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ABSTRACT

In 1951, G.W. Brown proposed an iterative algorithm called ‘fictitious play’
for solving two-person zero-sum games. Although it is an effective method, the
fictitious play algorithm converges slowly to the value of the game. Recently, Gass,
Zafra, and Qiu proposed a modification that applies to symmetric games, i.e., games
with skew-symmetric payoff matrices. To solve non-symmetric games via their
modification, the games must be made symmetric via a transformation.

Gass, Zafra, and Qiu reported that their modified algorithm converges faster
than the original fictitious play on a collection of randomly generated games.
However, their results on non-symmetric games only apply to games whose values
are near zero. When game values are far away from zero, this thesis empirically
shows that the original fictitious play algorithm can outperform the modified one.

Gass, Zafra, and Qiu’s method is static, in that the symmetric transformation
1s done once prior to the start of their modified algorithm. However, they suggested
the exploration of dynamic methods where the transformation is periodically
revised. This thesis proposes and investigates the convergence behavior of one

dynamic transformation technique for solving general two-person zero-sum games.
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I INTRODUCTION

When it was proposed in 1951, Brown’s fictitious play algorithm was not known
to converge, but it was applied to a few two-person zero-sum (TPZS) games with
success. Robinson [Ref. 1] later proved its convergence. Despite this result, the
algorithm is not always the method of choice for solving TPZS games. In their book,
Szép and Forgé [Ref. 2] state that ‘Computational experience available up to now
indicates that, for the solution of general matrix games, linear programming is the most
efficient method.” However, the fictitious play algorithm is not impractical. For some
large games or games where it is impossible or impractical to enumerate all possible
strategies a priori (see, e.g., Ref. [3]), the fictitious play algorithm may be the only
effective choice.

Recently, Gass, Zafra, and Qiu (GZQ) [Ref. 4] proposed a modification to the
ﬁctitioﬁs play algorithm. The modification assumes that the game is symmetric. Since
non-symmetric games can be transformed into symmetric ones (see, e.g., Ref. [5]), their
modification also applies to non-symmetric games. In their paper, GZQ also report that
their modification converges faster than the original fictitious play algorithm. Their
results are based on random games with 100x100 payoff matrices whose elements are

Uniform random numbers between —100 and 100.

Table 1.1: Values of Games with Uniform{[-100,100] Payoffs

Size Density Game values among a sample of 50 games
minimum average maximum
100 x 100 20% -1.4970 0.1402 1.9367
100 x 100 40% -1.1616 0.2806 2.2304
100 x 100 60% -2.1494 0.0206 2.3894
100 x 100 80% -1.8568 0.0667 2.3511
100 x 100 100% -2.0555 0.1566 2.7096




Table 1.1 summarizes the values of some games with Uniform [-100,100]
payoffs. In the table, the size of the payoff matrices is 100x100, i.e., each player has 100
strategies available, and the density is varied from 20% to 100%. For each combination
of size and density, 50 random games are generated and solved by the simplex method
(see, e.g., Ref. [6]) to find the game values. The minimum, average, and maximum game
values for each sample of 50 games are reported in Table 1.1. They indicate that the
values of the games with Uniform [-100,100] payoffs are near zero. Thus, GZQ tests are
mainly on games with values that are near zero.

One objective of this thesis is to consider a larger class of random games and
numerically compare thé original against the modified fictitious play algorithm as
proposed by GZQ. In addition, GZQ’s modification is static, in that the symmetric
transformation is performed once prior to start of their algorithm. This thesis also
proposes an alternate modification in which the transformation is periodically updated
with a different scaling parameter. The numerical results reported here indicate that this
new modification converges more rapidly than both the original and modified fictitious
play procedures proposed by GZQ.

To make the thesis self-contained, Chapter II describes symmetric and non-
symmetric TPZS games. Chapter III discusses the existing techniques for solving these
games and proposes an alternate modification for the fictitious play algorithm. In
Chapter IV, variations of the fictitious play algorithm are compared against the original.

Finally, Chapter V summarizes the results.



II. TWO-PERSON ZERO-SUM GAMES

A. DEFINITION

A two-person zero-sum (TPZS) game is a situation where there are two decision-
makers (players) having directly opposite interests. In a TPZS game, one player, P1, has
m strategies available and the other, P2, has n strategies. The outcome of the game
depends on the strategy used by each player. If P1 and P2 choose the i™ and jth strategies,
respectively, then the outcome of the game, denoted as a;;, represents the amount P2 has
to pay P1. In other words, the payoffs to P1 and P2 are a;; and -ay;, respectively. Note that
the sum of the two payoffs is zero, which explains the name of the game.

A TPZS game is completely defined when the payoff for each pair of P1 and P2
strategies is determined. These payoff can be summarized as an mxn matrix, generally

referred to as a ‘payoff matrix’, i.e.,

a4y Gy 4,
A - a.zl a.22 b a?"
aml am2 ot amn

In playing the game, both players are assumed to choose the best strategy to achieve the
most favorable outcome. This means that P1, the player receiving the payoff a;;, would
choose the strategy that maximizes the outcome of the game. On the other hand, P2,
having to pay a;;, would choose the strategy that minimizes the outcome instead.

When a TPZS game has an equilibrium point, each player can guarantee an
outcome of the gamé by always choosing one particular strategy. When equilibrium can

not be achieved, both players are assumed to randomize their strategies. In other words,




P1 and P2 choose strategies i and j, respectively, independently with probability x; and y;.

The randomized strategies, x = (xy, ..., xm)T andy=(y, ..., y,,)T, must satisfy the

following conditions:
1) 0<x,<1 forali=1,....m
i) 0<y<1 foralj=1,..,n
iii) dx=1
i=1
iv) y;=1
j=1

To choose the best randomized strategy, P1 must solve the following optimization

max {min[) xa,}: D x=1, x,20,i=1,...,m} (2.1)
x =] i=1

Similarly, P2 must solve the following problem to obtain the best randomized strategy

m}jn{m'jdx[Zaijyj]: > y=1,y20,j=1,..,n} (2.2)
j=1 j

Let x* and y* denote the optimal strategies for P1 and P2. Then, v* = (x*)" Ay" is the

value of the game. In addition, it is well-known (see, e.g., Ref. [6]) that

v = max{m;'n[ina,.j]: Zx,. =1,x,20,i=1,...,m},and
X .=l

i=1

V' = myin{m;ax[Zaijyj]: Yy =1y20,j=1,..n}
j=1 J
B. SYMMETRIC GAMES

A TPZS game is said to be symmetric if its payoff matrix is skew-symmetric, i.e.,

A =-ATor a; = -aj; for all i and j. The value of a symmetric game is always zero (see



[Ref.7]). In addition, the optimal randomized strategies for P1 and P2 are the same, i.e.,
x =y
C. NON-SYMMETRIC GAMES

When the payoff matrix is not skew-symmetric, the game is non-symmetric and
the value of the game may be nonzero. However, it is possible to transform a non-
symmetric game into a symmetric one. In the literature, there are two transformation
techniques, one proposed by von Neuman and the other by Gale, Kuhn and Tucker
(GKT) [Ref. 5]. Among these two techniques, the latter is more attractive
computationally, for the resulting symmetric game has a much smaller payoff matrix.

