), with y" >0, is called an equilibrium point (or a saddle point, or a
Nash equilibrium) if

L W<LY )SLy,u’), ¥ y20,andy
(Thus we have an equilibrium if no player is able to improve her performance unilaterally

modifying her choice.)
We have experimented with fictitious play (e.g., [Brown 1951], and [Gass et al.
1996]) to try to solve the game described above. Even if we cannot solve this game, we

can still obtain lower or upper bounds for SPP. And, we could not solve this game: The

convergence rate of fictitious play is very slow compared to the Lagrangian relaxation.
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