Given a payoff matrix A, the GKT technique defines the following payoff matrix

0 A -q
S=|-AT 0 g
o -c O

Where c¢; and ¢, are vectors in R” and R", respectively. Furthermore, the components of
both ¢; and ¢, are the same and they all are equal to J, a positive constant. The 0’s in §
represent zero matrices of compatible dimension.

When the original payoff matrix A is of size mx n, the resulting payoff matrix § is
of size (m+n+1)x (m+n+1). Clearly, S is skew-symmetric. Let (p*,q",4") be an optimal

randomized strategy for the symmetric game with payoff matrix S. If the original game

has a positive value, it is possible to show (see [Ref. 5]) that Z p; = qu and the
j=1 .

i=1

optimal strategies for P1 and P2 in the original game are x* =1 p* and y* =-Lq" where

U= Zq, . In addition, the value of the original game is 64"/ x .
j=1




For games with zero or negative values, it is possible to ‘scale’ or add a constant
w to the payoff matrix A and obtain A(w) = [a;; + w]. When w is sufficiently large, the

resulting game has a positive value.



III. SOLVING TWO-PERSON ZERO-SUM GAMES

A. LINEAR PROGRAMMING

The problem for determining an optimal randomized strategy for P1 in equation

2.1 is equivalent to the following linear program (see, e.g., Ref. [6]):

OPT-1: .maximize v

subjectto Y a,x, 2 v forj=1,...n
i

x 20 fori=1,....m
Similarly, the problem for determining an optimal randomized strategy for P2 in equation
2.2 is equivalent to the following linear program:
OPT-2: minirrﬁze w
subject to Zaiji <w fori=1,....m
j
j
y 20 forj=1,...,n
It is easy to show that problems OPT-1 and OPT-2 are dual of each other. Moreover, if
(v*, x*) and (w*, y*) are optimal to problems OPT-1 and OPT-2, respectively, then v* =
w¥.
B. REGULAR FICTITIOUS PLAY
To adopt the convention used in GZQ, the fictitious play algorithm as proposed
by G. W. Brown in Ref. [8] is henceforth referred to as the regular fictitious play
algorithm or RFP. To describe RFP, let A; and A’ denote the i™ row and the j® column of

the payoff matrix A. As before, x = (x...., X, ..., X)’ and y = (yy, ..., Yis <-es )

S




represent the randomized strategies for P1 and P2, respectively. After k fictitious plays,
define
i) UK =[Uk), ...,.Ufk),..., Un(k)] as the cumulative payoff vector for P1,
i) ai(k) as the number of times P1 uses strategy i in k plays,
iii) V(k) = [Vi(b), ..., Vi(k), ..., V,,(k)]T as the cumulative payoff vector for P2,
iv) bj(k) as the number of times P2 uses strategy j in k plays,
v) m(k) as the lower bound for the value of the game, and
vi) M(k) as the upper bound for the value of the game.
Below, RFP is stated with a stopping tolerance of £ > 0.
Regular Fictitious Play Algorithm (RFP)
Step 0: SetU(0)=0,V(0)=0,a0)=0foralli=1,...,m, bj0)=0forallj=1,...,n,
m(0) = — o, M(0) = 0, and k= 1. Go to Step 1.
Step 1: Let r = arg max; {U;(k-1),..., Ui(k-1),..., Un(k-1)} (break ties arbitrarily). Set
V()" = V(k-1)" + A, and a,(k) = a,(k — 1) + 1. If k > 1, compute M(k) = min{M(k
- l),ﬁU,(k —-1)} and go to Step 2.
Step 2:  Let s = arg min{ Vi(k),..., Vj(k), ..., Vu(k)} (break ties arbitrarily). Set U(k) =
U(k-1) + A° and by(k) = by(k — 1) + 1. Compute m(k) = max{m(k - 1), LV (k) }
and go to Step 3.
Step 3:  If [M(k) — m(k)] < &, stop. The randomized strategy pair, x =
L(a, (k),..., a, (k)T andy = L(b, (k)...., b, (k))T ,is approximately optimal.
Otherwise, set k =k + 1 and go to Step 1.
In the first occurence Step 1, the r™ strategy (i.e, r™ row of the payoff matrix A) is

arbitrarily assigned to P1 since U(0) is a zero vector. In Step 2, P2 minimizes the



cumulative payoff to P1 by choosing the s™ strategy. If the gap, i.e., the difference
between the upper and lower bounds, in Step 3 is sufficiently small, the algorithm
computes the resulting randomized strategies for both players and terminates.

To illustrate, consider the payoff matrix

46 8
A= :
[751]

Table 3.1 summarizes the first ten iterations of RFP. In Step 1, P1 arbitrarily chooses
strategy 2 (or row 2) since ‘U(O) =0and V(1) issetto (7, 5, l)T. In Step 2, P2 then
chooses strategy 3 (or column 3) since, against V(1), P2 only has to pay 1 unit to P1 using
this strategy. This sets U(1) = (8, DT. The sequence of play just described is
summarized in the first row (k = 1) of Table 3.1. The remaining rows are similarly
obtained. In the fourth row (k = 4), m(4) is the same as m(3) since it is larger that V,(4)/4
=4.75. Similarly, in the ninth row (k = 9), M(9) = M(8) since M(8) is less than U,(k-
D/(k-1) =44/8 =5.5

Table 3.1: Ten Iterations of the Regular Fictitious Play Algorithm

k s U(k-1) M) r 70) mk)
i=1 | i=2 j=1 | j=2 | j=3
1 2 0 0 © 2 7 5 1 1.0
2 3 8 1 8.0 1| 1 11 9 45
3 3 16 2 8.0 1| 15 17 17 | 50
4 1 20 9 6.7 1| 19 23 25 5.0
5 1 24 16 6.7 1| 23 29 33 | 50
6 1 28 23 5.6 1| 27 35 41 5.0
7 1 32 30 53 1| 31 37 49 | 50
8 1 36 37 53 2 | 38 42 50 | 5.0
9 1 40 44 53 2| 45 47 51 5.0
10 1 44 51 53 2 | 52 52 52 5.2

C. MODIFIED FICTITIOUS PLAY
There are three variations of RFP discussed here. The first variation is called the

modified fictitious play or MFP algorithm. This algorithm only applies to symmetric




games. The other two are intended for non-symmetric games. Both use the GKT
technique discussed in Chapter II to transform a non-symmetric game into a symmetric
one. The variation described in GZQ, referred to here as ‘Static MFP’ or SMFP,
performs the symmetric transforms once prior to the start of the algorithm. The
remaining variation, ‘Dynamic MFP’ or DMFP, is new, Although, the basic idea is
alluded to in GZQ. In this new variation, the transformation is periodically updated with
new lower bounds on the value of the original game. As demonstrated in the next
chapter, this variation converges faster on a collection of randomly generated games.
1. Modified Fictitious Play for Symmetric Games
The MFP algorithm for symmetric games is essentially the same as RFP. There is
an additional step in MFP to take advantage of the fact that the value of a symmetric
game is always zero and the optimal randomized strategies for P1 and P2 are the same.
For an nxn payoff matrix, the MFP algorithm requires a switching interval K in addition
to the stopping tolerance € and it can be stated as follows.
Modified Fictitious Play Algorithm (MFP)
Step0:  Set U(0)=0, V(0)=0,a(0)=0foralli=1,...,n, b(0)=0forallj=1,
eyt ,m(0) =— o0, M(0) =0, and k = 1. Go to Step 1.
Step 1:  Let r = arg max; {U,(k-1),..., Uk-1),..., U,(k-1)} (break ties arbitrarily).
Set V(k)" = V(k-1)" + A, and a (k) = a,(k — 1) + 1. If k> 1, then set M(k) =

min{M(k - 1),--U, (k1) }. Go to Step 2.

*&-D
Step2:  Lets=arg min{Vi(k), ..., Vik), ..., Va(k)} (break ties arbitrarily). Set
Uk) = Uk-1) + A®, by(k) = by(k—1) + 1, and m(k) = max {m(k - 1),

+V.(k) }. Go to Step 3.
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Step 3:  If [M(k) — m(k)] < €, stop and either the randomized strategy x
=1(a,(k),.., a, (k)T Oory = L(b, (k),.., b,(k))" is approximately optimal.
Otherwise, go to Step 4.

Step4: If mod(k, K) >0, set k=k + 1 and go to Step 1. Otherwise, set f=

min{lmin{+V, ()}, Imax{+U,(k)}1}. If # = | min{LV,(k)}I, then set
J i J

Uk) = - V(k)b and b(k) = a(k). Otherwise, set V(k) = — U(k) and a(k) =
b(k). Setk=k+ 1 and go to Step 1.
Steps 0 io 3 are essentially the same as those in RFP. The notation used in MFP reflects
the fact that the payoff matrix, A, is square. In Step 4, MFP computes at every K

iterations two game value estimates, Im;’n{;“-Vj (k)}1 and Imax{1 U, (k)}|. Depending on
J i

which estimate is closer to zero, the cumulative payoff vectors are ‘switched’ and both
a(k) and b(k) are made ecjual to reflect the better of the two game value estimates. As
empirically demonstrated in GZQ, the best value for X is one.

2. Modified Fictitious Play with Static Scaling

For a non-symmetric game, Static MFP or SMFP first transforms the mxn payoff

matrix into the following skew-symmetric (m + n + 1) x (m + n + 1) payoff matrix:

0 AW -¢
Swy=|Aw)Y 0 ¢,
e -cI 0

where A(w) = [a;; + w] for some scaling factor w > 0 and the components of ¢; € R™ and
and ¢, € R" are all equal to > 0. For the above transformation to be valid, the scaling

factor w must be large enough to ensure that the payoff matrix, A(w), yields a game with

11




a positive value. In GZQ, the scaling parameter w is set to Imina;+1. Then, SMFP is
essentially MFP applied to S(w).

As before, let S,(w) and $°(w) denote the 7™ row and the s™ column of the payoff
matrix S(w). Then, the Static MFP algorithm can be stated as follows.

Modified Fictitious Play Algorithm with Static Scaling
(SMFP)

Step0: Set U(0)=0, V(0)=0,a;0)=0foralli=1, ..., (m+n+1), b(0)=0forallj=1,
very (mn+1), m(0) = — 0, M(0) = 0, and k = 1. Go to Step 1.

Step 1: Let r = arg max; {U(k-1),..., Ui(k-1),..., Umn+1)(k—1)} (break ties arbitrarily).
Set V()T = V(k-1)" + S(w) and a,(k) = a,(k— 1) + 1. Go to Step 2.

Step 2:  Let s = arg min;{ Vi(k), ..., Vj(k), ..., Vimns1y(k)} (break ties arbitrarily). Set U(k)
= U(k-1) + S°(w) and bs(k) = bs(k — 1) + 1. Go to Step 3.

Step 3: Se

t
X =a,.(k) m fori=1,...,m,
Zi=lai(k)
y; =a’"+i(k/ n forj=1,...n,
Zj=1am+j(k)
b.(k) .
p; =" m fori=1,...,m, and
A:Hbi(k)

q; =b""'f(k/,, forj=1,...,n
Zj:lb'"+j (k)

Then, compute
m(k) = max{m(k ~1),min Y " A, (w)x,,min )" A;(w)p,} and

=177 1

M (k) = min{M (k —1), max D AWy j»max > A (wg;)

12



If [M(k) — m(k)] < &, stop and either the randomized strategy pair (x, y) or (p, q)
is approximately optimal to the game with payoff matrix A. Otherwise, go to
Step 4.

Step4: If mod(k,K) >0, set k=k+ 1 and go to Step 1. Otherwise, set f=

min{lmin{V, (k)}), lmax{1U, (k)}1}. If f = Imin{LV,(k)}I, then set U(k) =

V(k) and b(k) = a(k). Otherwise, set V(k) =— U(k) and a(k) = b(k). Setk=k+ 1
and go to Step 1.

The main difference between MFP and SMFP is in Step 3 where the upper and
lower bounds for the value of the game are calculated. The bounds in Step 3 of SMFP
are for the original game, not the one with S(w).

Step 3 may involve dividing by zero, but MATLAB, the numeric computational
software in which the algorithm is implemented, handles this eventuality correctly (see
appendix E).

3. Modified Fictitious Play with Dynamic Scaling

The results in Table 3.2 show that setting w to Imina;l + 1 makes SMFP converge
slowly. In fact, a better value for w is —v, where v is the value of the game. Table 3.2
displays the results on eight random games with 25%, 50%, 75%, and 100% density.
Four games have 10x10 payoff matrices and the other have 20x20. Elements of all
payoff matrices are uniformly distributed between —~100 and 100. The stopping tolerance,
g, is 0.1 and the switching interval, K, is 1. The value of the game is obtained by solving

the corresponding linear program discussed earlier.
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Table 3.2: Numerical Results for MFP with two scaling parameters

Matrix Matrix | Game w = Imin(a;) + 1 w = — game value
Size Density | value CPU | Iteration CPU Iteration
(sec) (sec)
10x 10 25% -18.58 24.27 6103 2.53 837
10x 10 50% -4.65 53.33 11778 41.75 9100
10x 10 75% -10.85 20.16 5278 13.45 3757
10x10 100% -14.73 12.36 3496 6.81 2092
20x20 25% 1.22 49.04 9887 34.71 7657
20%20 50% 2.01 65.03 15813 30.93 6764
20x20 75% 1.61 74.26 16936 42.4 8426
20x20 100% -2.80 56.80 11045 26.25 6059
Total 355.25 80336 198.83 44692

In Table 3.2, the CPU times for MFP with w = — v are between 10% to 80% of
those for MFP with w = Imina;l+1. Over all eight games, there is a 44% reduction in
CPU times when w = — v. A similar conclusion also holds for the number of iterations.

The above results motivate the idea of adjusting the scaling parameter
periodically. To be valid, the resulting payoff matrix A(w) must yield a positive game
value. One method is to simply set w to the negative of the best lower bound, i.e.,

w = — m(k).

Let L be the rescaling interval. Then, the Dynamic MFP algorithm or DMFP can

be stated as follows:

Modified Fictitious Play Algorithm with Dynamic Scaling
(DMFP)

Steps O - 3: Same as SMFP

Step4:  If mod(k, K) >0, go to Step 5. Otherwise, set f= nlin{lnlin{i—Vj (k)}H,
J
Imax{ U, (k)}I}. ¥ B = Imin{}V;(k)}|, then set U(k) = - V(k) and b(k) =
i J

a(k). Otherwise, set V(k) =— U(k) and a(k) = b(k) and go to Step 5.

14




Step5:  Setk=k+ 1. If mod(k, L) >0, go to Step 1. Otherwise, set w =—m(k),

recompute S(w), and go to Step 1.
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IV. NUMERICAL RESULTS
A. DATA GENERATION

To compare the algorithms discussed in Chapter III, random games with 100x 100
payoff matrices are generated. For symmetric games, the payoffs, a;;, are uniformly
distributed between —100 and 100 (see appendix A). For non-symmetric games, three
groups of payoff matrices are considered. In Group 1, the nonzero payoffs are uniformly
distributed between —~100 and 100. For Group 2, they are between —200 and 0. Finally,
a;i’s for Group 3 are between 0 and 200.

To generate payoff matrices with density 8, where 0 < @ < 1, a Uniform random
number, p;;, between 0 and 1 is generated for each pair of strategies (i, j). If y;; < 6, then
a Uniform random number is generated for a;. Otherwise, a;; = 0. The games in Groups
1, 2, and 3 differ by a constant if and only if 8 = 1.

B. PARAMETER VALUES

All algorithms are terminated when thc‘ gap is less than or equal to 0.1, i.e., the
stopping tolerance, €, equals 0.1. As suggested by GZQ, the switching interval K is 1 for
MFP, SMFP, and DMFP.

For SMFP, & is set to 0.75(max(a;)-min(a;)). Recall that the parameter § is the
constant used in defining ¢, and c; for the symmetric transformation. In our preliminary
study, other values for 0, e.g., 0.25(max(a;)-min(a;)), 0.50(max(a;)-min(ay)), (max(ay)-
min(ay)), and 1, did not show significant improvement in CPU time.

For games in Groups 1 and 2, the scaling parameter w is Imin(ay)! + 1. Since

games in Group 3 already have positive values, w is simply set to zero.
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The parameter settings for DMFP are the same as those for SMFP. The additional
parameter for the dynamic version is the rescaling interval, L, which is set at 5000.
C. IMPLEMENTATION

All four algorithms were implemented as MATLAB (Version 5.0) functions. The
programs for all four functions and game generation are listed in the appendices. The
reported CPU times in the following sections were generated using a 300 MHz Pentium
II personal computer with 64 MEG of RAM.
D. SYMMETRIC GAMES

The results in Table 4.1 show that MFP outperforms RFP on four symmetric

games from Group 1 with various densities.

Table 4.1: Computational Results for Symmetric Games in Group 1

Game | Den. Method Gap Lower Upper CPU Iterations

bound | bound (sec) | "(x10%

1 25% RFP 0.0999 -0.0511 0.0488 476.75 | 0.1859
MFP 0.1000 -0.0502 0.0498 40.37 | 0.0080

2 50% RFP 0.0998 -0.0516 0.0482 84997 | 0.2518
MFP 0.1000 -0.0500 0.0499 63.55 [ 0.0102

3 75% RFP 0.0999 ' | -0.0498 0.0502 919.34 | 0.3604
MFP 0.0998 -0.0505 0.0493 83.37 | 0.0179

4 100% RFP 0.1000 -0.0532 0.0468 79532 | 0.3147
MFP 0.0994 -0.0497 0.0497 79.92 | 0.0161

The CPU times for MFP in Table 4.1 are between 7.5% and 10.0% of those for RFP.
Similarly, MFP also uses fewer iterations; they are between 4% and 5% of those for RFP.
Figure 4.1 displays a typical convergence behavior of RFP and MFP on
symmetric games. MFP seems to converge directly to the solution. On the other hand,
RFP has a long convergence tail. The success of MFP can be attributed to the switching
of cumulative payoffs and strategies in Step 4, which takes full advantage of the special

solution structure of symmetric games.
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Figure 4.1: Convergence Behavior of RFP and MFP for a Symmetric Game
in Group 1 with 100 % Density

E. NON-SYMMETRIC GAMES

Two sets of experiments were performed, one set to compare RFP against SMFP
and the other to compare RFP against DMFP. In these experiments, all three algorithms
are terminated as soon as a 0.1 gap is achieved. As demonstrated below, DMFP is
superior to RFP and RFP is superior to SMFP.

1. RFP and SMFP

Tables 4.2 to 4.4 summarize results for games in Groups 1, 2, and 3, respectively.
Each table reports results on four random games, each with different densities. With the
exception of game 3 in Table 4.4, RFP takes between 20% to 75% less time than SMFP
to achieve a gap of 0.1 or better. For game 3 in Table 4.4, the CPU time of RFP is

approximately 3% more than that of SMFP. In general, SMFP requires fewer iterations.
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However, one iteration of SMFP is much more computationally intensive than one

iteration of RFP.

Table 4.2: Computational Results for Games in Group 1

Game | Den. Method Gap Lower Upper CPU Iterations
bound | bound (sec) (x10%
1 25% RFP 0.0999 -0.7148 | -0.6149 34851 | 0.1939
SMFP 0.0997 -0.7103 | -0.6106 1466.79 | 0.2402
2 50% RFP 0.1000 -0.2571 -0.1571 718.53 | 0.3526
SMFP 0.0999 -0.2627 | -0.1628 1617.66 | 0.2788
3 75% RFP 0.0998 0.5192 0.6190 989.81 | 0.4943
SMFP 0.0999 0.5136 0.6135 224734 | 0.2898
4 100% RFP 0.0999 0.1176 0.2175 801.25 | 04249
SMFP 0.0998 0.1217 0.2216 1795.85 [ 0.2486

Table 4.3: Computational Results for Games in Group 2

Game | Den. Method Gap Lower Upper CPU Iterations
bound bound (sec.) (x10%
1 25% RFP 0.1000 | -24.8046 | -24.7046 787.74 | 0.5171
SMFP 0.0997 | -24.8027 | -24.7029 | 2849.15 | 0.5316
2 50% RFP 0.1000 | -49.6928 | -49.5929 702.11 | 0.4591
SMFP 0.0999 | -49.6847 | -49.5847 | 2183.56 | 0.4056
3 75% RFP 0.0999 | -73.8200 | -73.7201 | 1211.00 | 0.5717
SMFP 0.0999 | -73.8156 | -73.7157 | 1578.72 | 0.3191
4 100% RFP 0.1000 | -97.7296 | -97.6296 798.40 | 0.5140
SMFP 0.0998 | -97.7225 | -97.6226 [ 1398.89 | 0.2880

Table 4.4: Computational Results for Games in Group 3

Game | Den. Method Gap Lower Upper CPU Iterations
bound bound (sec) (x10%
1 25% RFP 0.0999 25.8992 | 25.9992 1063.85 | 0.6843
SMFP 0.0999 25.8965 | 25.9964 2850.68 | 0.4885
2 50% RFP 0.0999 | 48.6506 | 48.7506 977.62 | 0.6341
SMFP 0.0995 48.6532 | 48.7528 126944 | 0.2354
3 75% RFP 0.1000 | 73.4574 | 73.5574 1168.87 | 0.7626
SMFP 0.0998 73.4502 | 73.5500 1133.66 [ 0.2399
4 100% RFP 0.0999 | 99.0131 | 99.1130 825.47 | 0.5287
SMFP 0.0998 99.0190 | 99.1188 1568.51 [ 0.2869

It is also interesting to note in Tables 4.3 and 4.4 that SMFP takes the most CPU

time in reaching a 0.1 gap for the game with 25% dense payoff matrices.

Figures 4.2 to 4.4 graphically display a typical convergence behavior for RFP and

SMFP for games in Groups 1, 2 and 3 when ¢ (the stopping tolerance) = 0.1. These




figures show that RFP converges to the game value faster than SMFP in terms of CPU

time for all three groups of games.
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Figure 4.4: Convergence Behavior of RFP and SMFP for a Game in Group 3 with 50% Density
2. RFP and DMFP
As in the above subsection, Tables 4.5 to 4.7 summarize the computational results
for games in Groups 1, 2, and 3, respectively. Each table reports results on four random
games, each with different densities. In all 12 games, DMFP takes between 36% to 67%
less time than RFP to achieve a gap of 0.1 or better. As with the static version, DMFP
requires fewer iterations than RFP. However, unlike its counterpart, small numbers of

DMFP iterations do not translate into more CPU seconds.
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Table 4.5: Computational Results for Games in Group 1

Game| Den. Method Gap Upper | Lower CPU |Iterations
bound bound (sec) (x10%
1 | 25% RFP 0.0999 | -0.7148 | -0.6149 301.54f 0.1939
DMFP 0.0999 | -0.7177 | -0.6178 159.45) 0.0228
2 | 50% RFP 0.1000 | -0.8660 | -0.7660 461.92| 0.2959
DMFP 0.0994 | -0.8634 | -0.7640 255.68( 0.0430]
3 | 75% RFP 0.1000 | -0.3411 | -0.2411 564.47| 0.3576
DMFP 0.1000 | -0.3452 | -0.2452 | , 331.20[ 0.0495
4 |100% RFP 0.1000 | 0.1049 | 0.2048 617.20( 0.3892
DMFP 0.0992 | 0.1067 | 0.2059 395.30f 0.0681
Table 4.6: Computational Results for Games in Group 2
Game| Den. Method Gap Upper | Lower CPU |Iterations
bound bound (sec) (X 106)
1 |25% RFP 0.10 -23.89 | -23.79 906.16f 0.5449
DMFP 0.10 -23.89 | -23.79 350.37 0.0547
2 | 50% RFP 0.10 -49.42 | -49.32 | 1029.64| 0.6765
DMFP 0.10 -49.42 | -49.32 373.82f 0.0663
3 | 75% RFP 0.10 -71.59 | -71.49 | 1036.88] 0.5775
DMFP 0.10 -71.58 | -71.48 486.09| 0.0771
4 [100% RFP 0.10 | -100.02 | -99.92 657.13| 0.4192
DMFP 0.10 | -100.02 | -99.93 378.05| 0.0652
Table 4.7: Computational Results for Games in Group 3
Game| Den. Method Gap Upper | Lower CPU |Iterations
bound bound (sec) (x10%
1 | 25% RFP 0.10 23.05 23.15 800.48] 0.5308
DMEFP 0.10 23.05 23.15 263.59] 0.0401
2 | 50% RFP 0.10 4773 47.83 766.21} 0.4984
DMFP 0.10 47.74 47.84 423.58] 0.0660|
3 | 75% RFP 0.10 75.27 75.37 978.94] 0.6342
DMFP 0.10 75.27 75.37 573.65] 0.0898
4 1100% RFP 0.10 97.80 97.90 1111.86] 0.7131
DMFP 0.10 | 97.80 97.90 642.08 0.0774

Figures 4.5 to 4.7 graphically illustrate typical RFP and DMFP convergence
behavior for games in Groups 1, 2 and 3, respectively. As before, ¢, the stopping
tolerance, is set at 0.1. As the numerical results suggest, DMFP outperforms RFP which,

in turn, outperforms SMFP.
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V. CONCLUSIONS AND SUGGESTION FOR FURTHER WORK

This thesis proposes an alternate modification to the fictitious play algorithm
which can be considered as a dynamic variation of the one proposed by GZQ. The
modification proposed here is dynamic, in that the symmetric transformation is updated
periodically with a different scaling parameter. The results in Chapter IV indicate that
this dynamic variation is computationally advantageous when compared to the original
fictitious play or the static variation proposed by GZQ.

The results in Chapter IV also confirm that GZQ’s modified fictitious play
algorithm outperforms the original when applied to symmetric games. The results are
reversed for non-symmetric games. The original fictitious play algorithm is rather robust
and outperforms GZQ’s static modification on random non-symmetric games.

Finally, this thésis also identifies several topics for further investigation. One
topic is to investigate the choice of 8 in defining ¢; and c; in the transformed matrix S(w).
The other is to investigate other choices f§r w, the scaling parameter, perhaps in

conjunction with the choice of 4.
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APPENDIX A. MATLAB CODES FOR GENERATING SKEW-SYMMETRIC
MATRICES FOR SYMMETRIC GAMES

function A = skewSym(m,d)
% This function is used for generating an (m X m) skew-symmetric matrix
% with density d percent. -
A = zeros(m,m);
fori=1:m
forj=1:m
ifi<j
if d > round(rand(1)*100) % Generate elements of A ~ U(-100,100)
if 0.5 > rand(1)
A(1,j) = ceil(rand(1)*100);
else
A(,j) = floor(-100*rand(1));
end
end
end
ifi>]
AG)) =-AG,i);
end
end
end
return

29







- APPENDIX B. MATLAB CODES FOR GENERATING MATRICES FOR NON-
SYMMETRIC GAMES

function A = density(m,n,d)
% This function generates an (m X n) general matrix with d % density
A = zeros(m,n); % A is a payoff matrix
fori=1:m
forj=1:n
if d > round(rand(1)*100) % Generate elements of A ~ U(-100,100)
if 0.5 > rand(1)
A(i,j) = ceil(rand(1)*100);
else
A(i,j) = floor(-100*rand(1));
end
end
end
end
return
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APPENDIX C. MATLAB CODES FOR RFP ALGORITHM

function [Upb,Lwb,gp,gap,k,compTime,reqflops,P1,P2] = RFP(gapneed,A)
% This function performs the RFP and gives the result whenever it achieves the
% needed gap

[m,n] = size(A);

V = zeros(1,n); % V is a P2's (choices)cumulative payoff vector
U = zeros(m, 1); % U is a P1's (choices)cumulative payoff vector
x = zeros(m,1); % x is a P1's strategy vector

y = zeros(1,n); % y is a P2's strategy vector

r=0;

mx = 10000;

t = cputime;
f = flops;

% The first iteration (k= 1)

first = ceil(rand(1)*m); % first is the i th row that P1 arbitrarily chooses
V =V + A(first,:);

x(first) = x(first) + 1;

lower(1) = min(V);

second = find(V==min(V)); % second is the j th column that P2 chooses to respond

if length(second) > 1
nn = ceil(rand(1)*(length(second));
second = second(nn);

end

U =1U + A(:,second);

y(second) = y(second) + 1;

upper(1) = max(U);

gap(1) = upper(1) - lower(1);

k=1;

ko=1;

while gap(ko) > gapneed
k=k+1;
ko=ko+1;
st = find(U==max(U)); % st is the i th row giving max payoff that P1 expect
if length(st) > 1
nn = ceil(rand(1)*length(st));
st = st(nn);
end
V=V+ A(st,);
x(st) = x(st) + 1;
second = find(V==min(V)); % second is the j th column that P2 chooses to respond
if length(second) > 1
nn = ceil(rand(1)*length(second));
second = second(nn);
end
U=U + A(:,second);
y(second) = y(second) + 1;
upper(ko) = max(Uyk;
lower(ko) = min(V)/k;
if upper(ko) > upper(ko-1)
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upper(ko) = upper(ko-1);

end

if lower(ko) < lower(ko-1)
lower(ko) = lower(ko-1);

end

gap(ko) = upper(ko) - lower(ko);

% In order to save the memory space,
% the following loop controls the result vectors (lower, upper and gap)
% to have at most mx = 10,000 elements inside.
if mod(k-1,mx) ==0
r=r+1;
disp([r, gap(ko-1)]) %display the gap at every 10,000 iterations
lower(1) = lower(ko);
lower = lower(1:ko-1);
upper(1) = upper(ko);
upper = upper(1:ko-1);
gap(1) = gap(ko);
gap = gap(1:ko-1);
ko=1;
end
end
k;
if k > mx
if ko < 5000
lower = [lower((mx-5000+ko+1):mx),lower(1:ko)];
upper = [upper((mx-5000+ko+1):mx),upper(1:ko)];
gap = [gap((mx-5000+ko+1):mx),gap(1:ko)];
ko = 5000;
else
lower = lower(1:ko);
upper = upper(1:ko);
gap = gap(1:ko);
end
else
lower = lower(1:ko);
upper = upper(1:ko);
gap = gap(1:ko);
end
P1 = x./k;
P2 =y/k;
Upb = upper(ko); Lwb = lower(ko);
gp = gap(ko);
reqflops = flops - f;
compTime = cputime - t;

return
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APPENDIX D. MATLAB CODES FOR MFP ALGORITHM FOR SYMMETRIC
GAMES

function [k,Upb,Lwb,gp,gap,compTime,reqflops] = MFPSym(gapneed,B)

% This function performs the MFP with an attempt to duplicate MFP algorithm in Gass,
% Zafra's paper.

% This function gives the result whenever it achieves the needed gap

K=1;

r = 0; mx = 10000;

A = B; % input matrix game

[m,n] = size(A);

V = zeros(1,n); % V is a P2's (choices)cumulative payoff vector
U = zeros(m,1); % U is a P1's (choices)cumulative payoff vector
x = zeros(m,1); % x is a P1's strategy vector

y = zeros(1,n); % y is a P2's strategy vector

t = cputime;

f = flops;

% The first iteration (k = 1)

first = round(1+rand(1)*(m-1)); % first is the i th row that P1 arbitrarily chooses
V =V + A(first,:);

x(first) = x(first) + 1;

lower(1) = min(V);

second = find(V==min(V)); % second is the j th column that P2 chooses to respond
if length(second) > 1
nn = round(1+rand(1)*(length(second)-1));
second = second(nn);
end
U= U + A(:,second);
y(second) = y(second) + 1;
upper(1) = max(U);
gap(1) = upper(1) - lower(1);

k=1;
ko=1;
fK==1
if abs(max(U)) < abs(min(V))
V=-UY,
else
U=-(V",
end
end
while gap(ko) > gapneed
k=k+1;
ko=ko +1;

st = find(U==max(U)); % st is the i th row giving max payoff that P1 expect
if length(st) > 1
nn = round(1+rand(1)*(length(st)-1));
st = st(nn);
end
V=V+ A(st,);
x(st) = x(st) + 1;
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second = find(V==min(V)); % second is the j th column that P2 chooses to respond
if length(second) > 1
nn = round(1+rand(1)*(length(second)-1));
second = second(nn);
end
U=U + A(:,second);
y(second) = y(second) + 1;
upper(ko) = max(U)/k;
lower(ko) = min(V)/k;
if upper(ko) > upper(ko-1)
upper(ko) = upper(ko-1);
end
if lower(ko) < lower(ko-1)
lower(ko) = lower(ko-1);
end
gap(ko) = upper(ko) - lower(ko);

if mod(k,K) ==0
if abs(max(U)/k) < abs(min(V)/k)

V=-U");
else
U=-(V');
end
end

% In order to save the memory space,
% the following loop controls the result vectors (lower, upper and gap)
% to have at most mx = 10,000 elements inside.
if mod(k-1,mx) ==
r=r+1;
disp([r, gap(ko-1)]) %display the gap at every 10,000 iterations
lower(1) = lower(ko);
lower = lower(1:mx);
upper(1) = upper(ko);
upper = upper(1:mx);
gap(1) = gap(ko);
gap = gap(1:mx);
ko=1;
end
end

reqflops = flops - f;
compTime = cputime - t;

if k> mx
if ko <5000 %number of iterations is in [r*10000 , r*10000+5000)
lower = [lower((mx-5000+ko+1):mx),lower(1:ko)];
upper = [upper((mx-5000+ko+1):mx),upper(1:ko)];
gap = [gap((mx-5000+ko+1):mx),gap(1:ko)];
ko = 5000;
else %number of iterations is in [r*10000+5000 , (r+1)*10000)
lower = lower(1:ko);
upper = upper(1:ko);
gap = gap(1:ko);
end
else %onumber of iterations < 10000
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lower = lower(1:ko);

upper = upper(1:ko);

gap = gap(1:ko);
end
Upb = upper(end); Lwb = lower(end); gp = gap(end);
return







APPENDIX E. MATLAB CODES FOR SMFP

function [count,Upb,Lwb,gp,gap,compTime,reqflops,P1,P2] = SMFP(gapneed,A,w)

% This function performs the MFP with an attempt to duplicate MFP algorithm in Gass,
% Zafra's paper.

% This function gives the result whenever it achieves the needed gap

r=0;

mx = 10000;

k=1;

[m,n] = size(A);

alpha = 0.75;

¢ = alpha*(max(max(A)) - min(min(A)));
An=A+w;

S = [zeros(m) An -c*ones(m,1);
-An' zeros(n) c*ones(n,1); .
c*ones(1,m) -c*ones(1,n) 0];
[sm,sn] = size(S);

U = zeros(sm,1);
V = zeros(1,sn);
X = zeros(sm,1);
y = zeros(1,sn);

t = cputime;
f = flops;

Yostart the first iteration

st = ceil(rand(1)*sm); % Row player randomly choose his row strategy
x(st) = x(st) + 1;

V=V +8(st,:);

nd = find(V == min(V));
if (length(nd) > 1) % Randomly choose to break the tie
i = ceil(rand(1)*length(nd));
nd = nd(i);
-end
y(nd) = y(nd) + 1;
U=U + S(,nd);

%o 0T Yo To Vo Te T To T To o To To T To To To %o To

xbarl = x(1:m)./sum(x(1:m)); % This part will cause zero division errors
ybarl = x(m+1:m+n)./sum(x(m+1:m+n)); % for some initial iterations, however MATLAB
xbar2 = y(1:m)./sum(y(1:m)); % can continue to the end of mission

ybar2 = y(m+1:m+n)./sum(y(m+1:m+n));

lower(1) = max(min(xbarl'*A), min(xbar2*A));
upper(1) = min(max(A*ybarl), max(A*ybar2');
gap(1) = upper(l) - lower(1);

ifk==1
if (abs(max(U)) < abs(min(V)))
v=-U;
X=y’
else
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U=-V'

y=x}
end
end
count=1;
co=1;

while (gap(co) ~=0)
co=co+1;
count = count + 1;

st = find(U == max(U));

if (length(st) > 1) % Randomly choose to break the tie
i = ceil(rand(1)*length(st));
st = st(1);

end

x(st) = x(st) + 1;
V=V +S8(st,);

nd = find(V == min(V));

if (Jength(nd) > 1) % Randomly choose to break the tie
i = ceil(rand(1)*length(nd));
nd = nd(i);

end

y(nd) = y(nd) + 1;

U="U + S(:,nd);
%% Fo To o o To o Fo Vo Fo To To To To Yo

xbarl = x(1:m)./sum(x(1:m));
ybarl = x(m+1:m+n)./sum(x(m+1:m+n));
xbar2 = y(1:m)./sum(y(1:m));
ybar2 = y(m+1:m+n)./sum(y(m+1:m+n));

lower(co) = max(min(xbarl'*A), min(xbar2*A));
upper(co) = min(max(A*ybarl), max(A*ybar2’)),
if (lower(co) < lower(co-1))

lower(co) = lower(co-1);
end
if (upper(co) > upper(co-1))

upper(co) = upper(co-1);
end

gap(co) = upper(co) - lower(co);

if (mod(count,k) == Q)
if (abs(max(U)) < abs(min(V)))

v=-U,

x=y"
else

U=-V',

y =X}
end

end
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if (gap(co) <= gapneed)
break
end

% In order to save the memory space,
% the following loop controls the result vectors (lower, upper and gap)
% to have at most mx = 10,000 elements inside.
if mod(count-1,mx) == 0
r=r+1;
disp([r, gap(co-1)]) %display the gap at every 10,000 iterations
lower(1) = lower(co);
lower = lower(1:mx);
upper(1) = upper(co);
upper = upper(1:mx);
gap(1) = gap(co);
gap = gap(1:mx);
co=1;
end
end

compTime = cputime - t;
reqflops = flops - f;

if count > mx
if co < 5000 %number of iterations is in [r*10000 , r*10000+5000)
lower = [lower({(mx-5000+co+1):mx),lower(1:co0)];
upper = [upper((mx-5000+co+1):mx),upper(1:co)];
gap = [gap((mx-5000+co+1):mx),gap(1:co)];
co = 5000;
else %number of iterations is in [r*10000+5000 , (r+1)*10000)
lower = lower(1:co);
upper = upper(1:co);
gap = gap(1l:co);
end
else %number of iterations < 10000
lower = lower(1:co);
upper = upper(1:co);
gap = gap(1:co);
end

Upb = upper(end);
Lwb = lower(end);
gp = gap(end);

P1 = xbarl;

P2 = ybar2;

return
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APPENDIX F. MATLAB CODES FOR DMFP

function [count,Upb,Lwb,gp,gap,compTime,regflops,P1,P2] = DMFP(gapneed,A,w)
% This function performs the new modified version of MFP algorithm in Gass,
% Zafra's paper.
r=0;
mx = 10000,
k=1;
[m,n] = size(A);
alpha = 0.75;
¢ = alpha*(max(max(A)) - min(min(A)));
An=A+w;
S =[zeros(m) An -c*ones(m,1);
-An' zeros(n) c*ones(n,1);
c*ones(1,m) -c*ones(1,n) 0];
[sm,sn] = size(S);

U = zeros(sm,1);
V = zeros(1,sn);
X = zeros(sm,1);
y = zeros(1,sn);

t = cputime;
f = flops;

Yostart the first iteration

st = ceil(rand(1)*sm); % Row player randomly choose his row strategy
x(st) = x(st) + 1;

V=V +8(st,:);

nd = find(V == min(V));

if (length(nd) > 1) % Randomly choose to break the tie
1 = ceil(rand(1)*length(nd));
nd = nd(i);

end

y(nd) = y(nd) + 1;

U=U + S(:,nd);
90 %0 %0 Yo e To %o To Yo To o Yo Yo To Yo To

xbarl = x(1:m)./sum(x(1:m)); % This part will cause zero division errors
ybarl = x(m+1:m+n)./sum(x(m+1:m+n)); % for some initial iterations, however MATLAB
xbar2 = y(1:m)./sum(y(1:m)); % can continue to the end of mission.

ybar2 = y(m+1:m+n)./sum(y(m+1:m+n));

lower(1) = max(min(xbarl'*A), min(xbar2*A));
upper(1) = min(max(A*ybar1l), max(A*ybar2");
gap(1) = upper(1) - lower(1);

ifk==
if (abs(max(U)) < abs(min(V)))
V=-U,
x=y'
else
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U=-V,

y=x;
end
end
count = 1;
co=1;

while (gap(co) ~= 0)
co=co+1;
count = count + 1;

st = find(U == max(U));

if (length(st) > 1) % Randomly choose to break the tie
i = ceil(rand(1)*length(st));
st = st(i);

end

Xx(st) = x(st) + 1;
V=V +85(t,:);

nd = find(V == min(V));

if (length(nd) > 1) % Randomly choose to break the tie
i = ceil(rand(1)*length(nd));
nd = nd(i);

end

y(nd) = y(nd) + 1;

U=U + S(:,nd);

0% T To %0 To To %o Fo Fo %o o To %o Fo Jo

xbarl = x(1:m)./sum(x(1:m)); % This part will cause zero division errors

ybarl = x(m+1:m+n)./sum(x(m+1:m-+n)); % for some initial iterations, however MATLAB
xbar2 = y(1:m)./sum(y(1:m)); % can continue to the end of mission.

ybar2 = y(m+1:m+n)./sum(y(m-+1:m+n));
lower(co) = max(min(xbar1'*A), min(xbar2*A));
upper(co) = min(max(A*ybarl), max(A*ybar2");
if (lower(co) < lower(co-1))

lower(co) = lower(co-1);
end
if (upper(co) > upper(co-1))

upper(co) = upper(co-1);
end
gap(co) = upper(co) - lower(co);
if (mod(count,k) == 0)

if (abs(max(U)) < abs(min(V)))

V=-U;
x=Yy,
else
U=-V,
y=x;
end
end
if (gap(co) <= gapneed)
break
end

% In order to save the memory space,
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% the following loop controls the result vectors (lower, upper and gap)
% to have at most mx = 10,000 elements inside.
if mod(count-1,mx) ==0
r=r+1;
%format long ¢ ;
disp([r, gap(co-1)]) %display the gap at every 10,000 iterations
lower(1) = lower(co);
lower = lower(1:mx);
upper(1) = upper(co);
upper = upper(1:mx);
gap(1) = gap(co);
gap = gap(1:mx);
co=1;
end
% Dynamic scaling part
%o %e To To Yo To ToTe To T To To To To o To To To To To To Yo
if (mod(count,5000) == 0) % dynamically update w every 5000 iterations
w = -0.5*(upper(co) + lower(co));
An=A+w;
S = [zeros(m) An -c*ones(m,1);
-An' zeros(n) c*ones(n,1);
c*ones(1,m) -c*ones(1,n) 0];
end
0% To To %o ToTo o Vo Te To To T To To Fo To o To To To To To
end

compTime = cputime - t;
regflops = flops - f;

if count > mx
if co <5000 %number of iterations is in [r*10000 , r*10000+5000)
lower = [lower((mx-5000+co+1):mx),lower(1:co)];
upper = [upper((mx-5000+co+1):mx),upper(1:co)];
gap = [gap((mx-5000+co+1):mx),gap(1:co)];
co = 5000;
else %number of iterations is in [r*10000+5000 , (r+1)*10000)
lower = lower(1:co);
upper = upper(1:co);
gap = gap(1:co);
end
else %number of iterations < 10000
lower = lower(1:co);
upper = upper(1l:co);
gap = gap(1:co);
end

Upb = upper(end);
Lwb = lower(end);
gp = gap(end);

P1 = xbarl;

P2 = ybar2;

Return
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